whisper.rn 0.4.0-rc.9 → 0.4.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +5 -1
- package/android/build.gradle +12 -3
- package/android/src/main/CMakeLists.txt +43 -13
- package/android/src/main/java/com/rnwhisper/WhisperContext.java +33 -35
- package/android/src/main/jni.cpp +9 -0
- package/android/src/main/jniLibs/arm64-v8a/librnwhisper.so +0 -0
- package/android/src/main/jniLibs/arm64-v8a/librnwhisper_v8fp16_va_2.so +0 -0
- package/android/src/main/jniLibs/armeabi-v7a/librnwhisper.so +0 -0
- package/android/src/main/jniLibs/armeabi-v7a/librnwhisper_vfpv4.so +0 -0
- package/android/src/main/jniLibs/x86_64/librnwhisper.so +0 -0
- package/android/src/main/jniLibs/x86_64/librnwhisper_x86_64.so +0 -0
- package/cpp/coreml/whisper-compat.h +10 -0
- package/cpp/coreml/whisper-compat.m +35 -0
- package/cpp/coreml/whisper-decoder-impl.h +27 -15
- package/cpp/coreml/whisper-decoder-impl.m +36 -10
- package/cpp/coreml/whisper-encoder-impl.h +21 -9
- package/cpp/coreml/whisper-encoder-impl.m +29 -3
- package/cpp/ggml-alloc.c +39 -37
- package/cpp/ggml-alloc.h +1 -1
- package/cpp/ggml-backend-impl.h +55 -27
- package/cpp/ggml-backend-reg.cpp +591 -0
- package/cpp/ggml-backend.cpp +336 -955
- package/cpp/ggml-backend.h +70 -42
- package/cpp/ggml-common.h +57 -49
- package/cpp/ggml-cpp.h +39 -0
- package/cpp/ggml-cpu/amx/amx.cpp +221 -0
- package/cpp/ggml-cpu/amx/amx.h +8 -0
- package/cpp/ggml-cpu/amx/common.h +91 -0
- package/cpp/ggml-cpu/amx/mmq.cpp +2511 -0
- package/cpp/ggml-cpu/amx/mmq.h +10 -0
- package/cpp/ggml-cpu/arch/arm/cpu-feats.cpp +94 -0
- package/cpp/ggml-cpu/arch/arm/quants.c +4113 -0
- package/cpp/ggml-cpu/arch/arm/repack.cpp +2162 -0
- package/cpp/ggml-cpu/arch/x86/cpu-feats.cpp +327 -0
- package/cpp/ggml-cpu/arch/x86/quants.c +4310 -0
- package/cpp/ggml-cpu/arch/x86/repack.cpp +3284 -0
- package/cpp/ggml-cpu/arch-fallback.h +184 -0
- package/cpp/ggml-cpu/binary-ops.cpp +158 -0
- package/cpp/ggml-cpu/binary-ops.h +16 -0
- package/cpp/ggml-cpu/common.h +72 -0
- package/cpp/ggml-cpu/ggml-cpu-impl.h +511 -0
- package/cpp/ggml-cpu/ggml-cpu.c +3473 -0
- package/cpp/ggml-cpu/ggml-cpu.cpp +671 -0
- package/cpp/ggml-cpu/ops.cpp +9085 -0
- package/cpp/ggml-cpu/ops.h +111 -0
- package/cpp/ggml-cpu/quants.c +1157 -0
- package/cpp/ggml-cpu/quants.h +89 -0
- package/cpp/ggml-cpu/repack.cpp +1570 -0
- package/cpp/ggml-cpu/repack.h +98 -0
- package/cpp/ggml-cpu/simd-mappings.h +1006 -0
- package/cpp/ggml-cpu/traits.cpp +36 -0
- package/cpp/ggml-cpu/traits.h +38 -0
- package/cpp/ggml-cpu/unary-ops.cpp +186 -0
- package/cpp/ggml-cpu/unary-ops.h +28 -0
- package/cpp/ggml-cpu/vec.cpp +321 -0
- package/cpp/ggml-cpu/vec.h +973 -0
- package/cpp/ggml-cpu.h +143 -0
- package/cpp/ggml-impl.h +417 -23
- package/cpp/ggml-metal-impl.h +622 -0
- package/cpp/ggml-metal.h +9 -9
- package/cpp/ggml-metal.m +3451 -1344
- package/cpp/ggml-opt.cpp +1037 -0
- package/cpp/ggml-opt.h +237 -0
- package/cpp/ggml-quants.c +296 -10818
- package/cpp/ggml-quants.h +78 -125
- package/cpp/ggml-threading.cpp +12 -0
- package/cpp/ggml-threading.h +14 -0
- package/cpp/ggml-whisper-sim.metallib +0 -0
- package/cpp/ggml-whisper.metallib +0 -0
- package/cpp/ggml.c +4633 -21450
- package/cpp/ggml.h +320 -661
- package/cpp/gguf.cpp +1347 -0
- package/cpp/gguf.h +202 -0
- package/cpp/rn-whisper.cpp +4 -11
- package/cpp/whisper-arch.h +197 -0
- package/cpp/whisper.cpp +2022 -495
- package/cpp/whisper.h +75 -18
- package/ios/CMakeLists.txt +95 -0
- package/ios/RNWhisper.h +5 -0
- package/ios/RNWhisperAudioUtils.m +4 -0
- package/ios/RNWhisperContext.h +5 -0
- package/ios/RNWhisperContext.mm +4 -2
- package/ios/rnwhisper.xcframework/Info.plist +74 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/Headers/ggml-alloc.h +76 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/Headers/ggml-backend-impl.h +255 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/Headers/ggml-backend.h +354 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/Headers/ggml-common.h +1861 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/Headers/ggml-cpp.h +39 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/Headers/ggml-cpu.h +143 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/Headers/ggml-impl.h +603 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/Headers/ggml-metal-impl.h +622 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/Headers/ggml-metal.h +66 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/Headers/ggml-opt.h +237 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/Headers/ggml-quants.h +100 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/Headers/ggml-threading.h +14 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/Headers/ggml.h +2221 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/Headers/gguf.h +202 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/Headers/rn-audioutils.h +14 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/Headers/rn-whisper-log.h +11 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/Headers/rn-whisper.h +52 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/Headers/whisper-arch.h +197 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/Headers/whisper.h +739 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/Info.plist +0 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/ggml-whisper.metallib +0 -0
- package/ios/rnwhisper.xcframework/ios-arm64/rnwhisper.framework/rnwhisper +0 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-alloc.h +76 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-backend-impl.h +255 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-backend.h +354 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-common.h +1861 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-cpp.h +39 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-cpu.h +143 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-impl.h +603 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-metal-impl.h +622 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-metal.h +66 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-opt.h +237 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-quants.h +100 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-threading.h +14 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml.h +2221 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/Headers/gguf.h +202 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/Headers/rn-audioutils.h +14 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/Headers/rn-whisper-log.h +11 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/Headers/rn-whisper.h +52 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/Headers/whisper-arch.h +197 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/Headers/whisper.h +739 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/Info.plist +0 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/_CodeSignature/CodeResources +101 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/ggml-whisper-sim.metallib +0 -0
- package/ios/rnwhisper.xcframework/ios-arm64_x86_64-simulator/rnwhisper.framework/rnwhisper +0 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/Headers/ggml-alloc.h +76 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/Headers/ggml-backend-impl.h +255 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/Headers/ggml-backend.h +354 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/Headers/ggml-common.h +1861 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/Headers/ggml-cpp.h +39 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/Headers/ggml-cpu.h +143 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/Headers/ggml-impl.h +603 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/Headers/ggml-metal-impl.h +622 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/Headers/ggml-metal.h +66 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/Headers/ggml-opt.h +237 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/Headers/ggml-quants.h +100 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/Headers/ggml-threading.h +14 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/Headers/ggml.h +2221 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/Headers/gguf.h +202 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/Headers/rn-audioutils.h +14 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/Headers/rn-whisper-log.h +11 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/Headers/rn-whisper.h +52 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/Headers/whisper-arch.h +197 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/Headers/whisper.h +739 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/Info.plist +0 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/ggml-whisper.metallib +0 -0
- package/ios/rnwhisper.xcframework/tvos-arm64/rnwhisper.framework/rnwhisper +0 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-alloc.h +76 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-backend-impl.h +255 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-backend.h +354 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-common.h +1861 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-cpp.h +39 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-cpu.h +143 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-impl.h +603 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-metal-impl.h +622 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-metal.h +66 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-opt.h +237 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-quants.h +100 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml-threading.h +14 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml.h +2221 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/Headers/gguf.h +202 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/Headers/rn-audioutils.h +14 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/Headers/rn-whisper-log.h +11 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/Headers/rn-whisper.h +52 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/Headers/whisper-arch.h +197 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/Headers/whisper.h +739 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/Info.plist +0 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/_CodeSignature/CodeResources +101 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/ggml-whisper-sim.metallib +0 -0
- package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/rnwhisper +0 -0
- package/jest/mock.js +5 -0
- package/lib/commonjs/version.json +1 -1
- package/lib/module/version.json +1 -1
- package/package.json +10 -6
- package/src/version.json +1 -1
- package/whisper-rn.podspec +11 -18
- package/cpp/README.md +0 -4
- package/cpp/ggml-aarch64.c +0 -3209
- package/cpp/ggml-aarch64.h +0 -39
- package/cpp/ggml-cpu-impl.h +0 -614
package/ios/rnwhisper.xcframework/tvos-arm64_x86_64-simulator/rnwhisper.framework/Headers/ggml.h
ADDED
|
@@ -0,0 +1,2221 @@
|
|
|
1
|
+
#pragma once
|
|
2
|
+
|
|
3
|
+
//
|
|
4
|
+
// GGML Tensor Library
|
|
5
|
+
//
|
|
6
|
+
// This documentation is still a work in progress.
|
|
7
|
+
// If you wish some specific topics to be covered, feel free to drop a comment:
|
|
8
|
+
//
|
|
9
|
+
// https://github.com/ggerganov/whisper.cpp/issues/40
|
|
10
|
+
//
|
|
11
|
+
// ## Overview
|
|
12
|
+
//
|
|
13
|
+
// This library implements:
|
|
14
|
+
//
|
|
15
|
+
// - a set of tensor operations
|
|
16
|
+
// - automatic differentiation
|
|
17
|
+
// - basic optimization algorithms
|
|
18
|
+
//
|
|
19
|
+
// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
|
|
20
|
+
// but is not limited to, the following:
|
|
21
|
+
//
|
|
22
|
+
// - linear regression
|
|
23
|
+
// - support vector machines
|
|
24
|
+
// - neural networks
|
|
25
|
+
//
|
|
26
|
+
// The library allows the user to define a certain function using the available tensor operations. This function
|
|
27
|
+
// definition is represented internally via a computation graph. Each tensor operation in the function definition
|
|
28
|
+
// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
|
|
29
|
+
// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
|
|
30
|
+
// using one of the available optimization algorithms.
|
|
31
|
+
//
|
|
32
|
+
// For example, here we define the function: f(x) = a*x^2 + b
|
|
33
|
+
//
|
|
34
|
+
// {
|
|
35
|
+
// struct wsp_ggml_init_params params = {
|
|
36
|
+
// .mem_size = 16*1024*1024,
|
|
37
|
+
// .mem_buffer = NULL,
|
|
38
|
+
// };
|
|
39
|
+
//
|
|
40
|
+
// // memory allocation happens here
|
|
41
|
+
// struct wsp_ggml_context * ctx = wsp_ggml_init(params);
|
|
42
|
+
//
|
|
43
|
+
// struct wsp_ggml_tensor * x = wsp_ggml_new_tensor_1d(ctx, WSP_GGML_TYPE_F32, 1);
|
|
44
|
+
//
|
|
45
|
+
// wsp_ggml_set_param(ctx, x); // x is an input variable
|
|
46
|
+
//
|
|
47
|
+
// struct wsp_ggml_tensor * a = wsp_ggml_new_tensor_1d(ctx, WSP_GGML_TYPE_F32, 1);
|
|
48
|
+
// struct wsp_ggml_tensor * b = wsp_ggml_new_tensor_1d(ctx, WSP_GGML_TYPE_F32, 1);
|
|
49
|
+
// struct wsp_ggml_tensor * x2 = wsp_ggml_mul(ctx, x, x);
|
|
50
|
+
// struct wsp_ggml_tensor * f = wsp_ggml_add(ctx, wsp_ggml_mul(ctx, a, x2), b);
|
|
51
|
+
//
|
|
52
|
+
// ...
|
|
53
|
+
// }
|
|
54
|
+
//
|
|
55
|
+
// Notice that the function definition above does not involve any actual computation. The computation is performed only
|
|
56
|
+
// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
|
|
57
|
+
//
|
|
58
|
+
// {
|
|
59
|
+
// ...
|
|
60
|
+
//
|
|
61
|
+
// struct wsp_ggml_cgraph * gf = wsp_ggml_new_graph(ctx);
|
|
62
|
+
// wsp_ggml_build_forward_expand(gf, f);
|
|
63
|
+
//
|
|
64
|
+
// // set the input variable and parameter values
|
|
65
|
+
// wsp_ggml_set_f32(x, 2.0f);
|
|
66
|
+
// wsp_ggml_set_f32(a, 3.0f);
|
|
67
|
+
// wsp_ggml_set_f32(b, 4.0f);
|
|
68
|
+
//
|
|
69
|
+
// wsp_ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
|
|
70
|
+
//
|
|
71
|
+
// printf("f = %f\n", wsp_ggml_get_f32_1d(f, 0));
|
|
72
|
+
//
|
|
73
|
+
// ...
|
|
74
|
+
// }
|
|
75
|
+
//
|
|
76
|
+
// The actual computation is performed in the wsp_ggml_graph_compute() function.
|
|
77
|
+
//
|
|
78
|
+
// The wsp_ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
|
|
79
|
+
// wsp_ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
|
|
80
|
+
// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
|
|
81
|
+
// and after defining the computation graph, call the wsp_ggml_used_mem() function to find out how much memory was
|
|
82
|
+
// actually needed.
|
|
83
|
+
//
|
|
84
|
+
// The wsp_ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
|
|
85
|
+
// differentiation and optimization algorithms.
|
|
86
|
+
//
|
|
87
|
+
// The described approach allows to define the function graph once and then compute its forward or backward graphs
|
|
88
|
+
// multiple times. All computations will use the same memory buffer allocated in the wsp_ggml_init() function. This way
|
|
89
|
+
// the user can avoid the memory allocation overhead at runtime.
|
|
90
|
+
//
|
|
91
|
+
// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
|
|
92
|
+
// citizens, but in theory the library can be extended to support FP8 and integer data types.
|
|
93
|
+
//
|
|
94
|
+
// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
|
|
95
|
+
// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
|
|
96
|
+
// clear that the library needs to support more complex operations. The way to support these operations is not clear
|
|
97
|
+
// yet, but a few examples are demonstrated in the following operations:
|
|
98
|
+
//
|
|
99
|
+
// - wsp_ggml_permute()
|
|
100
|
+
// - wsp_ggml_conv_1d_1s()
|
|
101
|
+
// - wsp_ggml_conv_1d_2s()
|
|
102
|
+
//
|
|
103
|
+
// For each tensor operator, the library implements a forward and backward computation function. The forward function
|
|
104
|
+
// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
|
|
105
|
+
// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
|
|
106
|
+
// calculus class, or watch the following video:
|
|
107
|
+
//
|
|
108
|
+
// What is Automatic Differentiation?
|
|
109
|
+
// https://www.youtube.com/watch?v=wG_nF1awSSY
|
|
110
|
+
//
|
|
111
|
+
//
|
|
112
|
+
// ## Tensor data (struct wsp_ggml_tensor)
|
|
113
|
+
//
|
|
114
|
+
// The tensors are stored in memory via the wsp_ggml_tensor struct. The structure provides information about the size of
|
|
115
|
+
// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
|
|
116
|
+
// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
|
|
117
|
+
//
|
|
118
|
+
// {
|
|
119
|
+
// struct wsp_ggml_tensor * c = wsp_ggml_add(ctx, a, b);
|
|
120
|
+
//
|
|
121
|
+
// assert(c->src[0] == a);
|
|
122
|
+
// assert(c->src[1] == b);
|
|
123
|
+
// }
|
|
124
|
+
//
|
|
125
|
+
// The multi-dimensional tensors are stored in row-major order. The wsp_ggml_tensor struct contains fields for the
|
|
126
|
+
// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
|
|
127
|
+
// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
|
|
128
|
+
// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
|
|
129
|
+
// contiguous in memory.
|
|
130
|
+
//
|
|
131
|
+
// The data of the tensor is accessed via the "data" pointer. For example:
|
|
132
|
+
//
|
|
133
|
+
// {
|
|
134
|
+
// const int nx = 2;
|
|
135
|
+
// const int ny = 3;
|
|
136
|
+
//
|
|
137
|
+
// struct wsp_ggml_tensor * a = wsp_ggml_new_tensor_2d(ctx, WSP_GGML_TYPE_F32, nx, ny);
|
|
138
|
+
//
|
|
139
|
+
// for (int y = 0; y < ny; y++) {
|
|
140
|
+
// for (int x = 0; x < nx; x++) {
|
|
141
|
+
// *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
|
|
142
|
+
// }
|
|
143
|
+
// }
|
|
144
|
+
//
|
|
145
|
+
// ...
|
|
146
|
+
// }
|
|
147
|
+
//
|
|
148
|
+
// Alternatively, there are helper functions, such as wsp_ggml_get_f32_1d() and wsp_ggml_set_f32_1d() that can be used.
|
|
149
|
+
//
|
|
150
|
+
// ## The matrix multiplication operator (wsp_ggml_mul_mat)
|
|
151
|
+
//
|
|
152
|
+
// TODO
|
|
153
|
+
//
|
|
154
|
+
//
|
|
155
|
+
// ## Multi-threading
|
|
156
|
+
//
|
|
157
|
+
// TODO
|
|
158
|
+
//
|
|
159
|
+
//
|
|
160
|
+
// ## Overview of ggml.c
|
|
161
|
+
//
|
|
162
|
+
// TODO
|
|
163
|
+
//
|
|
164
|
+
//
|
|
165
|
+
// ## SIMD optimizations
|
|
166
|
+
//
|
|
167
|
+
// TODO
|
|
168
|
+
//
|
|
169
|
+
//
|
|
170
|
+
// ## Debugging ggml
|
|
171
|
+
//
|
|
172
|
+
// TODO
|
|
173
|
+
//
|
|
174
|
+
//
|
|
175
|
+
|
|
176
|
+
#ifdef WSP_GGML_SHARED
|
|
177
|
+
# if defined(_WIN32) && !defined(__MINGW32__)
|
|
178
|
+
# ifdef WSP_GGML_BUILD
|
|
179
|
+
# define WSP_GGML_API __declspec(dllexport) extern
|
|
180
|
+
# else
|
|
181
|
+
# define WSP_GGML_API __declspec(dllimport) extern
|
|
182
|
+
# endif
|
|
183
|
+
# else
|
|
184
|
+
# define WSP_GGML_API __attribute__ ((visibility ("default"))) extern
|
|
185
|
+
# endif
|
|
186
|
+
#else
|
|
187
|
+
# define WSP_GGML_API extern
|
|
188
|
+
#endif
|
|
189
|
+
|
|
190
|
+
// TODO: support for clang
|
|
191
|
+
#ifdef __GNUC__
|
|
192
|
+
# define WSP_GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
|
|
193
|
+
#elif defined(_MSC_VER)
|
|
194
|
+
# define WSP_GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
|
|
195
|
+
#else
|
|
196
|
+
# define WSP_GGML_DEPRECATED(func, hint) func
|
|
197
|
+
#endif
|
|
198
|
+
|
|
199
|
+
#ifndef __GNUC__
|
|
200
|
+
# define WSP_GGML_ATTRIBUTE_FORMAT(...)
|
|
201
|
+
#elif defined(__MINGW32__) && !defined(__clang__)
|
|
202
|
+
# define WSP_GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
|
203
|
+
#else
|
|
204
|
+
# define WSP_GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
|
205
|
+
#endif
|
|
206
|
+
|
|
207
|
+
#include <stdbool.h>
|
|
208
|
+
#include <stddef.h>
|
|
209
|
+
#include <stdint.h>
|
|
210
|
+
#include <stdio.h>
|
|
211
|
+
|
|
212
|
+
#define WSP_GGML_FILE_MAGIC 0x67676d6c // "ggml"
|
|
213
|
+
#define WSP_GGML_FILE_VERSION 2
|
|
214
|
+
|
|
215
|
+
#define WSP_GGML_QNT_VERSION 2 // bump this on quantization format changes
|
|
216
|
+
#define WSP_GGML_QNT_VERSION_FACTOR 1000 // do not change this
|
|
217
|
+
|
|
218
|
+
#define WSP_GGML_MAX_DIMS 4
|
|
219
|
+
#define WSP_GGML_MAX_PARAMS 2048
|
|
220
|
+
#define WSP_GGML_MAX_SRC 10
|
|
221
|
+
#define WSP_GGML_MAX_N_THREADS 512
|
|
222
|
+
#define WSP_GGML_MAX_OP_PARAMS 64
|
|
223
|
+
|
|
224
|
+
#ifndef WSP_GGML_MAX_NAME
|
|
225
|
+
# define WSP_GGML_MAX_NAME 64
|
|
226
|
+
#endif
|
|
227
|
+
|
|
228
|
+
#define WSP_GGML_DEFAULT_N_THREADS 4
|
|
229
|
+
#define WSP_GGML_DEFAULT_GRAPH_SIZE 2048
|
|
230
|
+
|
|
231
|
+
#if UINTPTR_MAX == 0xFFFFFFFF
|
|
232
|
+
#define WSP_GGML_MEM_ALIGN 4
|
|
233
|
+
#else
|
|
234
|
+
#define WSP_GGML_MEM_ALIGN 16
|
|
235
|
+
#endif
|
|
236
|
+
|
|
237
|
+
#define WSP_GGML_EXIT_SUCCESS 0
|
|
238
|
+
#define WSP_GGML_EXIT_ABORTED 1
|
|
239
|
+
|
|
240
|
+
#define WSP_GGML_ROPE_TYPE_NEOX 2
|
|
241
|
+
#define WSP_GGML_ROPE_TYPE_MROPE 8
|
|
242
|
+
#define WSP_GGML_ROPE_TYPE_VISION 24
|
|
243
|
+
|
|
244
|
+
#define WSP_GGML_UNUSED(x) (void)(x)
|
|
245
|
+
|
|
246
|
+
#define WSP_GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
|
|
247
|
+
|
|
248
|
+
#ifndef NDEBUG
|
|
249
|
+
# define WSP_GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
|
|
250
|
+
#elif defined(__GNUC__)
|
|
251
|
+
# define WSP_GGML_UNREACHABLE() __builtin_unreachable()
|
|
252
|
+
#elif defined(_MSC_VER)
|
|
253
|
+
# define WSP_GGML_UNREACHABLE() __assume(0)
|
|
254
|
+
#else
|
|
255
|
+
# define WSP_GGML_UNREACHABLE() ((void) 0)
|
|
256
|
+
#endif
|
|
257
|
+
|
|
258
|
+
#ifdef __cplusplus
|
|
259
|
+
# define WSP_GGML_NORETURN [[noreturn]]
|
|
260
|
+
#elif defined(_MSC_VER)
|
|
261
|
+
# define WSP_GGML_NORETURN __declspec(noreturn)
|
|
262
|
+
#else
|
|
263
|
+
# define WSP_GGML_NORETURN _Noreturn
|
|
264
|
+
#endif
|
|
265
|
+
|
|
266
|
+
#define WSP_GGML_ABORT(...) wsp_ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
|
|
267
|
+
#define WSP_GGML_ASSERT(x) if (!(x)) WSP_GGML_ABORT("WSP_GGML_ASSERT(%s) failed", #x)
|
|
268
|
+
|
|
269
|
+
// used to copy the number of elements and stride in bytes of tensors into local variables.
|
|
270
|
+
// main purpose is to reduce code duplication and improve readability.
|
|
271
|
+
//
|
|
272
|
+
// example:
|
|
273
|
+
//
|
|
274
|
+
// WSP_GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
|
|
275
|
+
// WSP_GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
|
|
276
|
+
//
|
|
277
|
+
#define WSP_GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
|
|
278
|
+
const type prefix##0 = (pointer)->array[0]; \
|
|
279
|
+
WSP_GGML_UNUSED(prefix##0);
|
|
280
|
+
#define WSP_GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
|
|
281
|
+
WSP_GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
|
|
282
|
+
const type prefix##1 = (pointer)->array[1]; \
|
|
283
|
+
WSP_GGML_UNUSED(prefix##1);
|
|
284
|
+
#define WSP_GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
|
|
285
|
+
WSP_GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
|
|
286
|
+
const type prefix##2 = (pointer)->array[2]; \
|
|
287
|
+
WSP_GGML_UNUSED(prefix##2);
|
|
288
|
+
#define WSP_GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
|
|
289
|
+
WSP_GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
|
|
290
|
+
const type prefix##3 = (pointer)->array[3]; \
|
|
291
|
+
WSP_GGML_UNUSED(prefix##3);
|
|
292
|
+
|
|
293
|
+
#define WSP_GGML_TENSOR_UNARY_OP_LOCALS \
|
|
294
|
+
WSP_GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
|
295
|
+
WSP_GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
|
296
|
+
WSP_GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
|
297
|
+
WSP_GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
|
298
|
+
|
|
299
|
+
#define WSP_GGML_TENSOR_BINARY_OP_LOCALS \
|
|
300
|
+
WSP_GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
|
301
|
+
WSP_GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
|
302
|
+
WSP_GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
|
|
303
|
+
WSP_GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
|
|
304
|
+
WSP_GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
|
305
|
+
WSP_GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
|
306
|
+
|
|
307
|
+
#define WSP_GGML_TENSOR_BINARY_OP_LOCALS01 \
|
|
308
|
+
WSP_GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
|
309
|
+
WSP_GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
|
310
|
+
WSP_GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
|
|
311
|
+
WSP_GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
|
|
312
|
+
|
|
313
|
+
#ifdef __cplusplus
|
|
314
|
+
extern "C" {
|
|
315
|
+
#endif
|
|
316
|
+
|
|
317
|
+
WSP_GGML_NORETURN WSP_GGML_ATTRIBUTE_FORMAT(3, 4)
|
|
318
|
+
WSP_GGML_API void wsp_ggml_abort(const char * file, int line, const char * fmt, ...);
|
|
319
|
+
|
|
320
|
+
enum wsp_ggml_status {
|
|
321
|
+
WSP_GGML_STATUS_ALLOC_FAILED = -2,
|
|
322
|
+
WSP_GGML_STATUS_FAILED = -1,
|
|
323
|
+
WSP_GGML_STATUS_SUCCESS = 0,
|
|
324
|
+
WSP_GGML_STATUS_ABORTED = 1,
|
|
325
|
+
};
|
|
326
|
+
|
|
327
|
+
// get wsp_ggml_status name string
|
|
328
|
+
WSP_GGML_API const char * wsp_ggml_status_to_string(enum wsp_ggml_status status);
|
|
329
|
+
|
|
330
|
+
// ieee 754-2008 half-precision float16
|
|
331
|
+
// todo: make this not an integral type
|
|
332
|
+
typedef uint16_t wsp_ggml_fp16_t;
|
|
333
|
+
WSP_GGML_API float wsp_ggml_fp16_to_fp32(wsp_ggml_fp16_t);
|
|
334
|
+
WSP_GGML_API wsp_ggml_fp16_t wsp_ggml_fp32_to_fp16(float);
|
|
335
|
+
WSP_GGML_API void wsp_ggml_fp16_to_fp32_row(const wsp_ggml_fp16_t *, float *, int64_t);
|
|
336
|
+
WSP_GGML_API void wsp_ggml_fp32_to_fp16_row(const float *, wsp_ggml_fp16_t *, int64_t);
|
|
337
|
+
|
|
338
|
+
// google brain half-precision bfloat16
|
|
339
|
+
typedef struct { uint16_t bits; } wsp_ggml_bf16_t;
|
|
340
|
+
WSP_GGML_API wsp_ggml_bf16_t wsp_ggml_fp32_to_bf16(float);
|
|
341
|
+
WSP_GGML_API float wsp_ggml_bf16_to_fp32(wsp_ggml_bf16_t); // consider just doing << 16
|
|
342
|
+
WSP_GGML_API void wsp_ggml_bf16_to_fp32_row(const wsp_ggml_bf16_t *, float *, int64_t);
|
|
343
|
+
WSP_GGML_API void wsp_ggml_fp32_to_bf16_row_ref(const float *, wsp_ggml_bf16_t *, int64_t);
|
|
344
|
+
WSP_GGML_API void wsp_ggml_fp32_to_bf16_row(const float *, wsp_ggml_bf16_t *, int64_t);
|
|
345
|
+
|
|
346
|
+
struct wsp_ggml_object;
|
|
347
|
+
struct wsp_ggml_context;
|
|
348
|
+
struct wsp_ggml_cgraph;
|
|
349
|
+
|
|
350
|
+
// NOTE: always add types at the end of the enum to keep backward compatibility
|
|
351
|
+
enum wsp_ggml_type {
|
|
352
|
+
WSP_GGML_TYPE_F32 = 0,
|
|
353
|
+
WSP_GGML_TYPE_F16 = 1,
|
|
354
|
+
WSP_GGML_TYPE_Q4_0 = 2,
|
|
355
|
+
WSP_GGML_TYPE_Q4_1 = 3,
|
|
356
|
+
// WSP_GGML_TYPE_Q4_2 = 4, support has been removed
|
|
357
|
+
// WSP_GGML_TYPE_Q4_3 = 5, support has been removed
|
|
358
|
+
WSP_GGML_TYPE_Q5_0 = 6,
|
|
359
|
+
WSP_GGML_TYPE_Q5_1 = 7,
|
|
360
|
+
WSP_GGML_TYPE_Q8_0 = 8,
|
|
361
|
+
WSP_GGML_TYPE_Q8_1 = 9,
|
|
362
|
+
WSP_GGML_TYPE_Q2_K = 10,
|
|
363
|
+
WSP_GGML_TYPE_Q3_K = 11,
|
|
364
|
+
WSP_GGML_TYPE_Q4_K = 12,
|
|
365
|
+
WSP_GGML_TYPE_Q5_K = 13,
|
|
366
|
+
WSP_GGML_TYPE_Q6_K = 14,
|
|
367
|
+
WSP_GGML_TYPE_Q8_K = 15,
|
|
368
|
+
WSP_GGML_TYPE_IQ2_XXS = 16,
|
|
369
|
+
WSP_GGML_TYPE_IQ2_XS = 17,
|
|
370
|
+
WSP_GGML_TYPE_IQ3_XXS = 18,
|
|
371
|
+
WSP_GGML_TYPE_IQ1_S = 19,
|
|
372
|
+
WSP_GGML_TYPE_IQ4_NL = 20,
|
|
373
|
+
WSP_GGML_TYPE_IQ3_S = 21,
|
|
374
|
+
WSP_GGML_TYPE_IQ2_S = 22,
|
|
375
|
+
WSP_GGML_TYPE_IQ4_XS = 23,
|
|
376
|
+
WSP_GGML_TYPE_I8 = 24,
|
|
377
|
+
WSP_GGML_TYPE_I16 = 25,
|
|
378
|
+
WSP_GGML_TYPE_I32 = 26,
|
|
379
|
+
WSP_GGML_TYPE_I64 = 27,
|
|
380
|
+
WSP_GGML_TYPE_F64 = 28,
|
|
381
|
+
WSP_GGML_TYPE_IQ1_M = 29,
|
|
382
|
+
WSP_GGML_TYPE_BF16 = 30,
|
|
383
|
+
// WSP_GGML_TYPE_Q4_0_4_4 = 31, support has been removed from gguf files
|
|
384
|
+
// WSP_GGML_TYPE_Q4_0_4_8 = 32,
|
|
385
|
+
// WSP_GGML_TYPE_Q4_0_8_8 = 33,
|
|
386
|
+
WSP_GGML_TYPE_TQ1_0 = 34,
|
|
387
|
+
WSP_GGML_TYPE_TQ2_0 = 35,
|
|
388
|
+
// WSP_GGML_TYPE_IQ4_NL_4_4 = 36,
|
|
389
|
+
// WSP_GGML_TYPE_IQ4_NL_4_8 = 37,
|
|
390
|
+
// WSP_GGML_TYPE_IQ4_NL_8_8 = 38,
|
|
391
|
+
WSP_GGML_TYPE_COUNT = 39,
|
|
392
|
+
};
|
|
393
|
+
|
|
394
|
+
// precision
|
|
395
|
+
enum wsp_ggml_prec {
|
|
396
|
+
WSP_GGML_PREC_DEFAULT = 0, // stored as wsp_ggml_tensor.op_params, 0 by default
|
|
397
|
+
WSP_GGML_PREC_F32 = 10,
|
|
398
|
+
};
|
|
399
|
+
|
|
400
|
+
// model file types
|
|
401
|
+
enum wsp_ggml_ftype {
|
|
402
|
+
WSP_GGML_FTYPE_UNKNOWN = -1,
|
|
403
|
+
WSP_GGML_FTYPE_ALL_F32 = 0,
|
|
404
|
+
WSP_GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
|
405
|
+
WSP_GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
|
406
|
+
WSP_GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
|
407
|
+
WSP_GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
|
408
|
+
WSP_GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
|
409
|
+
WSP_GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
|
410
|
+
WSP_GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
|
411
|
+
WSP_GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
|
|
412
|
+
WSP_GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
|
|
413
|
+
WSP_GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
|
|
414
|
+
WSP_GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
|
|
415
|
+
WSP_GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
|
|
416
|
+
WSP_GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
|
|
417
|
+
WSP_GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
|
|
418
|
+
WSP_GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
|
|
419
|
+
WSP_GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
|
|
420
|
+
WSP_GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
|
|
421
|
+
WSP_GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
|
|
422
|
+
WSP_GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
|
|
423
|
+
WSP_GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
|
|
424
|
+
WSP_GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
|
|
425
|
+
WSP_GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
|
|
426
|
+
};
|
|
427
|
+
|
|
428
|
+
// available tensor operations:
|
|
429
|
+
enum wsp_ggml_op {
|
|
430
|
+
WSP_GGML_OP_NONE = 0,
|
|
431
|
+
|
|
432
|
+
WSP_GGML_OP_DUP,
|
|
433
|
+
WSP_GGML_OP_ADD,
|
|
434
|
+
WSP_GGML_OP_ADD1,
|
|
435
|
+
WSP_GGML_OP_ACC,
|
|
436
|
+
WSP_GGML_OP_SUB,
|
|
437
|
+
WSP_GGML_OP_MUL,
|
|
438
|
+
WSP_GGML_OP_DIV,
|
|
439
|
+
WSP_GGML_OP_SQR,
|
|
440
|
+
WSP_GGML_OP_SQRT,
|
|
441
|
+
WSP_GGML_OP_LOG,
|
|
442
|
+
WSP_GGML_OP_SIN,
|
|
443
|
+
WSP_GGML_OP_COS,
|
|
444
|
+
WSP_GGML_OP_SUM,
|
|
445
|
+
WSP_GGML_OP_SUM_ROWS,
|
|
446
|
+
WSP_GGML_OP_MEAN,
|
|
447
|
+
WSP_GGML_OP_ARGMAX,
|
|
448
|
+
WSP_GGML_OP_COUNT_EQUAL,
|
|
449
|
+
WSP_GGML_OP_REPEAT,
|
|
450
|
+
WSP_GGML_OP_REPEAT_BACK,
|
|
451
|
+
WSP_GGML_OP_CONCAT,
|
|
452
|
+
WSP_GGML_OP_SILU_BACK,
|
|
453
|
+
WSP_GGML_OP_NORM, // normalize
|
|
454
|
+
WSP_GGML_OP_RMS_NORM,
|
|
455
|
+
WSP_GGML_OP_RMS_NORM_BACK,
|
|
456
|
+
WSP_GGML_OP_GROUP_NORM,
|
|
457
|
+
WSP_GGML_OP_L2_NORM,
|
|
458
|
+
|
|
459
|
+
WSP_GGML_OP_MUL_MAT,
|
|
460
|
+
WSP_GGML_OP_MUL_MAT_ID,
|
|
461
|
+
WSP_GGML_OP_OUT_PROD,
|
|
462
|
+
|
|
463
|
+
WSP_GGML_OP_SCALE,
|
|
464
|
+
WSP_GGML_OP_SET,
|
|
465
|
+
WSP_GGML_OP_CPY,
|
|
466
|
+
WSP_GGML_OP_CONT,
|
|
467
|
+
WSP_GGML_OP_RESHAPE,
|
|
468
|
+
WSP_GGML_OP_VIEW,
|
|
469
|
+
WSP_GGML_OP_PERMUTE,
|
|
470
|
+
WSP_GGML_OP_TRANSPOSE,
|
|
471
|
+
WSP_GGML_OP_GET_ROWS,
|
|
472
|
+
WSP_GGML_OP_GET_ROWS_BACK,
|
|
473
|
+
WSP_GGML_OP_DIAG,
|
|
474
|
+
WSP_GGML_OP_DIAG_MASK_INF,
|
|
475
|
+
WSP_GGML_OP_DIAG_MASK_ZERO,
|
|
476
|
+
WSP_GGML_OP_SOFT_MAX,
|
|
477
|
+
WSP_GGML_OP_SOFT_MAX_BACK,
|
|
478
|
+
WSP_GGML_OP_ROPE,
|
|
479
|
+
WSP_GGML_OP_ROPE_BACK,
|
|
480
|
+
WSP_GGML_OP_CLAMP,
|
|
481
|
+
WSP_GGML_OP_CONV_TRANSPOSE_1D,
|
|
482
|
+
WSP_GGML_OP_IM2COL,
|
|
483
|
+
WSP_GGML_OP_IM2COL_BACK,
|
|
484
|
+
WSP_GGML_OP_CONV_2D_DW,
|
|
485
|
+
WSP_GGML_OP_CONV_TRANSPOSE_2D,
|
|
486
|
+
WSP_GGML_OP_POOL_1D,
|
|
487
|
+
WSP_GGML_OP_POOL_2D,
|
|
488
|
+
WSP_GGML_OP_POOL_2D_BACK,
|
|
489
|
+
WSP_GGML_OP_UPSCALE, // nearest interpolate
|
|
490
|
+
WSP_GGML_OP_PAD,
|
|
491
|
+
WSP_GGML_OP_PAD_REFLECT_1D,
|
|
492
|
+
WSP_GGML_OP_ROLL,
|
|
493
|
+
WSP_GGML_OP_ARANGE,
|
|
494
|
+
WSP_GGML_OP_TIMESTEP_EMBEDDING,
|
|
495
|
+
WSP_GGML_OP_ARGSORT,
|
|
496
|
+
WSP_GGML_OP_LEAKY_RELU,
|
|
497
|
+
|
|
498
|
+
WSP_GGML_OP_FLASH_ATTN_EXT,
|
|
499
|
+
WSP_GGML_OP_FLASH_ATTN_BACK,
|
|
500
|
+
WSP_GGML_OP_SSM_CONV,
|
|
501
|
+
WSP_GGML_OP_SSM_SCAN,
|
|
502
|
+
WSP_GGML_OP_WIN_PART,
|
|
503
|
+
WSP_GGML_OP_WIN_UNPART,
|
|
504
|
+
WSP_GGML_OP_GET_REL_POS,
|
|
505
|
+
WSP_GGML_OP_ADD_REL_POS,
|
|
506
|
+
WSP_GGML_OP_RWKV_WKV6,
|
|
507
|
+
WSP_GGML_OP_GATED_LINEAR_ATTN,
|
|
508
|
+
WSP_GGML_OP_RWKV_WKV7,
|
|
509
|
+
|
|
510
|
+
WSP_GGML_OP_UNARY,
|
|
511
|
+
|
|
512
|
+
WSP_GGML_OP_MAP_CUSTOM1,
|
|
513
|
+
WSP_GGML_OP_MAP_CUSTOM2,
|
|
514
|
+
WSP_GGML_OP_MAP_CUSTOM3,
|
|
515
|
+
|
|
516
|
+
WSP_GGML_OP_CUSTOM,
|
|
517
|
+
|
|
518
|
+
WSP_GGML_OP_CROSS_ENTROPY_LOSS,
|
|
519
|
+
WSP_GGML_OP_CROSS_ENTROPY_LOSS_BACK,
|
|
520
|
+
WSP_GGML_OP_OPT_STEP_ADAMW,
|
|
521
|
+
|
|
522
|
+
WSP_GGML_OP_COUNT,
|
|
523
|
+
};
|
|
524
|
+
|
|
525
|
+
enum wsp_ggml_unary_op {
|
|
526
|
+
WSP_GGML_UNARY_OP_ABS,
|
|
527
|
+
WSP_GGML_UNARY_OP_SGN,
|
|
528
|
+
WSP_GGML_UNARY_OP_NEG,
|
|
529
|
+
WSP_GGML_UNARY_OP_STEP,
|
|
530
|
+
WSP_GGML_UNARY_OP_TANH,
|
|
531
|
+
WSP_GGML_UNARY_OP_ELU,
|
|
532
|
+
WSP_GGML_UNARY_OP_RELU,
|
|
533
|
+
WSP_GGML_UNARY_OP_SIGMOID,
|
|
534
|
+
WSP_GGML_UNARY_OP_GELU,
|
|
535
|
+
WSP_GGML_UNARY_OP_GELU_QUICK,
|
|
536
|
+
WSP_GGML_UNARY_OP_SILU,
|
|
537
|
+
WSP_GGML_UNARY_OP_HARDSWISH,
|
|
538
|
+
WSP_GGML_UNARY_OP_HARDSIGMOID,
|
|
539
|
+
WSP_GGML_UNARY_OP_EXP,
|
|
540
|
+
WSP_GGML_UNARY_OP_GELU_ERF,
|
|
541
|
+
|
|
542
|
+
WSP_GGML_UNARY_OP_COUNT,
|
|
543
|
+
};
|
|
544
|
+
|
|
545
|
+
enum wsp_ggml_object_type {
|
|
546
|
+
WSP_GGML_OBJECT_TYPE_TENSOR,
|
|
547
|
+
WSP_GGML_OBJECT_TYPE_GRAPH,
|
|
548
|
+
WSP_GGML_OBJECT_TYPE_WORK_BUFFER
|
|
549
|
+
};
|
|
550
|
+
|
|
551
|
+
enum wsp_ggml_log_level {
|
|
552
|
+
WSP_GGML_LOG_LEVEL_NONE = 0,
|
|
553
|
+
WSP_GGML_LOG_LEVEL_DEBUG = 1,
|
|
554
|
+
WSP_GGML_LOG_LEVEL_INFO = 2,
|
|
555
|
+
WSP_GGML_LOG_LEVEL_WARN = 3,
|
|
556
|
+
WSP_GGML_LOG_LEVEL_ERROR = 4,
|
|
557
|
+
WSP_GGML_LOG_LEVEL_CONT = 5, // continue previous log
|
|
558
|
+
};
|
|
559
|
+
|
|
560
|
+
// this tensor...
|
|
561
|
+
enum wsp_ggml_tensor_flag {
|
|
562
|
+
WSP_GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
|
|
563
|
+
WSP_GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
|
|
564
|
+
WSP_GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
|
|
565
|
+
WSP_GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
|
|
566
|
+
};
|
|
567
|
+
|
|
568
|
+
struct wsp_ggml_init_params {
|
|
569
|
+
// memory pool
|
|
570
|
+
size_t mem_size; // bytes
|
|
571
|
+
void * mem_buffer; // if NULL, memory will be allocated internally
|
|
572
|
+
bool no_alloc; // don't allocate memory for the tensor data
|
|
573
|
+
};
|
|
574
|
+
|
|
575
|
+
// n-dimensional tensor
|
|
576
|
+
struct wsp_ggml_tensor {
|
|
577
|
+
enum wsp_ggml_type type;
|
|
578
|
+
|
|
579
|
+
struct wsp_ggml_backend_buffer * buffer;
|
|
580
|
+
|
|
581
|
+
int64_t ne[WSP_GGML_MAX_DIMS]; // number of elements
|
|
582
|
+
size_t nb[WSP_GGML_MAX_DIMS]; // stride in bytes:
|
|
583
|
+
// nb[0] = wsp_ggml_type_size(type)
|
|
584
|
+
// nb[1] = nb[0] * (ne[0] / wsp_ggml_blck_size(type)) + padding
|
|
585
|
+
// nb[i] = nb[i-1] * ne[i-1]
|
|
586
|
+
|
|
587
|
+
// compute data
|
|
588
|
+
enum wsp_ggml_op op;
|
|
589
|
+
|
|
590
|
+
// op params - allocated as int32_t for alignment
|
|
591
|
+
int32_t op_params[WSP_GGML_MAX_OP_PARAMS / sizeof(int32_t)];
|
|
592
|
+
|
|
593
|
+
int32_t flags;
|
|
594
|
+
|
|
595
|
+
struct wsp_ggml_tensor * src[WSP_GGML_MAX_SRC];
|
|
596
|
+
|
|
597
|
+
// source tensor and offset for views
|
|
598
|
+
struct wsp_ggml_tensor * view_src;
|
|
599
|
+
size_t view_offs;
|
|
600
|
+
|
|
601
|
+
void * data;
|
|
602
|
+
|
|
603
|
+
char name[WSP_GGML_MAX_NAME];
|
|
604
|
+
|
|
605
|
+
void * extra; // extra things e.g. for ggml-cuda.cu
|
|
606
|
+
|
|
607
|
+
char padding[8];
|
|
608
|
+
};
|
|
609
|
+
|
|
610
|
+
static const size_t WSP_GGML_TENSOR_SIZE = sizeof(struct wsp_ggml_tensor);
|
|
611
|
+
|
|
612
|
+
// Abort callback
|
|
613
|
+
// If not NULL, called before ggml computation
|
|
614
|
+
// If it returns true, the computation is aborted
|
|
615
|
+
typedef bool (*wsp_ggml_abort_callback)(void * data);
|
|
616
|
+
|
|
617
|
+
|
|
618
|
+
//
|
|
619
|
+
// GUID
|
|
620
|
+
//
|
|
621
|
+
|
|
622
|
+
// GUID types
|
|
623
|
+
typedef uint8_t wsp_ggml_guid[16];
|
|
624
|
+
typedef wsp_ggml_guid * wsp_ggml_guid_t;
|
|
625
|
+
|
|
626
|
+
WSP_GGML_API bool wsp_ggml_guid_matches(wsp_ggml_guid_t guid_a, wsp_ggml_guid_t guid_b);
|
|
627
|
+
|
|
628
|
+
// misc
|
|
629
|
+
|
|
630
|
+
WSP_GGML_API void wsp_ggml_time_init(void); // call this once at the beginning of the program
|
|
631
|
+
WSP_GGML_API int64_t wsp_ggml_time_ms(void);
|
|
632
|
+
WSP_GGML_API int64_t wsp_ggml_time_us(void);
|
|
633
|
+
WSP_GGML_API int64_t wsp_ggml_cycles(void);
|
|
634
|
+
WSP_GGML_API int64_t wsp_ggml_cycles_per_ms(void);
|
|
635
|
+
|
|
636
|
+
// accepts a UTF-8 path, even on Windows
|
|
637
|
+
WSP_GGML_API FILE * wsp_ggml_fopen(const char * fname, const char * mode);
|
|
638
|
+
|
|
639
|
+
WSP_GGML_API void wsp_ggml_print_object (const struct wsp_ggml_object * obj);
|
|
640
|
+
WSP_GGML_API void wsp_ggml_print_objects(const struct wsp_ggml_context * ctx);
|
|
641
|
+
|
|
642
|
+
WSP_GGML_API int64_t wsp_ggml_nelements (const struct wsp_ggml_tensor * tensor);
|
|
643
|
+
WSP_GGML_API int64_t wsp_ggml_nrows (const struct wsp_ggml_tensor * tensor);
|
|
644
|
+
WSP_GGML_API size_t wsp_ggml_nbytes (const struct wsp_ggml_tensor * tensor);
|
|
645
|
+
WSP_GGML_API size_t wsp_ggml_nbytes_pad(const struct wsp_ggml_tensor * tensor); // same as wsp_ggml_nbytes() but padded to WSP_GGML_MEM_ALIGN
|
|
646
|
+
|
|
647
|
+
WSP_GGML_API int64_t wsp_ggml_blck_size(enum wsp_ggml_type type);
|
|
648
|
+
WSP_GGML_API size_t wsp_ggml_type_size(enum wsp_ggml_type type); // size in bytes for all elements in a block
|
|
649
|
+
WSP_GGML_API size_t wsp_ggml_row_size (enum wsp_ggml_type type, int64_t ne); // size in bytes for all elements in a row
|
|
650
|
+
|
|
651
|
+
WSP_GGML_DEPRECATED(
|
|
652
|
+
WSP_GGML_API double wsp_ggml_type_sizef(enum wsp_ggml_type type), // wsp_ggml_type_size()/wsp_ggml_blck_size() as float
|
|
653
|
+
"use wsp_ggml_row_size() instead");
|
|
654
|
+
|
|
655
|
+
WSP_GGML_API const char * wsp_ggml_type_name(enum wsp_ggml_type type);
|
|
656
|
+
WSP_GGML_API const char * wsp_ggml_op_name (enum wsp_ggml_op op);
|
|
657
|
+
WSP_GGML_API const char * wsp_ggml_op_symbol(enum wsp_ggml_op op);
|
|
658
|
+
|
|
659
|
+
WSP_GGML_API const char * wsp_ggml_unary_op_name(enum wsp_ggml_unary_op op);
|
|
660
|
+
WSP_GGML_API const char * wsp_ggml_op_desc(const struct wsp_ggml_tensor * t); // unary or op name
|
|
661
|
+
|
|
662
|
+
WSP_GGML_API size_t wsp_ggml_element_size(const struct wsp_ggml_tensor * tensor);
|
|
663
|
+
|
|
664
|
+
WSP_GGML_API bool wsp_ggml_is_quantized(enum wsp_ggml_type type);
|
|
665
|
+
|
|
666
|
+
// TODO: temporary until model loading of ggml examples is refactored
|
|
667
|
+
WSP_GGML_API enum wsp_ggml_type wsp_ggml_ftype_to_wsp_ggml_type(enum wsp_ggml_ftype ftype);
|
|
668
|
+
|
|
669
|
+
WSP_GGML_API bool wsp_ggml_is_transposed(const struct wsp_ggml_tensor * tensor);
|
|
670
|
+
WSP_GGML_API bool wsp_ggml_is_permuted (const struct wsp_ggml_tensor * tensor);
|
|
671
|
+
WSP_GGML_API bool wsp_ggml_is_empty (const struct wsp_ggml_tensor * tensor);
|
|
672
|
+
WSP_GGML_API bool wsp_ggml_is_scalar (const struct wsp_ggml_tensor * tensor);
|
|
673
|
+
WSP_GGML_API bool wsp_ggml_is_vector (const struct wsp_ggml_tensor * tensor);
|
|
674
|
+
WSP_GGML_API bool wsp_ggml_is_matrix (const struct wsp_ggml_tensor * tensor);
|
|
675
|
+
WSP_GGML_API bool wsp_ggml_is_3d (const struct wsp_ggml_tensor * tensor);
|
|
676
|
+
WSP_GGML_API int wsp_ggml_n_dims (const struct wsp_ggml_tensor * tensor); // returns 1 for scalars
|
|
677
|
+
|
|
678
|
+
// returns whether the tensor elements can be iterated over with a flattened index (no gaps, no permutation)
|
|
679
|
+
WSP_GGML_API bool wsp_ggml_is_contiguous (const struct wsp_ggml_tensor * tensor);
|
|
680
|
+
WSP_GGML_API bool wsp_ggml_is_contiguous_0(const struct wsp_ggml_tensor * tensor); // same as wsp_ggml_is_contiguous()
|
|
681
|
+
WSP_GGML_API bool wsp_ggml_is_contiguous_1(const struct wsp_ggml_tensor * tensor); // contiguous for dims >= 1
|
|
682
|
+
WSP_GGML_API bool wsp_ggml_is_contiguous_2(const struct wsp_ggml_tensor * tensor); // contiguous for dims >= 2
|
|
683
|
+
|
|
684
|
+
// returns whether the tensor elements are allocated as one contiguous block of memory (no gaps, but permutation ok)
|
|
685
|
+
WSP_GGML_API bool wsp_ggml_is_contiguously_allocated(const struct wsp_ggml_tensor * tensor);
|
|
686
|
+
|
|
687
|
+
// true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
|
|
688
|
+
WSP_GGML_API bool wsp_ggml_is_contiguous_channels(const struct wsp_ggml_tensor * tensor);
|
|
689
|
+
|
|
690
|
+
WSP_GGML_API bool wsp_ggml_are_same_shape (const struct wsp_ggml_tensor * t0, const struct wsp_ggml_tensor * t1);
|
|
691
|
+
WSP_GGML_API bool wsp_ggml_are_same_stride(const struct wsp_ggml_tensor * t0, const struct wsp_ggml_tensor * t1);
|
|
692
|
+
|
|
693
|
+
WSP_GGML_API bool wsp_ggml_can_repeat(const struct wsp_ggml_tensor * t0, const struct wsp_ggml_tensor * t1);
|
|
694
|
+
|
|
695
|
+
// use this to compute the memory overhead of a tensor
|
|
696
|
+
WSP_GGML_API size_t wsp_ggml_tensor_overhead(void);
|
|
697
|
+
|
|
698
|
+
WSP_GGML_API bool wsp_ggml_validate_row_data(enum wsp_ggml_type type, const void * data, size_t nbytes);
|
|
699
|
+
|
|
700
|
+
// main
|
|
701
|
+
|
|
702
|
+
WSP_GGML_API struct wsp_ggml_context * wsp_ggml_init (struct wsp_ggml_init_params params);
|
|
703
|
+
WSP_GGML_API void wsp_ggml_reset(struct wsp_ggml_context * ctx);
|
|
704
|
+
WSP_GGML_API void wsp_ggml_free (struct wsp_ggml_context * ctx);
|
|
705
|
+
|
|
706
|
+
WSP_GGML_API size_t wsp_ggml_used_mem(const struct wsp_ggml_context * ctx);
|
|
707
|
+
|
|
708
|
+
WSP_GGML_API bool wsp_ggml_get_no_alloc(struct wsp_ggml_context * ctx);
|
|
709
|
+
WSP_GGML_API void wsp_ggml_set_no_alloc(struct wsp_ggml_context * ctx, bool no_alloc);
|
|
710
|
+
|
|
711
|
+
WSP_GGML_API void * wsp_ggml_get_mem_buffer (const struct wsp_ggml_context * ctx);
|
|
712
|
+
WSP_GGML_API size_t wsp_ggml_get_mem_size (const struct wsp_ggml_context * ctx);
|
|
713
|
+
WSP_GGML_API size_t wsp_ggml_get_max_tensor_size(const struct wsp_ggml_context * ctx);
|
|
714
|
+
|
|
715
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_new_tensor(
|
|
716
|
+
struct wsp_ggml_context * ctx,
|
|
717
|
+
enum wsp_ggml_type type,
|
|
718
|
+
int n_dims,
|
|
719
|
+
const int64_t *ne);
|
|
720
|
+
|
|
721
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_new_tensor_1d(
|
|
722
|
+
struct wsp_ggml_context * ctx,
|
|
723
|
+
enum wsp_ggml_type type,
|
|
724
|
+
int64_t ne0);
|
|
725
|
+
|
|
726
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_new_tensor_2d(
|
|
727
|
+
struct wsp_ggml_context * ctx,
|
|
728
|
+
enum wsp_ggml_type type,
|
|
729
|
+
int64_t ne0,
|
|
730
|
+
int64_t ne1);
|
|
731
|
+
|
|
732
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_new_tensor_3d(
|
|
733
|
+
struct wsp_ggml_context * ctx,
|
|
734
|
+
enum wsp_ggml_type type,
|
|
735
|
+
int64_t ne0,
|
|
736
|
+
int64_t ne1,
|
|
737
|
+
int64_t ne2);
|
|
738
|
+
|
|
739
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_new_tensor_4d(
|
|
740
|
+
struct wsp_ggml_context * ctx,
|
|
741
|
+
enum wsp_ggml_type type,
|
|
742
|
+
int64_t ne0,
|
|
743
|
+
int64_t ne1,
|
|
744
|
+
int64_t ne2,
|
|
745
|
+
int64_t ne3);
|
|
746
|
+
|
|
747
|
+
WSP_GGML_API void * wsp_ggml_new_buffer(struct wsp_ggml_context * ctx, size_t nbytes);
|
|
748
|
+
|
|
749
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_dup_tensor (struct wsp_ggml_context * ctx, const struct wsp_ggml_tensor * src);
|
|
750
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_view_tensor(struct wsp_ggml_context * ctx, struct wsp_ggml_tensor * src);
|
|
751
|
+
|
|
752
|
+
// Context tensor enumeration and lookup
|
|
753
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_get_first_tensor(const struct wsp_ggml_context * ctx);
|
|
754
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_get_next_tensor (const struct wsp_ggml_context * ctx, struct wsp_ggml_tensor * tensor);
|
|
755
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_get_tensor(struct wsp_ggml_context * ctx, const char * name);
|
|
756
|
+
|
|
757
|
+
// Converts a flat index into coordinates
|
|
758
|
+
WSP_GGML_API void wsp_ggml_unravel_index(const struct wsp_ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
|
|
759
|
+
|
|
760
|
+
WSP_GGML_API enum wsp_ggml_unary_op wsp_ggml_get_unary_op(const struct wsp_ggml_tensor * tensor);
|
|
761
|
+
|
|
762
|
+
WSP_GGML_API void * wsp_ggml_get_data (const struct wsp_ggml_tensor * tensor);
|
|
763
|
+
WSP_GGML_API float * wsp_ggml_get_data_f32(const struct wsp_ggml_tensor * tensor);
|
|
764
|
+
|
|
765
|
+
WSP_GGML_API const char * wsp_ggml_get_name (const struct wsp_ggml_tensor * tensor);
|
|
766
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_set_name ( struct wsp_ggml_tensor * tensor, const char * name);
|
|
767
|
+
WSP_GGML_ATTRIBUTE_FORMAT(2, 3)
|
|
768
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_format_name( struct wsp_ggml_tensor * tensor, const char * fmt, ...);
|
|
769
|
+
|
|
770
|
+
// Tensor flags
|
|
771
|
+
WSP_GGML_API void wsp_ggml_set_input(struct wsp_ggml_tensor * tensor);
|
|
772
|
+
WSP_GGML_API void wsp_ggml_set_output(struct wsp_ggml_tensor * tensor);
|
|
773
|
+
WSP_GGML_API void wsp_ggml_set_param(struct wsp_ggml_tensor * tensor);
|
|
774
|
+
WSP_GGML_API void wsp_ggml_set_loss(struct wsp_ggml_tensor * tensor);
|
|
775
|
+
|
|
776
|
+
//
|
|
777
|
+
// operations on tensors with backpropagation
|
|
778
|
+
//
|
|
779
|
+
|
|
780
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_dup(
|
|
781
|
+
struct wsp_ggml_context * ctx,
|
|
782
|
+
struct wsp_ggml_tensor * a);
|
|
783
|
+
|
|
784
|
+
// in-place, returns view(a)
|
|
785
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_dup_inplace(
|
|
786
|
+
struct wsp_ggml_context * ctx,
|
|
787
|
+
struct wsp_ggml_tensor * a);
|
|
788
|
+
|
|
789
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_add(
|
|
790
|
+
struct wsp_ggml_context * ctx,
|
|
791
|
+
struct wsp_ggml_tensor * a,
|
|
792
|
+
struct wsp_ggml_tensor * b);
|
|
793
|
+
|
|
794
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_add_inplace(
|
|
795
|
+
struct wsp_ggml_context * ctx,
|
|
796
|
+
struct wsp_ggml_tensor * a,
|
|
797
|
+
struct wsp_ggml_tensor * b);
|
|
798
|
+
|
|
799
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_add_cast(
|
|
800
|
+
struct wsp_ggml_context * ctx,
|
|
801
|
+
struct wsp_ggml_tensor * a,
|
|
802
|
+
struct wsp_ggml_tensor * b,
|
|
803
|
+
enum wsp_ggml_type type);
|
|
804
|
+
|
|
805
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_add1(
|
|
806
|
+
struct wsp_ggml_context * ctx,
|
|
807
|
+
struct wsp_ggml_tensor * a,
|
|
808
|
+
struct wsp_ggml_tensor * b);
|
|
809
|
+
|
|
810
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_add1_inplace(
|
|
811
|
+
struct wsp_ggml_context * ctx,
|
|
812
|
+
struct wsp_ggml_tensor * a,
|
|
813
|
+
struct wsp_ggml_tensor * b);
|
|
814
|
+
|
|
815
|
+
// dst = a
|
|
816
|
+
// view(dst, nb1, nb2, nb3, offset) += b
|
|
817
|
+
// return dst
|
|
818
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_acc(
|
|
819
|
+
struct wsp_ggml_context * ctx,
|
|
820
|
+
struct wsp_ggml_tensor * a,
|
|
821
|
+
struct wsp_ggml_tensor * b,
|
|
822
|
+
size_t nb1,
|
|
823
|
+
size_t nb2,
|
|
824
|
+
size_t nb3,
|
|
825
|
+
size_t offset);
|
|
826
|
+
|
|
827
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_acc_inplace(
|
|
828
|
+
struct wsp_ggml_context * ctx,
|
|
829
|
+
struct wsp_ggml_tensor * a,
|
|
830
|
+
struct wsp_ggml_tensor * b,
|
|
831
|
+
size_t nb1,
|
|
832
|
+
size_t nb2,
|
|
833
|
+
size_t nb3,
|
|
834
|
+
size_t offset);
|
|
835
|
+
|
|
836
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_sub(
|
|
837
|
+
struct wsp_ggml_context * ctx,
|
|
838
|
+
struct wsp_ggml_tensor * a,
|
|
839
|
+
struct wsp_ggml_tensor * b);
|
|
840
|
+
|
|
841
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_sub_inplace(
|
|
842
|
+
struct wsp_ggml_context * ctx,
|
|
843
|
+
struct wsp_ggml_tensor * a,
|
|
844
|
+
struct wsp_ggml_tensor * b);
|
|
845
|
+
|
|
846
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_mul(
|
|
847
|
+
struct wsp_ggml_context * ctx,
|
|
848
|
+
struct wsp_ggml_tensor * a,
|
|
849
|
+
struct wsp_ggml_tensor * b);
|
|
850
|
+
|
|
851
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_mul_inplace(
|
|
852
|
+
struct wsp_ggml_context * ctx,
|
|
853
|
+
struct wsp_ggml_tensor * a,
|
|
854
|
+
struct wsp_ggml_tensor * b);
|
|
855
|
+
|
|
856
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_div(
|
|
857
|
+
struct wsp_ggml_context * ctx,
|
|
858
|
+
struct wsp_ggml_tensor * a,
|
|
859
|
+
struct wsp_ggml_tensor * b);
|
|
860
|
+
|
|
861
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_div_inplace(
|
|
862
|
+
struct wsp_ggml_context * ctx,
|
|
863
|
+
struct wsp_ggml_tensor * a,
|
|
864
|
+
struct wsp_ggml_tensor * b);
|
|
865
|
+
|
|
866
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_sqr(
|
|
867
|
+
struct wsp_ggml_context * ctx,
|
|
868
|
+
struct wsp_ggml_tensor * a);
|
|
869
|
+
|
|
870
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_sqr_inplace(
|
|
871
|
+
struct wsp_ggml_context * ctx,
|
|
872
|
+
struct wsp_ggml_tensor * a);
|
|
873
|
+
|
|
874
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_sqrt(
|
|
875
|
+
struct wsp_ggml_context * ctx,
|
|
876
|
+
struct wsp_ggml_tensor * a);
|
|
877
|
+
|
|
878
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_sqrt_inplace(
|
|
879
|
+
struct wsp_ggml_context * ctx,
|
|
880
|
+
struct wsp_ggml_tensor * a);
|
|
881
|
+
|
|
882
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_log(
|
|
883
|
+
struct wsp_ggml_context * ctx,
|
|
884
|
+
struct wsp_ggml_tensor * a);
|
|
885
|
+
|
|
886
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_log_inplace(
|
|
887
|
+
struct wsp_ggml_context * ctx,
|
|
888
|
+
struct wsp_ggml_tensor * a);
|
|
889
|
+
|
|
890
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_sin(
|
|
891
|
+
struct wsp_ggml_context * ctx,
|
|
892
|
+
struct wsp_ggml_tensor * a);
|
|
893
|
+
|
|
894
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_sin_inplace(
|
|
895
|
+
struct wsp_ggml_context * ctx,
|
|
896
|
+
struct wsp_ggml_tensor * a);
|
|
897
|
+
|
|
898
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_cos(
|
|
899
|
+
struct wsp_ggml_context * ctx,
|
|
900
|
+
struct wsp_ggml_tensor * a);
|
|
901
|
+
|
|
902
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_cos_inplace(
|
|
903
|
+
struct wsp_ggml_context * ctx,
|
|
904
|
+
struct wsp_ggml_tensor * a);
|
|
905
|
+
|
|
906
|
+
// return scalar
|
|
907
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_sum(
|
|
908
|
+
struct wsp_ggml_context * ctx,
|
|
909
|
+
struct wsp_ggml_tensor * a);
|
|
910
|
+
|
|
911
|
+
// sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
|
|
912
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_sum_rows(
|
|
913
|
+
struct wsp_ggml_context * ctx,
|
|
914
|
+
struct wsp_ggml_tensor * a);
|
|
915
|
+
|
|
916
|
+
// mean along rows
|
|
917
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_mean(
|
|
918
|
+
struct wsp_ggml_context * ctx,
|
|
919
|
+
struct wsp_ggml_tensor * a);
|
|
920
|
+
|
|
921
|
+
// argmax along rows
|
|
922
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_argmax(
|
|
923
|
+
struct wsp_ggml_context * ctx,
|
|
924
|
+
struct wsp_ggml_tensor * a);
|
|
925
|
+
|
|
926
|
+
// count number of equal elements in a and b
|
|
927
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_count_equal(
|
|
928
|
+
struct wsp_ggml_context * ctx,
|
|
929
|
+
struct wsp_ggml_tensor * a,
|
|
930
|
+
struct wsp_ggml_tensor * b);
|
|
931
|
+
|
|
932
|
+
// if a is the same shape as b, and a is not parameter, return a
|
|
933
|
+
// otherwise, return a new tensor: repeat(a) to fit in b
|
|
934
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_repeat(
|
|
935
|
+
struct wsp_ggml_context * ctx,
|
|
936
|
+
struct wsp_ggml_tensor * a,
|
|
937
|
+
struct wsp_ggml_tensor * b);
|
|
938
|
+
|
|
939
|
+
// repeat a to the specified shape
|
|
940
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_repeat_4d(
|
|
941
|
+
struct wsp_ggml_context * ctx,
|
|
942
|
+
struct wsp_ggml_tensor * a,
|
|
943
|
+
int64_t ne0,
|
|
944
|
+
int64_t ne1,
|
|
945
|
+
int64_t ne2,
|
|
946
|
+
int64_t ne3);
|
|
947
|
+
|
|
948
|
+
// sums repetitions in a into shape of b
|
|
949
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_repeat_back(
|
|
950
|
+
struct wsp_ggml_context * ctx,
|
|
951
|
+
struct wsp_ggml_tensor * a,
|
|
952
|
+
struct wsp_ggml_tensor * b); // sum up values that are adjacent in dims > 0 instead of repeated with same stride
|
|
953
|
+
|
|
954
|
+
// concat a and b along dim
|
|
955
|
+
// used in stable-diffusion
|
|
956
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_concat(
|
|
957
|
+
struct wsp_ggml_context * ctx,
|
|
958
|
+
struct wsp_ggml_tensor * a,
|
|
959
|
+
struct wsp_ggml_tensor * b,
|
|
960
|
+
int dim);
|
|
961
|
+
|
|
962
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_abs(
|
|
963
|
+
struct wsp_ggml_context * ctx,
|
|
964
|
+
struct wsp_ggml_tensor * a);
|
|
965
|
+
|
|
966
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_abs_inplace(
|
|
967
|
+
struct wsp_ggml_context * ctx,
|
|
968
|
+
struct wsp_ggml_tensor * a);
|
|
969
|
+
|
|
970
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_sgn(
|
|
971
|
+
struct wsp_ggml_context * ctx,
|
|
972
|
+
struct wsp_ggml_tensor * a);
|
|
973
|
+
|
|
974
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_sgn_inplace(
|
|
975
|
+
struct wsp_ggml_context * ctx,
|
|
976
|
+
struct wsp_ggml_tensor * a);
|
|
977
|
+
|
|
978
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_neg(
|
|
979
|
+
struct wsp_ggml_context * ctx,
|
|
980
|
+
struct wsp_ggml_tensor * a);
|
|
981
|
+
|
|
982
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_neg_inplace(
|
|
983
|
+
struct wsp_ggml_context * ctx,
|
|
984
|
+
struct wsp_ggml_tensor * a);
|
|
985
|
+
|
|
986
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_step(
|
|
987
|
+
struct wsp_ggml_context * ctx,
|
|
988
|
+
struct wsp_ggml_tensor * a);
|
|
989
|
+
|
|
990
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_step_inplace(
|
|
991
|
+
struct wsp_ggml_context * ctx,
|
|
992
|
+
struct wsp_ggml_tensor * a);
|
|
993
|
+
|
|
994
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_tanh(
|
|
995
|
+
struct wsp_ggml_context * ctx,
|
|
996
|
+
struct wsp_ggml_tensor * a);
|
|
997
|
+
|
|
998
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_tanh_inplace(
|
|
999
|
+
struct wsp_ggml_context * ctx,
|
|
1000
|
+
struct wsp_ggml_tensor * a);
|
|
1001
|
+
|
|
1002
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_elu(
|
|
1003
|
+
struct wsp_ggml_context * ctx,
|
|
1004
|
+
struct wsp_ggml_tensor * a);
|
|
1005
|
+
|
|
1006
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_elu_inplace(
|
|
1007
|
+
struct wsp_ggml_context * ctx,
|
|
1008
|
+
struct wsp_ggml_tensor * a);
|
|
1009
|
+
|
|
1010
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_relu(
|
|
1011
|
+
struct wsp_ggml_context * ctx,
|
|
1012
|
+
struct wsp_ggml_tensor * a);
|
|
1013
|
+
|
|
1014
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_leaky_relu(
|
|
1015
|
+
struct wsp_ggml_context * ctx,
|
|
1016
|
+
struct wsp_ggml_tensor * a, float negative_slope, bool inplace);
|
|
1017
|
+
|
|
1018
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_relu_inplace(
|
|
1019
|
+
struct wsp_ggml_context * ctx,
|
|
1020
|
+
struct wsp_ggml_tensor * a);
|
|
1021
|
+
|
|
1022
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_sigmoid(
|
|
1023
|
+
struct wsp_ggml_context * ctx,
|
|
1024
|
+
struct wsp_ggml_tensor * a);
|
|
1025
|
+
|
|
1026
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_sigmoid_inplace(
|
|
1027
|
+
struct wsp_ggml_context * ctx,
|
|
1028
|
+
struct wsp_ggml_tensor * a);
|
|
1029
|
+
|
|
1030
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_gelu(
|
|
1031
|
+
struct wsp_ggml_context * ctx,
|
|
1032
|
+
struct wsp_ggml_tensor * a);
|
|
1033
|
+
|
|
1034
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_gelu_inplace(
|
|
1035
|
+
struct wsp_ggml_context * ctx,
|
|
1036
|
+
struct wsp_ggml_tensor * a);
|
|
1037
|
+
|
|
1038
|
+
// GELU using erf (error function) when possible
|
|
1039
|
+
// some backends may fallback to approximation based on Abramowitz and Stegun formula
|
|
1040
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_gelu_erf(
|
|
1041
|
+
struct wsp_ggml_context * ctx,
|
|
1042
|
+
struct wsp_ggml_tensor * a);
|
|
1043
|
+
|
|
1044
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_gelu_erf_inplace(
|
|
1045
|
+
struct wsp_ggml_context * ctx,
|
|
1046
|
+
struct wsp_ggml_tensor * a);
|
|
1047
|
+
|
|
1048
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_gelu_quick(
|
|
1049
|
+
struct wsp_ggml_context * ctx,
|
|
1050
|
+
struct wsp_ggml_tensor * a);
|
|
1051
|
+
|
|
1052
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_gelu_quick_inplace(
|
|
1053
|
+
struct wsp_ggml_context * ctx,
|
|
1054
|
+
struct wsp_ggml_tensor * a);
|
|
1055
|
+
|
|
1056
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_silu(
|
|
1057
|
+
struct wsp_ggml_context * ctx,
|
|
1058
|
+
struct wsp_ggml_tensor * a);
|
|
1059
|
+
|
|
1060
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_silu_inplace(
|
|
1061
|
+
struct wsp_ggml_context * ctx,
|
|
1062
|
+
struct wsp_ggml_tensor * a);
|
|
1063
|
+
|
|
1064
|
+
// a - x
|
|
1065
|
+
// b - dy
|
|
1066
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_silu_back(
|
|
1067
|
+
struct wsp_ggml_context * ctx,
|
|
1068
|
+
struct wsp_ggml_tensor * a,
|
|
1069
|
+
struct wsp_ggml_tensor * b);
|
|
1070
|
+
|
|
1071
|
+
// hardswish(x) = x * relu6(x + 3) / 6
|
|
1072
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_hardswish(
|
|
1073
|
+
struct wsp_ggml_context * ctx,
|
|
1074
|
+
struct wsp_ggml_tensor * a);
|
|
1075
|
+
|
|
1076
|
+
// hardsigmoid(x) = relu6(x + 3) / 6
|
|
1077
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_hardsigmoid(
|
|
1078
|
+
struct wsp_ggml_context * ctx,
|
|
1079
|
+
struct wsp_ggml_tensor * a);
|
|
1080
|
+
|
|
1081
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_exp(
|
|
1082
|
+
struct wsp_ggml_context * ctx,
|
|
1083
|
+
struct wsp_ggml_tensor * a);
|
|
1084
|
+
|
|
1085
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_exp_inplace(
|
|
1086
|
+
struct wsp_ggml_context * ctx,
|
|
1087
|
+
struct wsp_ggml_tensor * a);
|
|
1088
|
+
|
|
1089
|
+
// normalize along rows
|
|
1090
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_norm(
|
|
1091
|
+
struct wsp_ggml_context * ctx,
|
|
1092
|
+
struct wsp_ggml_tensor * a,
|
|
1093
|
+
float eps);
|
|
1094
|
+
|
|
1095
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_norm_inplace(
|
|
1096
|
+
struct wsp_ggml_context * ctx,
|
|
1097
|
+
struct wsp_ggml_tensor * a,
|
|
1098
|
+
float eps);
|
|
1099
|
+
|
|
1100
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_rms_norm(
|
|
1101
|
+
struct wsp_ggml_context * ctx,
|
|
1102
|
+
struct wsp_ggml_tensor * a,
|
|
1103
|
+
float eps);
|
|
1104
|
+
|
|
1105
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_rms_norm_inplace(
|
|
1106
|
+
struct wsp_ggml_context * ctx,
|
|
1107
|
+
struct wsp_ggml_tensor * a,
|
|
1108
|
+
float eps);
|
|
1109
|
+
|
|
1110
|
+
// group normalize along ne0*ne1*n_groups
|
|
1111
|
+
// used in stable-diffusion
|
|
1112
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_group_norm(
|
|
1113
|
+
struct wsp_ggml_context * ctx,
|
|
1114
|
+
struct wsp_ggml_tensor * a,
|
|
1115
|
+
int n_groups,
|
|
1116
|
+
float eps);
|
|
1117
|
+
|
|
1118
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_group_norm_inplace(
|
|
1119
|
+
struct wsp_ggml_context * ctx,
|
|
1120
|
+
struct wsp_ggml_tensor * a,
|
|
1121
|
+
int n_groups,
|
|
1122
|
+
float eps);
|
|
1123
|
+
|
|
1124
|
+
// l2 normalize along rows
|
|
1125
|
+
// used in rwkv v7
|
|
1126
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_l2_norm(
|
|
1127
|
+
struct wsp_ggml_context * ctx,
|
|
1128
|
+
struct wsp_ggml_tensor * a,
|
|
1129
|
+
float eps);
|
|
1130
|
+
|
|
1131
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_l2_norm_inplace(
|
|
1132
|
+
struct wsp_ggml_context * ctx,
|
|
1133
|
+
struct wsp_ggml_tensor * a,
|
|
1134
|
+
float eps);
|
|
1135
|
+
|
|
1136
|
+
// a - x
|
|
1137
|
+
// b - dy
|
|
1138
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_rms_norm_back(
|
|
1139
|
+
struct wsp_ggml_context * ctx,
|
|
1140
|
+
struct wsp_ggml_tensor * a,
|
|
1141
|
+
struct wsp_ggml_tensor * b,
|
|
1142
|
+
float eps);
|
|
1143
|
+
|
|
1144
|
+
// A: k columns, n rows => [ne03, ne02, n, k]
|
|
1145
|
+
// B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
|
|
1146
|
+
// result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
|
|
1147
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_mul_mat(
|
|
1148
|
+
struct wsp_ggml_context * ctx,
|
|
1149
|
+
struct wsp_ggml_tensor * a,
|
|
1150
|
+
struct wsp_ggml_tensor * b);
|
|
1151
|
+
|
|
1152
|
+
// change the precision of a matrix multiplication
|
|
1153
|
+
// set to WSP_GGML_PREC_F32 for higher precision (useful for phi-2)
|
|
1154
|
+
WSP_GGML_API void wsp_ggml_mul_mat_set_prec(
|
|
1155
|
+
struct wsp_ggml_tensor * a,
|
|
1156
|
+
enum wsp_ggml_prec prec);
|
|
1157
|
+
|
|
1158
|
+
// indirect matrix multiplication
|
|
1159
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_mul_mat_id(
|
|
1160
|
+
struct wsp_ggml_context * ctx,
|
|
1161
|
+
struct wsp_ggml_tensor * as,
|
|
1162
|
+
struct wsp_ggml_tensor * b,
|
|
1163
|
+
struct wsp_ggml_tensor * ids);
|
|
1164
|
+
|
|
1165
|
+
// A: m columns, n rows,
|
|
1166
|
+
// B: p columns, n rows,
|
|
1167
|
+
// result is m columns, p rows
|
|
1168
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_out_prod(
|
|
1169
|
+
struct wsp_ggml_context * ctx,
|
|
1170
|
+
struct wsp_ggml_tensor * a,
|
|
1171
|
+
struct wsp_ggml_tensor * b);
|
|
1172
|
+
|
|
1173
|
+
//
|
|
1174
|
+
// operations on tensors without backpropagation
|
|
1175
|
+
//
|
|
1176
|
+
|
|
1177
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_scale(
|
|
1178
|
+
struct wsp_ggml_context * ctx,
|
|
1179
|
+
struct wsp_ggml_tensor * a,
|
|
1180
|
+
float s);
|
|
1181
|
+
|
|
1182
|
+
// in-place, returns view(a)
|
|
1183
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_scale_inplace(
|
|
1184
|
+
struct wsp_ggml_context * ctx,
|
|
1185
|
+
struct wsp_ggml_tensor * a,
|
|
1186
|
+
float s);
|
|
1187
|
+
|
|
1188
|
+
// b -> view(a,offset,nb1,nb2,3), return modified a
|
|
1189
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_set(
|
|
1190
|
+
struct wsp_ggml_context * ctx,
|
|
1191
|
+
struct wsp_ggml_tensor * a,
|
|
1192
|
+
struct wsp_ggml_tensor * b,
|
|
1193
|
+
size_t nb1,
|
|
1194
|
+
size_t nb2,
|
|
1195
|
+
size_t nb3,
|
|
1196
|
+
size_t offset); // in bytes
|
|
1197
|
+
|
|
1198
|
+
// b -> view(a,offset,nb1,nb2,3), return view(a)
|
|
1199
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_set_inplace(
|
|
1200
|
+
struct wsp_ggml_context * ctx,
|
|
1201
|
+
struct wsp_ggml_tensor * a,
|
|
1202
|
+
struct wsp_ggml_tensor * b,
|
|
1203
|
+
size_t nb1,
|
|
1204
|
+
size_t nb2,
|
|
1205
|
+
size_t nb3,
|
|
1206
|
+
size_t offset); // in bytes
|
|
1207
|
+
|
|
1208
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_set_1d(
|
|
1209
|
+
struct wsp_ggml_context * ctx,
|
|
1210
|
+
struct wsp_ggml_tensor * a,
|
|
1211
|
+
struct wsp_ggml_tensor * b,
|
|
1212
|
+
size_t offset); // in bytes
|
|
1213
|
+
|
|
1214
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_set_1d_inplace(
|
|
1215
|
+
struct wsp_ggml_context * ctx,
|
|
1216
|
+
struct wsp_ggml_tensor * a,
|
|
1217
|
+
struct wsp_ggml_tensor * b,
|
|
1218
|
+
size_t offset); // in bytes
|
|
1219
|
+
|
|
1220
|
+
// b -> view(a,offset,nb1,nb2,3), return modified a
|
|
1221
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_set_2d(
|
|
1222
|
+
struct wsp_ggml_context * ctx,
|
|
1223
|
+
struct wsp_ggml_tensor * a,
|
|
1224
|
+
struct wsp_ggml_tensor * b,
|
|
1225
|
+
size_t nb1,
|
|
1226
|
+
size_t offset); // in bytes
|
|
1227
|
+
|
|
1228
|
+
// b -> view(a,offset,nb1,nb2,3), return view(a)
|
|
1229
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_set_2d_inplace(
|
|
1230
|
+
struct wsp_ggml_context * ctx,
|
|
1231
|
+
struct wsp_ggml_tensor * a,
|
|
1232
|
+
struct wsp_ggml_tensor * b,
|
|
1233
|
+
size_t nb1,
|
|
1234
|
+
size_t offset); // in bytes
|
|
1235
|
+
|
|
1236
|
+
// a -> b, return view(b)
|
|
1237
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_cpy(
|
|
1238
|
+
struct wsp_ggml_context * ctx,
|
|
1239
|
+
struct wsp_ggml_tensor * a,
|
|
1240
|
+
struct wsp_ggml_tensor * b);
|
|
1241
|
+
|
|
1242
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_cast(
|
|
1243
|
+
struct wsp_ggml_context * ctx,
|
|
1244
|
+
struct wsp_ggml_tensor * a,
|
|
1245
|
+
enum wsp_ggml_type type);
|
|
1246
|
+
|
|
1247
|
+
// make contiguous
|
|
1248
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_cont(
|
|
1249
|
+
struct wsp_ggml_context * ctx,
|
|
1250
|
+
struct wsp_ggml_tensor * a);
|
|
1251
|
+
|
|
1252
|
+
// make contiguous, with new shape
|
|
1253
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_cont_1d(
|
|
1254
|
+
struct wsp_ggml_context * ctx,
|
|
1255
|
+
struct wsp_ggml_tensor * a,
|
|
1256
|
+
int64_t ne0);
|
|
1257
|
+
|
|
1258
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_cont_2d(
|
|
1259
|
+
struct wsp_ggml_context * ctx,
|
|
1260
|
+
struct wsp_ggml_tensor * a,
|
|
1261
|
+
int64_t ne0,
|
|
1262
|
+
int64_t ne1);
|
|
1263
|
+
|
|
1264
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_cont_3d(
|
|
1265
|
+
struct wsp_ggml_context * ctx,
|
|
1266
|
+
struct wsp_ggml_tensor * a,
|
|
1267
|
+
int64_t ne0,
|
|
1268
|
+
int64_t ne1,
|
|
1269
|
+
int64_t ne2);
|
|
1270
|
+
|
|
1271
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_cont_4d(
|
|
1272
|
+
struct wsp_ggml_context * ctx,
|
|
1273
|
+
struct wsp_ggml_tensor * a,
|
|
1274
|
+
int64_t ne0,
|
|
1275
|
+
int64_t ne1,
|
|
1276
|
+
int64_t ne2,
|
|
1277
|
+
int64_t ne3);
|
|
1278
|
+
|
|
1279
|
+
// return view(a), b specifies the new shape
|
|
1280
|
+
// TODO: when we start computing gradient, make a copy instead of view
|
|
1281
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_reshape(
|
|
1282
|
+
struct wsp_ggml_context * ctx,
|
|
1283
|
+
struct wsp_ggml_tensor * a,
|
|
1284
|
+
struct wsp_ggml_tensor * b);
|
|
1285
|
+
|
|
1286
|
+
// return view(a)
|
|
1287
|
+
// TODO: when we start computing gradient, make a copy instead of view
|
|
1288
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_reshape_1d(
|
|
1289
|
+
struct wsp_ggml_context * ctx,
|
|
1290
|
+
struct wsp_ggml_tensor * a,
|
|
1291
|
+
int64_t ne0);
|
|
1292
|
+
|
|
1293
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_reshape_2d(
|
|
1294
|
+
struct wsp_ggml_context * ctx,
|
|
1295
|
+
struct wsp_ggml_tensor * a,
|
|
1296
|
+
int64_t ne0,
|
|
1297
|
+
int64_t ne1);
|
|
1298
|
+
|
|
1299
|
+
// return view(a)
|
|
1300
|
+
// TODO: when we start computing gradient, make a copy instead of view
|
|
1301
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_reshape_3d(
|
|
1302
|
+
struct wsp_ggml_context * ctx,
|
|
1303
|
+
struct wsp_ggml_tensor * a,
|
|
1304
|
+
int64_t ne0,
|
|
1305
|
+
int64_t ne1,
|
|
1306
|
+
int64_t ne2);
|
|
1307
|
+
|
|
1308
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_reshape_4d(
|
|
1309
|
+
struct wsp_ggml_context * ctx,
|
|
1310
|
+
struct wsp_ggml_tensor * a,
|
|
1311
|
+
int64_t ne0,
|
|
1312
|
+
int64_t ne1,
|
|
1313
|
+
int64_t ne2,
|
|
1314
|
+
int64_t ne3);
|
|
1315
|
+
|
|
1316
|
+
// offset in bytes
|
|
1317
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_view_1d(
|
|
1318
|
+
struct wsp_ggml_context * ctx,
|
|
1319
|
+
struct wsp_ggml_tensor * a,
|
|
1320
|
+
int64_t ne0,
|
|
1321
|
+
size_t offset);
|
|
1322
|
+
|
|
1323
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_view_2d(
|
|
1324
|
+
struct wsp_ggml_context * ctx,
|
|
1325
|
+
struct wsp_ggml_tensor * a,
|
|
1326
|
+
int64_t ne0,
|
|
1327
|
+
int64_t ne1,
|
|
1328
|
+
size_t nb1, // row stride in bytes
|
|
1329
|
+
size_t offset);
|
|
1330
|
+
|
|
1331
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_view_3d(
|
|
1332
|
+
struct wsp_ggml_context * ctx,
|
|
1333
|
+
struct wsp_ggml_tensor * a,
|
|
1334
|
+
int64_t ne0,
|
|
1335
|
+
int64_t ne1,
|
|
1336
|
+
int64_t ne2,
|
|
1337
|
+
size_t nb1, // row stride in bytes
|
|
1338
|
+
size_t nb2, // slice stride in bytes
|
|
1339
|
+
size_t offset);
|
|
1340
|
+
|
|
1341
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_view_4d(
|
|
1342
|
+
struct wsp_ggml_context * ctx,
|
|
1343
|
+
struct wsp_ggml_tensor * a,
|
|
1344
|
+
int64_t ne0,
|
|
1345
|
+
int64_t ne1,
|
|
1346
|
+
int64_t ne2,
|
|
1347
|
+
int64_t ne3,
|
|
1348
|
+
size_t nb1, // row stride in bytes
|
|
1349
|
+
size_t nb2, // slice stride in bytes
|
|
1350
|
+
size_t nb3,
|
|
1351
|
+
size_t offset);
|
|
1352
|
+
|
|
1353
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_permute(
|
|
1354
|
+
struct wsp_ggml_context * ctx,
|
|
1355
|
+
struct wsp_ggml_tensor * a,
|
|
1356
|
+
int axis0,
|
|
1357
|
+
int axis1,
|
|
1358
|
+
int axis2,
|
|
1359
|
+
int axis3);
|
|
1360
|
+
|
|
1361
|
+
// alias for wsp_ggml_permute(ctx, a, 1, 0, 2, 3)
|
|
1362
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_transpose(
|
|
1363
|
+
struct wsp_ggml_context * ctx,
|
|
1364
|
+
struct wsp_ggml_tensor * a);
|
|
1365
|
+
|
|
1366
|
+
// supports 3D: a->ne[2] == b->ne[1]
|
|
1367
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_get_rows(
|
|
1368
|
+
struct wsp_ggml_context * ctx,
|
|
1369
|
+
struct wsp_ggml_tensor * a, // data
|
|
1370
|
+
struct wsp_ggml_tensor * b); // row indices
|
|
1371
|
+
|
|
1372
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_get_rows_back(
|
|
1373
|
+
struct wsp_ggml_context * ctx,
|
|
1374
|
+
struct wsp_ggml_tensor * a, // gradients of wsp_ggml_get_rows result
|
|
1375
|
+
struct wsp_ggml_tensor * b, // row indices
|
|
1376
|
+
struct wsp_ggml_tensor * c); // data for wsp_ggml_get_rows, only used for its shape
|
|
1377
|
+
|
|
1378
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_diag(
|
|
1379
|
+
struct wsp_ggml_context * ctx,
|
|
1380
|
+
struct wsp_ggml_tensor * a);
|
|
1381
|
+
|
|
1382
|
+
// set elements above the diagonal to -INF
|
|
1383
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_diag_mask_inf(
|
|
1384
|
+
struct wsp_ggml_context * ctx,
|
|
1385
|
+
struct wsp_ggml_tensor * a,
|
|
1386
|
+
int n_past);
|
|
1387
|
+
|
|
1388
|
+
// in-place, returns view(a)
|
|
1389
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_diag_mask_inf_inplace(
|
|
1390
|
+
struct wsp_ggml_context * ctx,
|
|
1391
|
+
struct wsp_ggml_tensor * a,
|
|
1392
|
+
int n_past);
|
|
1393
|
+
|
|
1394
|
+
// set elements above the diagonal to 0
|
|
1395
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_diag_mask_zero(
|
|
1396
|
+
struct wsp_ggml_context * ctx,
|
|
1397
|
+
struct wsp_ggml_tensor * a,
|
|
1398
|
+
int n_past);
|
|
1399
|
+
|
|
1400
|
+
// in-place, returns view(a)
|
|
1401
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_diag_mask_zero_inplace(
|
|
1402
|
+
struct wsp_ggml_context * ctx,
|
|
1403
|
+
struct wsp_ggml_tensor * a,
|
|
1404
|
+
int n_past);
|
|
1405
|
+
|
|
1406
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_soft_max(
|
|
1407
|
+
struct wsp_ggml_context * ctx,
|
|
1408
|
+
struct wsp_ggml_tensor * a);
|
|
1409
|
+
|
|
1410
|
+
// in-place, returns view(a)
|
|
1411
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_soft_max_inplace(
|
|
1412
|
+
struct wsp_ggml_context * ctx,
|
|
1413
|
+
struct wsp_ggml_tensor * a);
|
|
1414
|
+
|
|
1415
|
+
// fused soft_max(a*scale + mask*(ALiBi slope))
|
|
1416
|
+
// mask is optional
|
|
1417
|
+
// max_bias = 0.0f for no ALiBi
|
|
1418
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_soft_max_ext(
|
|
1419
|
+
struct wsp_ggml_context * ctx,
|
|
1420
|
+
struct wsp_ggml_tensor * a,
|
|
1421
|
+
struct wsp_ggml_tensor * mask,
|
|
1422
|
+
float scale,
|
|
1423
|
+
float max_bias);
|
|
1424
|
+
|
|
1425
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_soft_max_ext_back(
|
|
1426
|
+
struct wsp_ggml_context * ctx,
|
|
1427
|
+
struct wsp_ggml_tensor * a,
|
|
1428
|
+
struct wsp_ggml_tensor * b,
|
|
1429
|
+
float scale,
|
|
1430
|
+
float max_bias);
|
|
1431
|
+
|
|
1432
|
+
// in-place, returns view(a)
|
|
1433
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_soft_max_ext_back_inplace(
|
|
1434
|
+
struct wsp_ggml_context * ctx,
|
|
1435
|
+
struct wsp_ggml_tensor * a,
|
|
1436
|
+
struct wsp_ggml_tensor * b,
|
|
1437
|
+
float scale,
|
|
1438
|
+
float max_bias);
|
|
1439
|
+
|
|
1440
|
+
// rotary position embedding
|
|
1441
|
+
// if (mode & 1) - skip n_past elements (NOT SUPPORTED)
|
|
1442
|
+
// if (mode & WSP_GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
|
|
1443
|
+
//
|
|
1444
|
+
// b is an int32 vector with size a->ne[2], it contains the positions
|
|
1445
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_rope(
|
|
1446
|
+
struct wsp_ggml_context * ctx,
|
|
1447
|
+
struct wsp_ggml_tensor * a,
|
|
1448
|
+
struct wsp_ggml_tensor * b,
|
|
1449
|
+
int n_dims,
|
|
1450
|
+
int mode);
|
|
1451
|
+
|
|
1452
|
+
// in-place, returns view(a)
|
|
1453
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_rope_inplace(
|
|
1454
|
+
struct wsp_ggml_context * ctx,
|
|
1455
|
+
struct wsp_ggml_tensor * a,
|
|
1456
|
+
struct wsp_ggml_tensor * b,
|
|
1457
|
+
int n_dims,
|
|
1458
|
+
int mode);
|
|
1459
|
+
|
|
1460
|
+
// custom RoPE
|
|
1461
|
+
// c is freq factors (e.g. phi3-128k), (optional)
|
|
1462
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_rope_ext(
|
|
1463
|
+
struct wsp_ggml_context * ctx,
|
|
1464
|
+
struct wsp_ggml_tensor * a,
|
|
1465
|
+
struct wsp_ggml_tensor * b,
|
|
1466
|
+
struct wsp_ggml_tensor * c,
|
|
1467
|
+
int n_dims,
|
|
1468
|
+
int mode,
|
|
1469
|
+
int n_ctx_orig,
|
|
1470
|
+
float freq_base,
|
|
1471
|
+
float freq_scale,
|
|
1472
|
+
float ext_factor,
|
|
1473
|
+
float attn_factor,
|
|
1474
|
+
float beta_fast,
|
|
1475
|
+
float beta_slow);
|
|
1476
|
+
|
|
1477
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_rope_multi(
|
|
1478
|
+
struct wsp_ggml_context * ctx,
|
|
1479
|
+
struct wsp_ggml_tensor * a,
|
|
1480
|
+
struct wsp_ggml_tensor * b,
|
|
1481
|
+
struct wsp_ggml_tensor * c,
|
|
1482
|
+
int n_dims,
|
|
1483
|
+
int sections[4],
|
|
1484
|
+
int mode,
|
|
1485
|
+
int n_ctx_orig,
|
|
1486
|
+
float freq_base,
|
|
1487
|
+
float freq_scale,
|
|
1488
|
+
float ext_factor,
|
|
1489
|
+
float attn_factor,
|
|
1490
|
+
float beta_fast,
|
|
1491
|
+
float beta_slow);
|
|
1492
|
+
|
|
1493
|
+
// in-place, returns view(a)
|
|
1494
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_rope_ext_inplace(
|
|
1495
|
+
struct wsp_ggml_context * ctx,
|
|
1496
|
+
struct wsp_ggml_tensor * a,
|
|
1497
|
+
struct wsp_ggml_tensor * b,
|
|
1498
|
+
struct wsp_ggml_tensor * c,
|
|
1499
|
+
int n_dims,
|
|
1500
|
+
int mode,
|
|
1501
|
+
int n_ctx_orig,
|
|
1502
|
+
float freq_base,
|
|
1503
|
+
float freq_scale,
|
|
1504
|
+
float ext_factor,
|
|
1505
|
+
float attn_factor,
|
|
1506
|
+
float beta_fast,
|
|
1507
|
+
float beta_slow);
|
|
1508
|
+
|
|
1509
|
+
WSP_GGML_DEPRECATED(WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_rope_custom(
|
|
1510
|
+
struct wsp_ggml_context * ctx,
|
|
1511
|
+
struct wsp_ggml_tensor * a,
|
|
1512
|
+
struct wsp_ggml_tensor * b,
|
|
1513
|
+
int n_dims,
|
|
1514
|
+
int mode,
|
|
1515
|
+
int n_ctx_orig,
|
|
1516
|
+
float freq_base,
|
|
1517
|
+
float freq_scale,
|
|
1518
|
+
float ext_factor,
|
|
1519
|
+
float attn_factor,
|
|
1520
|
+
float beta_fast,
|
|
1521
|
+
float beta_slow),
|
|
1522
|
+
"use wsp_ggml_rope_ext instead");
|
|
1523
|
+
|
|
1524
|
+
WSP_GGML_DEPRECATED(WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_rope_custom_inplace(
|
|
1525
|
+
struct wsp_ggml_context * ctx,
|
|
1526
|
+
struct wsp_ggml_tensor * a,
|
|
1527
|
+
struct wsp_ggml_tensor * b,
|
|
1528
|
+
int n_dims,
|
|
1529
|
+
int mode,
|
|
1530
|
+
int n_ctx_orig,
|
|
1531
|
+
float freq_base,
|
|
1532
|
+
float freq_scale,
|
|
1533
|
+
float ext_factor,
|
|
1534
|
+
float attn_factor,
|
|
1535
|
+
float beta_fast,
|
|
1536
|
+
float beta_slow),
|
|
1537
|
+
"use wsp_ggml_rope_ext_inplace instead");
|
|
1538
|
+
|
|
1539
|
+
// compute correction dims for YaRN RoPE scaling
|
|
1540
|
+
WSP_GGML_API void wsp_ggml_rope_yarn_corr_dims(
|
|
1541
|
+
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
|
|
1542
|
+
|
|
1543
|
+
// rotary position embedding backward, i.e compute dx from dy
|
|
1544
|
+
// a - dy
|
|
1545
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_rope_ext_back(
|
|
1546
|
+
struct wsp_ggml_context * ctx,
|
|
1547
|
+
struct wsp_ggml_tensor * a, // gradients of wsp_ggml_rope result
|
|
1548
|
+
struct wsp_ggml_tensor * b, // positions
|
|
1549
|
+
struct wsp_ggml_tensor * c, // freq factors
|
|
1550
|
+
int n_dims,
|
|
1551
|
+
int mode,
|
|
1552
|
+
int n_ctx_orig,
|
|
1553
|
+
float freq_base,
|
|
1554
|
+
float freq_scale,
|
|
1555
|
+
float ext_factor,
|
|
1556
|
+
float attn_factor,
|
|
1557
|
+
float beta_fast,
|
|
1558
|
+
float beta_slow);
|
|
1559
|
+
|
|
1560
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_rope_multi_back(
|
|
1561
|
+
struct wsp_ggml_context * ctx,
|
|
1562
|
+
struct wsp_ggml_tensor * a,
|
|
1563
|
+
struct wsp_ggml_tensor * b,
|
|
1564
|
+
struct wsp_ggml_tensor * c,
|
|
1565
|
+
int n_dims,
|
|
1566
|
+
int sections[4],
|
|
1567
|
+
int mode,
|
|
1568
|
+
int n_ctx_orig,
|
|
1569
|
+
float freq_base,
|
|
1570
|
+
float freq_scale,
|
|
1571
|
+
float ext_factor,
|
|
1572
|
+
float attn_factor,
|
|
1573
|
+
float beta_fast,
|
|
1574
|
+
float beta_slow);
|
|
1575
|
+
|
|
1576
|
+
|
|
1577
|
+
// clamp
|
|
1578
|
+
// in-place, returns view(a)
|
|
1579
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_clamp(
|
|
1580
|
+
struct wsp_ggml_context * ctx,
|
|
1581
|
+
struct wsp_ggml_tensor * a,
|
|
1582
|
+
float min,
|
|
1583
|
+
float max);
|
|
1584
|
+
|
|
1585
|
+
// im2col
|
|
1586
|
+
// converts data into a format that effectively results in a convolution when combined with matrix multiplication
|
|
1587
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_im2col(
|
|
1588
|
+
struct wsp_ggml_context * ctx,
|
|
1589
|
+
struct wsp_ggml_tensor * a, // convolution kernel
|
|
1590
|
+
struct wsp_ggml_tensor * b, // data
|
|
1591
|
+
int s0, // stride dimension 0
|
|
1592
|
+
int s1, // stride dimension 1
|
|
1593
|
+
int p0, // padding dimension 0
|
|
1594
|
+
int p1, // padding dimension 1
|
|
1595
|
+
int d0, // dilation dimension 0
|
|
1596
|
+
int d1, // dilation dimension 1
|
|
1597
|
+
bool is_2D,
|
|
1598
|
+
enum wsp_ggml_type dst_type);
|
|
1599
|
+
|
|
1600
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_im2col_back(
|
|
1601
|
+
struct wsp_ggml_context * ctx,
|
|
1602
|
+
struct wsp_ggml_tensor * a, // convolution kernel
|
|
1603
|
+
struct wsp_ggml_tensor * b, // gradient of im2col output
|
|
1604
|
+
int64_t * ne, // shape of im2col input
|
|
1605
|
+
int s0, // stride dimension 0
|
|
1606
|
+
int s1, // stride dimension 1
|
|
1607
|
+
int p0, // padding dimension 0
|
|
1608
|
+
int p1, // padding dimension 1
|
|
1609
|
+
int d0, // dilation dimension 0
|
|
1610
|
+
int d1, // dilation dimension 1
|
|
1611
|
+
bool is_2D);
|
|
1612
|
+
|
|
1613
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_conv_1d(
|
|
1614
|
+
struct wsp_ggml_context * ctx,
|
|
1615
|
+
struct wsp_ggml_tensor * a, // convolution kernel
|
|
1616
|
+
struct wsp_ggml_tensor * b, // data
|
|
1617
|
+
int s0, // stride
|
|
1618
|
+
int p0, // padding
|
|
1619
|
+
int d0); // dilation
|
|
1620
|
+
|
|
1621
|
+
// conv_1d with padding = half
|
|
1622
|
+
// alias for wsp_ggml_conv_1d(a, b, s, a->ne[0]/2, d)
|
|
1623
|
+
WSP_GGML_API struct wsp_ggml_tensor* wsp_ggml_conv_1d_ph(
|
|
1624
|
+
struct wsp_ggml_context * ctx,
|
|
1625
|
+
struct wsp_ggml_tensor * a, // convolution kernel
|
|
1626
|
+
struct wsp_ggml_tensor * b, // data
|
|
1627
|
+
int s, // stride
|
|
1628
|
+
int d); // dilation
|
|
1629
|
+
|
|
1630
|
+
// depthwise
|
|
1631
|
+
// TODO: this is very likely wrong for some cases! - needs more testing
|
|
1632
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_conv_1d_dw(
|
|
1633
|
+
struct wsp_ggml_context * ctx,
|
|
1634
|
+
struct wsp_ggml_tensor * a, // convolution kernel
|
|
1635
|
+
struct wsp_ggml_tensor * b, // data
|
|
1636
|
+
int s0, // stride
|
|
1637
|
+
int p0, // padding
|
|
1638
|
+
int d0); // dilation
|
|
1639
|
+
|
|
1640
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_conv_1d_dw_ph(
|
|
1641
|
+
struct wsp_ggml_context * ctx,
|
|
1642
|
+
struct wsp_ggml_tensor * a, // convolution kernel
|
|
1643
|
+
struct wsp_ggml_tensor * b, // data
|
|
1644
|
+
int s0, // stride
|
|
1645
|
+
int d0); // dilation
|
|
1646
|
+
|
|
1647
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_conv_transpose_1d(
|
|
1648
|
+
struct wsp_ggml_context * ctx,
|
|
1649
|
+
struct wsp_ggml_tensor * a, // convolution kernel
|
|
1650
|
+
struct wsp_ggml_tensor * b, // data
|
|
1651
|
+
int s0, // stride
|
|
1652
|
+
int p0, // padding
|
|
1653
|
+
int d0); // dilation
|
|
1654
|
+
|
|
1655
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_conv_2d(
|
|
1656
|
+
struct wsp_ggml_context * ctx,
|
|
1657
|
+
struct wsp_ggml_tensor * a, // convolution kernel
|
|
1658
|
+
struct wsp_ggml_tensor * b, // data
|
|
1659
|
+
int s0, // stride dimension 0
|
|
1660
|
+
int s1, // stride dimension 1
|
|
1661
|
+
int p0, // padding dimension 0
|
|
1662
|
+
int p1, // padding dimension 1
|
|
1663
|
+
int d0, // dilation dimension 0
|
|
1664
|
+
int d1); // dilation dimension 1
|
|
1665
|
+
|
|
1666
|
+
// kernel size is a->ne[0] x a->ne[1]
|
|
1667
|
+
// stride is equal to kernel size
|
|
1668
|
+
// padding is zero
|
|
1669
|
+
// example:
|
|
1670
|
+
// a: 16 16 3 768
|
|
1671
|
+
// b: 1024 1024 3 1
|
|
1672
|
+
// res: 64 64 768 1
|
|
1673
|
+
// used in sam
|
|
1674
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_conv_2d_sk_p0(
|
|
1675
|
+
struct wsp_ggml_context * ctx,
|
|
1676
|
+
struct wsp_ggml_tensor * a,
|
|
1677
|
+
struct wsp_ggml_tensor * b);
|
|
1678
|
+
|
|
1679
|
+
// kernel size is a->ne[0] x a->ne[1]
|
|
1680
|
+
// stride is 1
|
|
1681
|
+
// padding is half
|
|
1682
|
+
// example:
|
|
1683
|
+
// a: 3 3 256 256
|
|
1684
|
+
// b: 64 64 256 1
|
|
1685
|
+
// res: 64 64 256 1
|
|
1686
|
+
// used in sam
|
|
1687
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_conv_2d_s1_ph(
|
|
1688
|
+
struct wsp_ggml_context * ctx,
|
|
1689
|
+
struct wsp_ggml_tensor * a,
|
|
1690
|
+
struct wsp_ggml_tensor * b);
|
|
1691
|
+
|
|
1692
|
+
// depthwise (via im2col and mul_mat)
|
|
1693
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_conv_2d_dw(
|
|
1694
|
+
struct wsp_ggml_context * ctx,
|
|
1695
|
+
struct wsp_ggml_tensor * a, // convolution kernel
|
|
1696
|
+
struct wsp_ggml_tensor * b, // data
|
|
1697
|
+
int s0, // stride dimension 0
|
|
1698
|
+
int s1, // stride dimension 1
|
|
1699
|
+
int p0, // padding dimension 0
|
|
1700
|
+
int p1, // padding dimension 1
|
|
1701
|
+
int d0, // dilation dimension 0
|
|
1702
|
+
int d1); // dilation dimension 1
|
|
1703
|
+
|
|
1704
|
+
// Depthwise 2D convolution
|
|
1705
|
+
// may be faster than wsp_ggml_conv_2d_dw, but not available in all backends
|
|
1706
|
+
// a: KW KH 1 C convolution kernel
|
|
1707
|
+
// b: W H C N input data
|
|
1708
|
+
// res: W_out H_out C N
|
|
1709
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_conv_2d_dw_direct(
|
|
1710
|
+
struct wsp_ggml_context * ctx,
|
|
1711
|
+
struct wsp_ggml_tensor * a,
|
|
1712
|
+
struct wsp_ggml_tensor * b,
|
|
1713
|
+
int stride0,
|
|
1714
|
+
int stride1,
|
|
1715
|
+
int pad0,
|
|
1716
|
+
int pad1,
|
|
1717
|
+
int dilation0,
|
|
1718
|
+
int dilation1);
|
|
1719
|
+
|
|
1720
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_conv_transpose_2d_p0(
|
|
1721
|
+
struct wsp_ggml_context * ctx,
|
|
1722
|
+
struct wsp_ggml_tensor * a,
|
|
1723
|
+
struct wsp_ggml_tensor * b,
|
|
1724
|
+
int stride);
|
|
1725
|
+
|
|
1726
|
+
enum wsp_ggml_op_pool {
|
|
1727
|
+
WSP_GGML_OP_POOL_MAX,
|
|
1728
|
+
WSP_GGML_OP_POOL_AVG,
|
|
1729
|
+
WSP_GGML_OP_POOL_COUNT,
|
|
1730
|
+
};
|
|
1731
|
+
|
|
1732
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_pool_1d(
|
|
1733
|
+
struct wsp_ggml_context * ctx,
|
|
1734
|
+
struct wsp_ggml_tensor * a,
|
|
1735
|
+
enum wsp_ggml_op_pool op,
|
|
1736
|
+
int k0, // kernel size
|
|
1737
|
+
int s0, // stride
|
|
1738
|
+
int p0); // padding
|
|
1739
|
+
|
|
1740
|
+
// the result will have 2*p0 padding for the first dimension
|
|
1741
|
+
// and 2*p1 padding for the second dimension
|
|
1742
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_pool_2d(
|
|
1743
|
+
struct wsp_ggml_context * ctx,
|
|
1744
|
+
struct wsp_ggml_tensor * a,
|
|
1745
|
+
enum wsp_ggml_op_pool op,
|
|
1746
|
+
int k0,
|
|
1747
|
+
int k1,
|
|
1748
|
+
int s0,
|
|
1749
|
+
int s1,
|
|
1750
|
+
float p0,
|
|
1751
|
+
float p1);
|
|
1752
|
+
|
|
1753
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_pool_2d_back(
|
|
1754
|
+
struct wsp_ggml_context * ctx,
|
|
1755
|
+
struct wsp_ggml_tensor * a,
|
|
1756
|
+
struct wsp_ggml_tensor * af, // "a"/input used in forward pass
|
|
1757
|
+
enum wsp_ggml_op_pool op,
|
|
1758
|
+
int k0,
|
|
1759
|
+
int k1,
|
|
1760
|
+
int s0,
|
|
1761
|
+
int s1,
|
|
1762
|
+
float p0,
|
|
1763
|
+
float p1);
|
|
1764
|
+
|
|
1765
|
+
enum wsp_ggml_scale_mode {
|
|
1766
|
+
WSP_GGML_SCALE_MODE_NEAREST = 0,
|
|
1767
|
+
WSP_GGML_SCALE_MODE_BILINEAR = 1,
|
|
1768
|
+
};
|
|
1769
|
+
|
|
1770
|
+
// interpolate
|
|
1771
|
+
// multiplies ne0 and ne1 by scale factor
|
|
1772
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_upscale(
|
|
1773
|
+
struct wsp_ggml_context * ctx,
|
|
1774
|
+
struct wsp_ggml_tensor * a,
|
|
1775
|
+
int scale_factor,
|
|
1776
|
+
enum wsp_ggml_scale_mode mode);
|
|
1777
|
+
|
|
1778
|
+
// interpolate
|
|
1779
|
+
// interpolate scale to specified dimensions
|
|
1780
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_upscale_ext(
|
|
1781
|
+
struct wsp_ggml_context * ctx,
|
|
1782
|
+
struct wsp_ggml_tensor * a,
|
|
1783
|
+
int ne0,
|
|
1784
|
+
int ne1,
|
|
1785
|
+
int ne2,
|
|
1786
|
+
int ne3,
|
|
1787
|
+
enum wsp_ggml_scale_mode mode);
|
|
1788
|
+
|
|
1789
|
+
// pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
|
|
1790
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_pad(
|
|
1791
|
+
struct wsp_ggml_context * ctx,
|
|
1792
|
+
struct wsp_ggml_tensor * a,
|
|
1793
|
+
int p0,
|
|
1794
|
+
int p1,
|
|
1795
|
+
int p2,
|
|
1796
|
+
int p3);
|
|
1797
|
+
|
|
1798
|
+
// pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
|
|
1799
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_pad_reflect_1d(
|
|
1800
|
+
struct wsp_ggml_context * ctx,
|
|
1801
|
+
struct wsp_ggml_tensor * a,
|
|
1802
|
+
int p0,
|
|
1803
|
+
int p1);
|
|
1804
|
+
|
|
1805
|
+
// Move tensor elements by an offset given for each dimension. Elements that
|
|
1806
|
+
// are shifted beyond the last position are wrapped around to the beginning.
|
|
1807
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_roll(
|
|
1808
|
+
struct wsp_ggml_context * ctx,
|
|
1809
|
+
struct wsp_ggml_tensor * a,
|
|
1810
|
+
int shift0,
|
|
1811
|
+
int shift1,
|
|
1812
|
+
int shift2,
|
|
1813
|
+
int shift3);
|
|
1814
|
+
|
|
1815
|
+
|
|
1816
|
+
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
|
|
1817
|
+
// timesteps: [N,]
|
|
1818
|
+
// return: [N, dim]
|
|
1819
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_timestep_embedding(
|
|
1820
|
+
struct wsp_ggml_context * ctx,
|
|
1821
|
+
struct wsp_ggml_tensor * timesteps,
|
|
1822
|
+
int dim,
|
|
1823
|
+
int max_period);
|
|
1824
|
+
|
|
1825
|
+
// sort rows
|
|
1826
|
+
enum wsp_ggml_sort_order {
|
|
1827
|
+
WSP_GGML_SORT_ORDER_ASC,
|
|
1828
|
+
WSP_GGML_SORT_ORDER_DESC,
|
|
1829
|
+
};
|
|
1830
|
+
|
|
1831
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_argsort(
|
|
1832
|
+
struct wsp_ggml_context * ctx,
|
|
1833
|
+
struct wsp_ggml_tensor * a,
|
|
1834
|
+
enum wsp_ggml_sort_order order);
|
|
1835
|
+
|
|
1836
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_arange(
|
|
1837
|
+
struct wsp_ggml_context * ctx,
|
|
1838
|
+
float start,
|
|
1839
|
+
float stop,
|
|
1840
|
+
float step);
|
|
1841
|
+
|
|
1842
|
+
// top k elements per row
|
|
1843
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_top_k(
|
|
1844
|
+
struct wsp_ggml_context * ctx,
|
|
1845
|
+
struct wsp_ggml_tensor * a,
|
|
1846
|
+
int k);
|
|
1847
|
+
|
|
1848
|
+
#define WSP_GGML_KQ_MASK_PAD 64
|
|
1849
|
+
|
|
1850
|
+
// q: [n_embd_k, n_batch, n_head, 1]
|
|
1851
|
+
// k: [n_embd_k, n_kv, n_head_kv, 1]
|
|
1852
|
+
// v: [n_embd_v, n_kv, n_head_kv, 1] !! not transposed !!
|
|
1853
|
+
// mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = WSP_GGML_PAD(n_batch, WSP_GGML_KQ_MASK_PAD) !!
|
|
1854
|
+
// res: [n_embd_v, n_head, n_batch, 1] !! permuted !!
|
|
1855
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_flash_attn_ext(
|
|
1856
|
+
struct wsp_ggml_context * ctx,
|
|
1857
|
+
struct wsp_ggml_tensor * q,
|
|
1858
|
+
struct wsp_ggml_tensor * k,
|
|
1859
|
+
struct wsp_ggml_tensor * v,
|
|
1860
|
+
struct wsp_ggml_tensor * mask,
|
|
1861
|
+
float scale,
|
|
1862
|
+
float max_bias,
|
|
1863
|
+
float logit_softcap);
|
|
1864
|
+
|
|
1865
|
+
WSP_GGML_API void wsp_ggml_flash_attn_ext_set_prec(
|
|
1866
|
+
struct wsp_ggml_tensor * a,
|
|
1867
|
+
enum wsp_ggml_prec prec);
|
|
1868
|
+
|
|
1869
|
+
WSP_GGML_API enum wsp_ggml_prec wsp_ggml_flash_attn_ext_get_prec(
|
|
1870
|
+
const struct wsp_ggml_tensor * a);
|
|
1871
|
+
|
|
1872
|
+
// TODO: needs to be adapted to wsp_ggml_flash_attn_ext
|
|
1873
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_flash_attn_back(
|
|
1874
|
+
struct wsp_ggml_context * ctx,
|
|
1875
|
+
struct wsp_ggml_tensor * q,
|
|
1876
|
+
struct wsp_ggml_tensor * k,
|
|
1877
|
+
struct wsp_ggml_tensor * v,
|
|
1878
|
+
struct wsp_ggml_tensor * d,
|
|
1879
|
+
bool masked);
|
|
1880
|
+
|
|
1881
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_ssm_conv(
|
|
1882
|
+
struct wsp_ggml_context * ctx,
|
|
1883
|
+
struct wsp_ggml_tensor * sx,
|
|
1884
|
+
struct wsp_ggml_tensor * c);
|
|
1885
|
+
|
|
1886
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_ssm_scan(
|
|
1887
|
+
struct wsp_ggml_context * ctx,
|
|
1888
|
+
struct wsp_ggml_tensor * s,
|
|
1889
|
+
struct wsp_ggml_tensor * x,
|
|
1890
|
+
struct wsp_ggml_tensor * dt,
|
|
1891
|
+
struct wsp_ggml_tensor * A,
|
|
1892
|
+
struct wsp_ggml_tensor * B,
|
|
1893
|
+
struct wsp_ggml_tensor * C);
|
|
1894
|
+
|
|
1895
|
+
// partition into non-overlapping windows with padding if needed
|
|
1896
|
+
// example:
|
|
1897
|
+
// a: 768 64 64 1
|
|
1898
|
+
// w: 14
|
|
1899
|
+
// res: 768 14 14 25
|
|
1900
|
+
// used in sam
|
|
1901
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_win_part(
|
|
1902
|
+
struct wsp_ggml_context * ctx,
|
|
1903
|
+
struct wsp_ggml_tensor * a,
|
|
1904
|
+
int w);
|
|
1905
|
+
|
|
1906
|
+
// reverse of wsp_ggml_win_part
|
|
1907
|
+
// used in sam
|
|
1908
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_win_unpart(
|
|
1909
|
+
struct wsp_ggml_context * ctx,
|
|
1910
|
+
struct wsp_ggml_tensor * a,
|
|
1911
|
+
int w0,
|
|
1912
|
+
int h0,
|
|
1913
|
+
int w);
|
|
1914
|
+
|
|
1915
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_unary(
|
|
1916
|
+
struct wsp_ggml_context * ctx,
|
|
1917
|
+
struct wsp_ggml_tensor * a,
|
|
1918
|
+
enum wsp_ggml_unary_op op);
|
|
1919
|
+
|
|
1920
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_unary_inplace(
|
|
1921
|
+
struct wsp_ggml_context * ctx,
|
|
1922
|
+
struct wsp_ggml_tensor * a,
|
|
1923
|
+
enum wsp_ggml_unary_op op);
|
|
1924
|
+
|
|
1925
|
+
// used in sam
|
|
1926
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_get_rel_pos(
|
|
1927
|
+
struct wsp_ggml_context * ctx,
|
|
1928
|
+
struct wsp_ggml_tensor * a,
|
|
1929
|
+
int qh,
|
|
1930
|
+
int kh);
|
|
1931
|
+
|
|
1932
|
+
// used in sam
|
|
1933
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_add_rel_pos(
|
|
1934
|
+
struct wsp_ggml_context * ctx,
|
|
1935
|
+
struct wsp_ggml_tensor * a,
|
|
1936
|
+
struct wsp_ggml_tensor * pw,
|
|
1937
|
+
struct wsp_ggml_tensor * ph);
|
|
1938
|
+
|
|
1939
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_add_rel_pos_inplace(
|
|
1940
|
+
struct wsp_ggml_context * ctx,
|
|
1941
|
+
struct wsp_ggml_tensor * a,
|
|
1942
|
+
struct wsp_ggml_tensor * pw,
|
|
1943
|
+
struct wsp_ggml_tensor * ph);
|
|
1944
|
+
|
|
1945
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_rwkv_wkv6(
|
|
1946
|
+
struct wsp_ggml_context * ctx,
|
|
1947
|
+
struct wsp_ggml_tensor * k,
|
|
1948
|
+
struct wsp_ggml_tensor * v,
|
|
1949
|
+
struct wsp_ggml_tensor * r,
|
|
1950
|
+
struct wsp_ggml_tensor * tf,
|
|
1951
|
+
struct wsp_ggml_tensor * td,
|
|
1952
|
+
struct wsp_ggml_tensor * state);
|
|
1953
|
+
|
|
1954
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_gated_linear_attn(
|
|
1955
|
+
struct wsp_ggml_context * ctx,
|
|
1956
|
+
struct wsp_ggml_tensor * k,
|
|
1957
|
+
struct wsp_ggml_tensor * v,
|
|
1958
|
+
struct wsp_ggml_tensor * q,
|
|
1959
|
+
struct wsp_ggml_tensor * g,
|
|
1960
|
+
struct wsp_ggml_tensor * state,
|
|
1961
|
+
float scale);
|
|
1962
|
+
|
|
1963
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_rwkv_wkv7(
|
|
1964
|
+
struct wsp_ggml_context * ctx,
|
|
1965
|
+
struct wsp_ggml_tensor * r,
|
|
1966
|
+
struct wsp_ggml_tensor * w,
|
|
1967
|
+
struct wsp_ggml_tensor * k,
|
|
1968
|
+
struct wsp_ggml_tensor * v,
|
|
1969
|
+
struct wsp_ggml_tensor * a,
|
|
1970
|
+
struct wsp_ggml_tensor * b,
|
|
1971
|
+
struct wsp_ggml_tensor * state);
|
|
1972
|
+
|
|
1973
|
+
// custom operators
|
|
1974
|
+
|
|
1975
|
+
typedef void (*wsp_ggml_custom1_op_t)(struct wsp_ggml_tensor * dst , const struct wsp_ggml_tensor * a, int ith, int nth, void * userdata);
|
|
1976
|
+
typedef void (*wsp_ggml_custom2_op_t)(struct wsp_ggml_tensor * dst , const struct wsp_ggml_tensor * a, const struct wsp_ggml_tensor * b, int ith, int nth, void * userdata);
|
|
1977
|
+
typedef void (*wsp_ggml_custom3_op_t)(struct wsp_ggml_tensor * dst , const struct wsp_ggml_tensor * a, const struct wsp_ggml_tensor * b, const struct wsp_ggml_tensor * c, int ith, int nth, void * userdata);
|
|
1978
|
+
|
|
1979
|
+
#define WSP_GGML_N_TASKS_MAX (-1)
|
|
1980
|
+
// n_tasks == WSP_GGML_N_TASKS_MAX means to use max number of tasks
|
|
1981
|
+
|
|
1982
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_map_custom1(
|
|
1983
|
+
struct wsp_ggml_context * ctx,
|
|
1984
|
+
struct wsp_ggml_tensor * a,
|
|
1985
|
+
wsp_ggml_custom1_op_t fun,
|
|
1986
|
+
int n_tasks,
|
|
1987
|
+
void * userdata);
|
|
1988
|
+
|
|
1989
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_map_custom1_inplace(
|
|
1990
|
+
struct wsp_ggml_context * ctx,
|
|
1991
|
+
struct wsp_ggml_tensor * a,
|
|
1992
|
+
wsp_ggml_custom1_op_t fun,
|
|
1993
|
+
int n_tasks,
|
|
1994
|
+
void * userdata);
|
|
1995
|
+
|
|
1996
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_map_custom2(
|
|
1997
|
+
struct wsp_ggml_context * ctx,
|
|
1998
|
+
struct wsp_ggml_tensor * a,
|
|
1999
|
+
struct wsp_ggml_tensor * b,
|
|
2000
|
+
wsp_ggml_custom2_op_t fun,
|
|
2001
|
+
int n_tasks,
|
|
2002
|
+
void * userdata);
|
|
2003
|
+
|
|
2004
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_map_custom2_inplace(
|
|
2005
|
+
struct wsp_ggml_context * ctx,
|
|
2006
|
+
struct wsp_ggml_tensor * a,
|
|
2007
|
+
struct wsp_ggml_tensor * b,
|
|
2008
|
+
wsp_ggml_custom2_op_t fun,
|
|
2009
|
+
int n_tasks,
|
|
2010
|
+
void * userdata);
|
|
2011
|
+
|
|
2012
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_map_custom3(
|
|
2013
|
+
struct wsp_ggml_context * ctx,
|
|
2014
|
+
struct wsp_ggml_tensor * a,
|
|
2015
|
+
struct wsp_ggml_tensor * b,
|
|
2016
|
+
struct wsp_ggml_tensor * c,
|
|
2017
|
+
wsp_ggml_custom3_op_t fun,
|
|
2018
|
+
int n_tasks,
|
|
2019
|
+
void * userdata);
|
|
2020
|
+
|
|
2021
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_map_custom3_inplace(
|
|
2022
|
+
struct wsp_ggml_context * ctx,
|
|
2023
|
+
struct wsp_ggml_tensor * a,
|
|
2024
|
+
struct wsp_ggml_tensor * b,
|
|
2025
|
+
struct wsp_ggml_tensor * c,
|
|
2026
|
+
wsp_ggml_custom3_op_t fun,
|
|
2027
|
+
int n_tasks,
|
|
2028
|
+
void * userdata);
|
|
2029
|
+
|
|
2030
|
+
typedef void (*wsp_ggml_custom_op_t)(struct wsp_ggml_tensor * dst , int ith, int nth, void * userdata);
|
|
2031
|
+
|
|
2032
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_custom_4d(
|
|
2033
|
+
struct wsp_ggml_context * ctx,
|
|
2034
|
+
enum wsp_ggml_type type,
|
|
2035
|
+
int64_t ne0,
|
|
2036
|
+
int64_t ne1,
|
|
2037
|
+
int64_t ne2,
|
|
2038
|
+
int64_t ne3,
|
|
2039
|
+
struct wsp_ggml_tensor ** args,
|
|
2040
|
+
int n_args,
|
|
2041
|
+
wsp_ggml_custom_op_t fun,
|
|
2042
|
+
int n_tasks,
|
|
2043
|
+
void * userdata);
|
|
2044
|
+
|
|
2045
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_custom_inplace(
|
|
2046
|
+
struct wsp_ggml_context * ctx,
|
|
2047
|
+
struct wsp_ggml_tensor * a,
|
|
2048
|
+
struct wsp_ggml_tensor ** args,
|
|
2049
|
+
int n_args,
|
|
2050
|
+
wsp_ggml_custom_op_t fun,
|
|
2051
|
+
int n_tasks,
|
|
2052
|
+
void * userdata);
|
|
2053
|
+
|
|
2054
|
+
// loss function
|
|
2055
|
+
|
|
2056
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_cross_entropy_loss(
|
|
2057
|
+
struct wsp_ggml_context * ctx,
|
|
2058
|
+
struct wsp_ggml_tensor * a, // logits
|
|
2059
|
+
struct wsp_ggml_tensor * b); // labels
|
|
2060
|
+
|
|
2061
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_cross_entropy_loss_back(
|
|
2062
|
+
struct wsp_ggml_context * ctx,
|
|
2063
|
+
struct wsp_ggml_tensor * a, // logits
|
|
2064
|
+
struct wsp_ggml_tensor * b, // labels
|
|
2065
|
+
struct wsp_ggml_tensor * c); // gradients of cross_entropy_loss result
|
|
2066
|
+
|
|
2067
|
+
// AdamW optimizer step
|
|
2068
|
+
// Paper: https://arxiv.org/pdf/1711.05101v3.pdf
|
|
2069
|
+
// PyTorch: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
|
|
2070
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_opt_step_adamw(
|
|
2071
|
+
struct wsp_ggml_context * ctx,
|
|
2072
|
+
struct wsp_ggml_tensor * a,
|
|
2073
|
+
struct wsp_ggml_tensor * grad,
|
|
2074
|
+
struct wsp_ggml_tensor * m,
|
|
2075
|
+
struct wsp_ggml_tensor * v,
|
|
2076
|
+
struct wsp_ggml_tensor * adamw_params); // parameters such a the learning rate
|
|
2077
|
+
|
|
2078
|
+
//
|
|
2079
|
+
// automatic differentiation
|
|
2080
|
+
//
|
|
2081
|
+
|
|
2082
|
+
WSP_GGML_API void wsp_ggml_build_forward_expand(struct wsp_ggml_cgraph * cgraph, struct wsp_ggml_tensor * tensor);
|
|
2083
|
+
WSP_GGML_API void wsp_ggml_build_backward_expand(
|
|
2084
|
+
struct wsp_ggml_context * ctx, // context for gradient computation
|
|
2085
|
+
struct wsp_ggml_cgraph * cgraph,
|
|
2086
|
+
struct wsp_ggml_tensor ** grad_accs);
|
|
2087
|
+
|
|
2088
|
+
// graph allocation in a context
|
|
2089
|
+
WSP_GGML_API struct wsp_ggml_cgraph * wsp_ggml_new_graph (struct wsp_ggml_context * ctx); // size = WSP_GGML_DEFAULT_GRAPH_SIZE, grads = false
|
|
2090
|
+
WSP_GGML_API struct wsp_ggml_cgraph * wsp_ggml_new_graph_custom(struct wsp_ggml_context * ctx, size_t size, bool grads);
|
|
2091
|
+
WSP_GGML_API struct wsp_ggml_cgraph * wsp_ggml_graph_dup (struct wsp_ggml_context * ctx, struct wsp_ggml_cgraph * cgraph, bool force_grads);
|
|
2092
|
+
WSP_GGML_API void wsp_ggml_graph_cpy (struct wsp_ggml_cgraph * src, struct wsp_ggml_cgraph * dst);
|
|
2093
|
+
WSP_GGML_API void wsp_ggml_graph_reset (struct wsp_ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
|
|
2094
|
+
WSP_GGML_API void wsp_ggml_graph_clear (struct wsp_ggml_cgraph * cgraph);
|
|
2095
|
+
|
|
2096
|
+
WSP_GGML_API int wsp_ggml_graph_size (struct wsp_ggml_cgraph * cgraph);
|
|
2097
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_graph_node (struct wsp_ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
|
|
2098
|
+
WSP_GGML_API struct wsp_ggml_tensor ** wsp_ggml_graph_nodes (struct wsp_ggml_cgraph * cgraph);
|
|
2099
|
+
WSP_GGML_API int wsp_ggml_graph_n_nodes(struct wsp_ggml_cgraph * cgraph);
|
|
2100
|
+
|
|
2101
|
+
WSP_GGML_API void wsp_ggml_graph_add_node(struct wsp_ggml_cgraph * cgraph, struct wsp_ggml_tensor * tensor);
|
|
2102
|
+
|
|
2103
|
+
WSP_GGML_API size_t wsp_ggml_graph_overhead(void);
|
|
2104
|
+
WSP_GGML_API size_t wsp_ggml_graph_overhead_custom(size_t size, bool grads);
|
|
2105
|
+
|
|
2106
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_graph_get_tensor (const struct wsp_ggml_cgraph * cgraph, const char * name);
|
|
2107
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_graph_get_grad (const struct wsp_ggml_cgraph * cgraph, const struct wsp_ggml_tensor * node);
|
|
2108
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_graph_get_grad_acc(const struct wsp_ggml_cgraph * cgraph, const struct wsp_ggml_tensor * node);
|
|
2109
|
+
|
|
2110
|
+
// print info and performance information for the graph
|
|
2111
|
+
WSP_GGML_API void wsp_ggml_graph_print(const struct wsp_ggml_cgraph * cgraph);
|
|
2112
|
+
|
|
2113
|
+
// dump the graph into a file using the dot format
|
|
2114
|
+
WSP_GGML_API void wsp_ggml_graph_dump_dot(const struct wsp_ggml_cgraph * gb, const struct wsp_ggml_cgraph * gf, const char * filename);
|
|
2115
|
+
|
|
2116
|
+
// TODO these functions were sandwiched in the old optimization interface, is there a better place for them?
|
|
2117
|
+
typedef void (*wsp_ggml_log_callback)(enum wsp_ggml_log_level level, const char * text, void * user_data);
|
|
2118
|
+
|
|
2119
|
+
// Set callback for all future logging events.
|
|
2120
|
+
// If this is not called, or NULL is supplied, everything is output on stderr.
|
|
2121
|
+
WSP_GGML_API void wsp_ggml_log_set(wsp_ggml_log_callback log_callback, void * user_data);
|
|
2122
|
+
|
|
2123
|
+
WSP_GGML_API struct wsp_ggml_tensor * wsp_ggml_set_zero(struct wsp_ggml_tensor * tensor);
|
|
2124
|
+
|
|
2125
|
+
//
|
|
2126
|
+
// quantization
|
|
2127
|
+
//
|
|
2128
|
+
|
|
2129
|
+
// - wsp_ggml_wsp_quantize_init can be called multiple times with the same type
|
|
2130
|
+
// it will only initialize the quantization tables for the first call or after wsp_ggml_wsp_quantize_free
|
|
2131
|
+
// automatically called by wsp_ggml_wsp_quantize_chunk for convenience
|
|
2132
|
+
//
|
|
2133
|
+
// - wsp_ggml_wsp_quantize_free will free any memory allocated by wsp_ggml_wsp_quantize_init
|
|
2134
|
+
// call this at the end of the program to avoid memory leaks
|
|
2135
|
+
//
|
|
2136
|
+
// note: these are thread-safe
|
|
2137
|
+
//
|
|
2138
|
+
WSP_GGML_API void wsp_ggml_wsp_quantize_init(enum wsp_ggml_type type);
|
|
2139
|
+
WSP_GGML_API void wsp_ggml_wsp_quantize_free(void);
|
|
2140
|
+
|
|
2141
|
+
// some quantization type cannot be used without an importance matrix
|
|
2142
|
+
WSP_GGML_API bool wsp_ggml_wsp_quantize_requires_imatrix(enum wsp_ggml_type type);
|
|
2143
|
+
|
|
2144
|
+
// calls wsp_ggml_wsp_quantize_init internally (i.e. can allocate memory)
|
|
2145
|
+
WSP_GGML_API size_t wsp_ggml_wsp_quantize_chunk(
|
|
2146
|
+
enum wsp_ggml_type type,
|
|
2147
|
+
const float * src,
|
|
2148
|
+
void * dst,
|
|
2149
|
+
int64_t start,
|
|
2150
|
+
int64_t nrows,
|
|
2151
|
+
int64_t n_per_row,
|
|
2152
|
+
const float * imatrix);
|
|
2153
|
+
|
|
2154
|
+
#ifdef __cplusplus
|
|
2155
|
+
// restrict not standard in C++
|
|
2156
|
+
# if defined(__GNUC__)
|
|
2157
|
+
# define WSP_GGML_RESTRICT __restrict__
|
|
2158
|
+
# elif defined(__clang__)
|
|
2159
|
+
# define WSP_GGML_RESTRICT __restrict
|
|
2160
|
+
# elif defined(_MSC_VER)
|
|
2161
|
+
# define WSP_GGML_RESTRICT __restrict
|
|
2162
|
+
# else
|
|
2163
|
+
# define WSP_GGML_RESTRICT
|
|
2164
|
+
# endif
|
|
2165
|
+
#else
|
|
2166
|
+
# if defined (_MSC_VER) && (__STDC_VERSION__ < 201112L)
|
|
2167
|
+
# define WSP_GGML_RESTRICT __restrict
|
|
2168
|
+
# else
|
|
2169
|
+
# define WSP_GGML_RESTRICT restrict
|
|
2170
|
+
# endif
|
|
2171
|
+
#endif
|
|
2172
|
+
typedef void (*wsp_ggml_to_float_t) (const void * WSP_GGML_RESTRICT x, float * WSP_GGML_RESTRICT y, int64_t k);
|
|
2173
|
+
typedef void (*wsp_ggml_from_float_t)(const float * WSP_GGML_RESTRICT x, void * WSP_GGML_RESTRICT y, int64_t k);
|
|
2174
|
+
|
|
2175
|
+
struct wsp_ggml_type_traits {
|
|
2176
|
+
const char * type_name;
|
|
2177
|
+
int64_t blck_size;
|
|
2178
|
+
int64_t blck_size_interleave; // interleave elements in blocks
|
|
2179
|
+
size_t type_size;
|
|
2180
|
+
bool is_quantized;
|
|
2181
|
+
wsp_ggml_to_float_t to_float;
|
|
2182
|
+
wsp_ggml_from_float_t from_float_ref;
|
|
2183
|
+
};
|
|
2184
|
+
|
|
2185
|
+
WSP_GGML_API const struct wsp_ggml_type_traits * wsp_ggml_get_type_traits(enum wsp_ggml_type type);
|
|
2186
|
+
|
|
2187
|
+
// ggml threadpool
|
|
2188
|
+
// TODO: currently, only a few functions are in the base ggml API, while the rest are in the CPU backend
|
|
2189
|
+
// the goal should be to create an API that other backends can use move everything to the ggml base
|
|
2190
|
+
|
|
2191
|
+
// scheduling priorities
|
|
2192
|
+
enum wsp_ggml_sched_priority {
|
|
2193
|
+
WSP_GGML_SCHED_PRIO_LOW = -1,
|
|
2194
|
+
WSP_GGML_SCHED_PRIO_NORMAL,
|
|
2195
|
+
WSP_GGML_SCHED_PRIO_MEDIUM,
|
|
2196
|
+
WSP_GGML_SCHED_PRIO_HIGH,
|
|
2197
|
+
WSP_GGML_SCHED_PRIO_REALTIME
|
|
2198
|
+
};
|
|
2199
|
+
|
|
2200
|
+
// threadpool params
|
|
2201
|
+
// Use wsp_ggml_threadpool_params_default() or wsp_ggml_threadpool_params_init() to populate the defaults
|
|
2202
|
+
struct wsp_ggml_threadpool_params {
|
|
2203
|
+
bool cpumask[WSP_GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
|
|
2204
|
+
int n_threads; // number of threads
|
|
2205
|
+
enum wsp_ggml_sched_priority prio; // thread priority
|
|
2206
|
+
uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
|
|
2207
|
+
bool strict_cpu; // strict cpu placement
|
|
2208
|
+
bool paused; // start in paused state
|
|
2209
|
+
};
|
|
2210
|
+
|
|
2211
|
+
struct wsp_ggml_threadpool; // forward declaration, see ggml.c
|
|
2212
|
+
|
|
2213
|
+
typedef struct wsp_ggml_threadpool * wsp_ggml_threadpool_t;
|
|
2214
|
+
|
|
2215
|
+
WSP_GGML_API struct wsp_ggml_threadpool_params wsp_ggml_threadpool_params_default(int n_threads);
|
|
2216
|
+
WSP_GGML_API void wsp_ggml_threadpool_params_init (struct wsp_ggml_threadpool_params * p, int n_threads);
|
|
2217
|
+
WSP_GGML_API bool wsp_ggml_threadpool_params_match (const struct wsp_ggml_threadpool_params * p0, const struct wsp_ggml_threadpool_params * p1);
|
|
2218
|
+
|
|
2219
|
+
#ifdef __cplusplus
|
|
2220
|
+
}
|
|
2221
|
+
#endif
|