whisper.rn 0.2.5 → 0.3.0-rc.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/cpp/ggml.h CHANGED
@@ -169,579 +169,766 @@
169
169
  //
170
170
  //
171
171
 
172
- #ifdef __cplusplus
173
- extern "C" {
172
+ #ifdef GGML_SHARED
173
+ # if defined(_WIN32) && !defined(__MINGW32__)
174
+ # ifdef GGML_BUILD
175
+ # define GGML_API __declspec(dllexport)
176
+ # else
177
+ # define GGML_API __declspec(dllimport)
178
+ # endif
179
+ # else
180
+ # define GGML_API __attribute__ ((visibility ("default")))
181
+ # endif
182
+ #else
183
+ # define GGML_API
174
184
  #endif
175
185
 
176
186
  #include <stdint.h>
177
187
  #include <stddef.h>
178
188
  #include <stdbool.h>
179
189
 
180
- #define GGML_MAX_DIMS 4
181
- #define GGML_MAX_NODES 4096
182
- #define GGML_MAX_PARAMS 16
183
- #define GGML_MAX_CONTEXTS 64
184
- #define GGML_MAX_OPT 4
190
+ #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
191
+ #define GGML_FILE_VERSION 1
192
+
193
+ #define GGML_MAX_DIMS 4
194
+ #define GGML_MAX_NODES 4096
195
+ #define GGML_MAX_PARAMS 16
196
+ #define GGML_MAX_CONTEXTS 64
197
+ #define GGML_MAX_OPT 4
198
+ #define GGML_DEFAULT_N_THREADS 4
199
+
200
+ #define GGML_ASSERT(x) \
201
+ do { \
202
+ if (!(x)) { \
203
+ fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
204
+ abort(); \
205
+ } \
206
+ } while (0)
207
+
208
+ #ifdef __cplusplus
209
+ extern "C" {
210
+ #endif
185
211
 
186
212
  #ifdef __ARM_NEON
187
- // we use the built-in 16-bit float type
188
- typedef __fp16 ggml_fp16_t;
213
+ // we use the built-in 16-bit float type
214
+ typedef __fp16 ggml_fp16_t;
189
215
  #else
190
- typedef uint16_t ggml_fp16_t;
216
+ typedef uint16_t ggml_fp16_t;
191
217
  #endif
192
218
 
193
- // convert FP16 <-> FP32
194
- float ggml_fp16_to_fp32(ggml_fp16_t x);
195
- ggml_fp16_t ggml_fp32_to_fp16(float x);
196
-
197
- struct ggml_object;
198
- struct ggml_context;
199
-
200
- enum ggml_type {
201
- GGML_TYPE_I8,
202
- GGML_TYPE_I16,
203
- GGML_TYPE_I32,
204
- GGML_TYPE_F16,
205
- GGML_TYPE_F32,
206
- GGML_TYPE_COUNT,
207
- };
208
-
209
- // available tensor operations:
210
- enum ggml_op {
211
- GGML_OP_NONE = 0,
212
-
213
- GGML_OP_DUP,
214
- GGML_OP_ADD,
215
- GGML_OP_SUB,
216
- GGML_OP_MUL,
217
- GGML_OP_DIV,
218
- GGML_OP_SQR,
219
- GGML_OP_SQRT,
220
- GGML_OP_SUM,
221
- GGML_OP_MEAN,
222
- GGML_OP_REPEAT,
223
- GGML_OP_ABS,
224
- GGML_OP_SGN,
225
- GGML_OP_NEG,
226
- GGML_OP_STEP,
227
- GGML_OP_RELU,
228
- GGML_OP_GELU,
229
- GGML_OP_NORM, // normalize
230
-
231
- GGML_OP_MUL_MAT,
232
-
233
- GGML_OP_SCALE,
234
- GGML_OP_CPY,
235
- GGML_OP_RESHAPE,
236
- GGML_OP_VIEW,
237
- GGML_OP_PERMUTE,
238
- GGML_OP_TRANSPOSE,
239
- GGML_OP_GET_ROWS,
240
- GGML_OP_DIAG_MASK_INF,
241
- GGML_OP_SOFT_MAX,
242
- GGML_OP_ROPE,
243
- GGML_OP_CONV_1D_1S,
244
- GGML_OP_CONV_1D_2S,
245
-
246
- GGML_OP_FLASH_ATTN,
247
- GGML_OP_FLASH_FF,
248
-
249
- GGML_OP_COUNT,
250
- };
251
-
252
- // n-dimensional tensor
253
- struct ggml_tensor {
254
- enum ggml_type type;
255
-
256
- int n_dims;
257
- int ne[GGML_MAX_DIMS]; // number of elements
258
- size_t nb[GGML_MAX_DIMS]; // stride in bytes:
259
- // nb[0] = sizeof(type)
260
- // nb[1] = nb[0] * ne[0] + padding
261
- // nb[i] = nb[i-1] * ne[i-1]
262
-
263
- // compute data
264
- enum ggml_op op;
265
-
266
- bool is_param;
267
-
268
- struct ggml_tensor * grad;
269
- struct ggml_tensor * src0;
270
- struct ggml_tensor * src1;
271
- struct ggml_tensor * opt[GGML_MAX_OPT];
272
-
273
- // thread scheduling
274
- int n_tasks;
275
-
276
- // performance
277
- int perf_runs;
278
- int64_t perf_cycles;
279
- int64_t perf_time_us;
280
-
281
- void * data;
282
- char padding[8];
283
- };
284
-
285
- // computation graph
286
- struct ggml_cgraph {
287
- int n_nodes;
288
- int n_leafs;
289
- int n_threads;
290
-
291
- size_t work_size;
292
- struct ggml_tensor * work;
293
-
294
- struct ggml_tensor * nodes[GGML_MAX_NODES];
295
- struct ggml_tensor * grads[GGML_MAX_NODES];
296
- struct ggml_tensor * leafs[GGML_MAX_NODES];
297
-
298
- // performance
299
- int perf_runs;
300
- int64_t perf_cycles;
301
- int64_t perf_time_us;
302
- };
303
-
304
- // scratch buffer
305
- struct ggml_scratch {
306
- size_t offs;
307
- size_t size;
308
- void * data;
309
- };
310
-
311
- struct ggml_init_params {
312
- // memory pool
313
- size_t mem_size; // bytes
314
- void * mem_buffer; // if NULL, memory will be allocated internally
315
- };
316
-
317
- void ggml_time_init(void); // call this once at the beginning of the program
318
- int64_t ggml_time_ms(void);
319
- int64_t ggml_time_us(void);
320
- int64_t ggml_cycles(void);
321
- int64_t ggml_cycles_per_ms(void);
322
-
323
- void ggml_print_object (const struct ggml_object * obj);
324
- void ggml_print_objects(const struct ggml_context * ctx);
325
-
326
- int ggml_nelements(const struct ggml_tensor * tensor);
327
- size_t ggml_nbytes (const struct ggml_tensor * tensor);
328
-
329
- size_t ggml_type_size (enum ggml_type type);
330
- size_t ggml_element_size(const struct ggml_tensor * tensor);
331
-
332
- struct ggml_context * ggml_init(struct ggml_init_params params);
333
- void ggml_free(struct ggml_context * ctx);
334
-
335
- size_t ggml_used_mem(const struct ggml_context * ctx);
336
-
337
- size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
338
-
339
- struct ggml_tensor * ggml_new_tensor(
340
- struct ggml_context * ctx,
341
- enum ggml_type type,
342
- int n_dims,
343
- const int *ne);
344
-
345
- struct ggml_tensor * ggml_new_tensor_1d(
346
- struct ggml_context * ctx,
347
- enum ggml_type type,
348
- int ne0);
349
-
350
- struct ggml_tensor * ggml_new_tensor_2d(
351
- struct ggml_context * ctx,
352
- enum ggml_type type,
353
- int ne0,
354
- int ne1);
355
-
356
- struct ggml_tensor * ggml_new_tensor_3d(
357
- struct ggml_context * ctx,
358
- enum ggml_type type,
359
- int ne0,
360
- int ne1,
361
- int ne2);
362
-
363
- struct ggml_tensor * ggml_new_tensor_4d(
364
- struct ggml_context * ctx,
365
- enum ggml_type type,
366
- int ne0,
367
- int ne1,
368
- int ne2,
369
- int ne3);
370
-
371
- struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
372
- struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
373
-
374
- struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
375
- struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
376
-
377
- struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
378
- struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
379
- struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
380
-
381
- int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
382
- void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
383
-
384
- float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
385
- void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
386
-
387
- void * ggml_get_data (const struct ggml_tensor * tensor);
388
- float * ggml_get_data_f32(const struct ggml_tensor * tensor);
389
-
390
- //
391
- // operations on tensors with backpropagation
392
- //
393
-
394
- struct ggml_tensor * ggml_dup(
395
- struct ggml_context * ctx,
396
- struct ggml_tensor * a);
397
-
398
- struct ggml_tensor * ggml_add(
399
- struct ggml_context * ctx,
400
- struct ggml_tensor * a,
401
- struct ggml_tensor * b);
402
-
403
- struct ggml_tensor * ggml_sub(
404
- struct ggml_context * ctx,
405
- struct ggml_tensor * a,
406
- struct ggml_tensor * b);
407
-
408
- struct ggml_tensor * ggml_mul(
409
- struct ggml_context * ctx,
410
- struct ggml_tensor * a,
411
- struct ggml_tensor * b);
412
-
413
- struct ggml_tensor * ggml_div(
414
- struct ggml_context * ctx,
415
- struct ggml_tensor * a,
416
- struct ggml_tensor * b);
417
-
418
- struct ggml_tensor * ggml_sqr(
419
- struct ggml_context * ctx,
420
- struct ggml_tensor * a);
421
-
422
- struct ggml_tensor * ggml_sqrt(
423
- struct ggml_context * ctx,
424
- struct ggml_tensor * a);
425
-
426
- // return scalar
427
- // TODO: compute sum along rows
428
- struct ggml_tensor * ggml_sum(
429
- struct ggml_context * ctx,
430
- struct ggml_tensor * a);
431
-
432
- // mean along rows
433
- struct ggml_tensor * ggml_mean(
434
- struct ggml_context * ctx,
435
- struct ggml_tensor * a);
436
-
437
- // if a is the same shape as b, and a is not parameter, return a
438
- // otherwise, return a new tensor: repeat(a) to fit in b
439
- struct ggml_tensor * ggml_repeat(
440
- struct ggml_context * ctx,
441
- struct ggml_tensor * a,
442
- struct ggml_tensor * b);
443
-
444
- struct ggml_tensor * ggml_abs(
445
- struct ggml_context * ctx,
446
- struct ggml_tensor * a);
447
-
448
- struct ggml_tensor * ggml_sgn(
449
- struct ggml_context * ctx,
450
- struct ggml_tensor * a);
451
-
452
- struct ggml_tensor * ggml_neg(
453
- struct ggml_context * ctx,
454
- struct ggml_tensor * a);
455
-
456
- struct ggml_tensor * ggml_step(
457
- struct ggml_context * ctx,
458
- struct ggml_tensor * a);
459
-
460
- struct ggml_tensor * ggml_relu(
461
- struct ggml_context * ctx,
462
- struct ggml_tensor * a);
463
-
464
- // TODO: double-check this computation is correct
465
- struct ggml_tensor * ggml_gelu(
466
- struct ggml_context * ctx,
467
- struct ggml_tensor * a);
468
-
469
- // normalize along rows
470
- // TODO: eps is hardcoded to 1e-5 for now
471
- struct ggml_tensor * ggml_norm(
472
- struct ggml_context * ctx,
473
- struct ggml_tensor * a);
474
-
475
- // A: m rows, n columns
476
- // B: p rows, n columns (i.e. we transpose it internally)
477
- // result is m columns, p rows
478
- struct ggml_tensor * ggml_mul_mat(
479
- struct ggml_context * ctx,
480
- struct ggml_tensor * a,
481
- struct ggml_tensor * b);
482
-
483
- //
484
- // operations on tensors without backpropagation
485
- //
486
-
487
- // in-place, returns view(a)
488
- struct ggml_tensor * ggml_scale(
489
- struct ggml_context * ctx,
490
- struct ggml_tensor * a,
491
- struct ggml_tensor * b);
492
-
493
- // a -> b, return view(b)
494
- struct ggml_tensor * ggml_cpy(
495
- struct ggml_context * ctx,
496
- struct ggml_tensor * a,
497
- struct ggml_tensor * b);
498
-
499
- // return view(a), b specifies the new shape
500
- // TODO: when we start computing gradient, make a copy instead of view
501
- struct ggml_tensor * ggml_reshape(
502
- struct ggml_context * ctx,
503
- struct ggml_tensor * a,
504
- struct ggml_tensor * b);
505
-
506
- // return view(a)
507
- // TODO: when we start computing gradient, make a copy instead of view
508
- struct ggml_tensor * ggml_reshape_2d(
509
- struct ggml_context * ctx,
510
- struct ggml_tensor * a,
511
- int ne0,
512
- int ne1);
513
-
514
- // return view(a)
515
- // TODO: when we start computing gradient, make a copy instead of view
516
- struct ggml_tensor * ggml_reshape_3d(
517
- struct ggml_context * ctx,
518
- struct ggml_tensor * a,
519
- int ne0,
520
- int ne1,
521
- int ne2);
522
-
523
- // offset in bytes
524
- struct ggml_tensor * ggml_view_1d(
525
- struct ggml_context * ctx,
526
- struct ggml_tensor * a,
527
- int ne0,
528
- size_t offset);
529
-
530
- struct ggml_tensor * ggml_view_2d(
531
- struct ggml_context * ctx,
532
- struct ggml_tensor * a,
533
- int ne0,
534
- int ne1,
535
- size_t nb1, // row stride in bytes
536
- size_t offset);
537
-
538
- struct ggml_tensor * ggml_permute(
539
- struct ggml_context * ctx,
540
- struct ggml_tensor * a,
541
- int axis0,
542
- int axis1,
543
- int axis2,
544
- int axis3);
545
-
546
- // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
547
- struct ggml_tensor * ggml_transpose(
548
- struct ggml_context * ctx,
549
- struct ggml_tensor * a);
550
-
551
- struct ggml_tensor * ggml_get_rows(
552
- struct ggml_context * ctx,
553
- struct ggml_tensor * a,
554
- struct ggml_tensor * b);
555
-
556
- // set elements above the diagonal to -INF
557
- // in-place, returns view(a)
558
- struct ggml_tensor * ggml_diag_mask_inf(
559
- struct ggml_context * ctx,
560
- struct ggml_tensor * a,
561
- int n_past);
562
-
563
- // in-place, returns view(a)
564
- struct ggml_tensor * ggml_soft_max(
565
- struct ggml_context * ctx,
566
- struct ggml_tensor * a);
567
-
568
- // rotary position embedding
569
- // in-place, returns view(a)
570
- // if mode == 1, skip n_past elements
571
- // TODO: avoid creating a new tensor every time
572
- struct ggml_tensor * ggml_rope(
573
- struct ggml_context * ctx,
574
- struct ggml_tensor * a,
575
- int n_past,
576
- int n_dims,
577
- int mode);
578
-
579
- // padding = 1
580
- // TODO: we don't support extra parameters for now
581
- // that's why we are hard-coding the stride, padding, and dilation
582
- // not great ..
583
- struct ggml_tensor * ggml_conv_1d_1s(
584
- struct ggml_context * ctx,
585
- struct ggml_tensor * a,
586
- struct ggml_tensor * b);
587
-
588
- struct ggml_tensor * ggml_conv_1d_2s(
589
- struct ggml_context * ctx,
590
- struct ggml_tensor * a,
591
- struct ggml_tensor * b);
592
-
593
- struct ggml_tensor * ggml_flash_attn(
594
- struct ggml_context * ctx,
595
- struct ggml_tensor * q,
596
- struct ggml_tensor * k,
597
- struct ggml_tensor * v,
598
- bool masked);
599
-
600
- struct ggml_tensor * ggml_flash_ff(
601
- struct ggml_context * ctx,
602
- struct ggml_tensor * a,
603
- struct ggml_tensor * b0,
604
- struct ggml_tensor * b1,
605
- struct ggml_tensor * c0,
606
- struct ggml_tensor * c1);
607
-
608
- //
609
- // automatic differentiation
610
- //
611
-
612
- void ggml_set_param(
613
- struct ggml_context * ctx,
614
- struct ggml_tensor * tensor);
615
-
616
- void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
617
-
618
- struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
619
- struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
620
-
621
- void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
622
- void ggml_graph_reset (struct ggml_cgraph * cgraph);
623
-
624
- // print info and performance information for the graph
625
- void ggml_graph_print(const struct ggml_cgraph * cgraph);
626
-
627
- // dump the graph into a file using the dot format
628
- void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
629
-
630
- //
631
- // optimization
632
- //
633
-
634
- // optimization methods
635
- enum ggml_opt_type {
636
- GGML_OPT_ADAM,
637
- GGML_OPT_LBFGS,
638
- };
639
-
640
- // linesearch methods
641
- enum ggml_linesearch {
642
- GGML_LINESEARCH_DEFAULT = 1,
643
-
644
- GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
645
- GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
646
- GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
647
- };
648
-
649
- // optimization return values
650
- enum ggml_opt_result {
651
- GGML_OPT_OK = 0,
652
- GGML_OPT_DID_NOT_CONVERGE,
653
- GGML_OPT_NO_CONTEXT,
654
- GGML_OPT_INVALID_WOLFE,
655
- GGML_OPT_FAIL,
656
-
657
- GGML_LINESEARCH_FAIL = -128,
658
- GGML_LINESEARCH_MINIMUM_STEP,
659
- GGML_LINESEARCH_MAXIMUM_STEP,
660
- GGML_LINESEARCH_MAXIMUM_ITERATIONS,
661
- GGML_LINESEARCH_INVALID_PARAMETERS,
662
- };
219
+ // convert FP16 <-> FP32
220
+ GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
221
+ GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
222
+
223
+ GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n);
224
+ GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n);
225
+
226
+ struct ggml_object;
227
+ struct ggml_context;
228
+
229
+ enum ggml_type {
230
+ GGML_TYPE_F32 = 0,
231
+ GGML_TYPE_F16 = 1,
232
+ GGML_TYPE_Q4_0 = 2,
233
+ GGML_TYPE_Q4_1 = 3,
234
+ GGML_TYPE_Q4_2 = 4,
235
+ // GGML_TYPE_Q4_3 (5) support has been removed
236
+ GGML_TYPE_Q5_0 = 6,
237
+ GGML_TYPE_Q5_1 = 7,
238
+ GGML_TYPE_Q8_0 = 8,
239
+ GGML_TYPE_Q8_1 = 9,
240
+ GGML_TYPE_I8,
241
+ GGML_TYPE_I16,
242
+ GGML_TYPE_I32,
243
+ GGML_TYPE_COUNT,
244
+ };
245
+
246
+ // model file types
247
+ enum ggml_ftype {
248
+ GGML_FTYPE_UNKNOWN = -1,
249
+ GGML_FTYPE_ALL_F32 = 0,
250
+ GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
251
+ GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
252
+ GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
253
+ GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
254
+ GGML_FTYPE_MOSTLY_Q4_2 = 5, // except 1d tensors
255
+ GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
256
+ GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
257
+ GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
258
+ };
259
+
260
+ // available tensor operations:
261
+ enum ggml_op {
262
+ GGML_OP_NONE = 0,
263
+
264
+ GGML_OP_DUP,
265
+ GGML_OP_ADD,
266
+ GGML_OP_SUB,
267
+ GGML_OP_MUL,
268
+ GGML_OP_DIV,
269
+ GGML_OP_SQR,
270
+ GGML_OP_SQRT,
271
+ GGML_OP_SUM,
272
+ GGML_OP_MEAN,
273
+ GGML_OP_REPEAT,
274
+ GGML_OP_ABS,
275
+ GGML_OP_SGN,
276
+ GGML_OP_NEG,
277
+ GGML_OP_STEP,
278
+ GGML_OP_RELU,
279
+ GGML_OP_GELU,
280
+ GGML_OP_SILU,
281
+ GGML_OP_NORM, // normalize
282
+ GGML_OP_RMS_NORM,
283
+
284
+ GGML_OP_MUL_MAT,
285
+
286
+ GGML_OP_SCALE,
287
+ GGML_OP_CPY,
288
+ GGML_OP_CONT,
289
+ GGML_OP_RESHAPE,
290
+ GGML_OP_VIEW,
291
+ GGML_OP_PERMUTE,
292
+ GGML_OP_TRANSPOSE,
293
+ GGML_OP_GET_ROWS,
294
+ GGML_OP_DIAG_MASK_INF,
295
+ GGML_OP_SOFT_MAX,
296
+ GGML_OP_ROPE,
297
+ GGML_OP_ALIBI,
298
+ GGML_OP_CONV_1D_1S,
299
+ GGML_OP_CONV_1D_2S,
300
+
301
+ GGML_OP_FLASH_ATTN,
302
+ GGML_OP_FLASH_FF,
303
+
304
+ GGML_OP_MAP_UNARY,
305
+ GGML_OP_MAP_BINARY,
306
+
307
+ GGML_OP_COUNT,
308
+ };
309
+
310
+
311
+ // ggml object
312
+ struct ggml_object {
313
+ size_t offs;
314
+ size_t size;
315
+
316
+ struct ggml_object * next;
317
+
318
+ char padding[8];
319
+ };
320
+
321
+ static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
322
+
323
+ // n-dimensional tensor
324
+ struct ggml_tensor {
325
+ enum ggml_type type;
326
+
327
+ int n_dims;
328
+ int64_t ne[GGML_MAX_DIMS]; // number of elements
329
+ size_t nb[GGML_MAX_DIMS]; // stride in bytes:
330
+ // nb[0] = sizeof(type)
331
+ // nb[1] = nb[0] * ne[0] + padding
332
+ // nb[i] = nb[i-1] * ne[i-1]
333
+
334
+ // compute data
335
+ enum ggml_op op;
336
+
337
+ bool is_param;
338
+
339
+ struct ggml_tensor * grad;
340
+ struct ggml_tensor * src0;
341
+ struct ggml_tensor * src1;
342
+ struct ggml_tensor * opt[GGML_MAX_OPT];
343
+
344
+ // thread scheduling
345
+ int n_tasks;
346
+
347
+ // performance
348
+ int perf_runs;
349
+ int64_t perf_cycles;
350
+ int64_t perf_time_us;
351
+
352
+ void * data;
353
+
354
+ char name[32];
355
+
356
+ char padding[8]; // TODO: remove and add padding to name?
357
+ };
358
+
359
+ // computation graph
360
+ struct ggml_cgraph {
361
+ int n_nodes;
362
+ int n_leafs;
363
+ int n_threads;
364
+
365
+ size_t work_size;
366
+ struct ggml_tensor * work;
367
+
368
+ struct ggml_tensor * nodes[GGML_MAX_NODES];
369
+ struct ggml_tensor * grads[GGML_MAX_NODES];
370
+ struct ggml_tensor * leafs[GGML_MAX_NODES];
371
+
372
+ // performance
373
+ int perf_runs;
374
+ int64_t perf_cycles;
375
+ int64_t perf_time_us;
376
+ };
663
377
 
664
- // optimization parameters
665
- //
666
- // see ggml.c (ggml_opt_default_params) for default values
667
- //
668
- struct ggml_opt_params {
669
- enum ggml_opt_type type;
378
+ // scratch buffer
379
+ struct ggml_scratch {
380
+ size_t offs;
381
+ size_t size;
382
+ void * data;
383
+ };
384
+
385
+ struct ggml_init_params {
386
+ // memory pool
387
+ size_t mem_size; // bytes
388
+ void * mem_buffer; // if NULL, memory will be allocated internally
389
+ bool no_alloc; // don't allocate memory for the tensor data
390
+ };
391
+
392
+ // misc
393
+
394
+ GGML_API void ggml_time_init(void); // call this once at the beginning of the program
395
+ GGML_API int64_t ggml_time_ms(void);
396
+ GGML_API int64_t ggml_time_us(void);
397
+ GGML_API int64_t ggml_cycles(void);
398
+ GGML_API int64_t ggml_cycles_per_ms(void);
399
+
400
+ GGML_API void ggml_print_object (const struct ggml_object * obj);
401
+ GGML_API void ggml_print_objects(const struct ggml_context * ctx);
402
+
403
+ GGML_API int64_t ggml_nelements(const struct ggml_tensor * tensor);
404
+ GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
405
+
406
+ GGML_API int ggml_blck_size (enum ggml_type type);
407
+ GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
408
+ GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
409
+
410
+ GGML_API const char * ggml_type_name(enum ggml_type type);
411
+
412
+ GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
413
+
414
+ GGML_API bool ggml_is_quantized(enum ggml_type type);
415
+
416
+ // TODO: temporary until model loading of ggml examples is refactored
417
+ GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
418
+
419
+ // main
420
+
421
+ GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
422
+ GGML_API void ggml_free(struct ggml_context * ctx);
423
+
424
+ GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
425
+
426
+ GGML_API size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
427
+
428
+ GGML_API struct ggml_tensor * ggml_new_tensor(
429
+ struct ggml_context * ctx,
430
+ enum ggml_type type,
431
+ int n_dims,
432
+ const int64_t *ne);
433
+
434
+ GGML_API struct ggml_tensor * ggml_new_tensor_1d(
435
+ struct ggml_context * ctx,
436
+ enum ggml_type type,
437
+ int64_t ne0);
438
+
439
+ GGML_API struct ggml_tensor * ggml_new_tensor_2d(
440
+ struct ggml_context * ctx,
441
+ enum ggml_type type,
442
+ int64_t ne0,
443
+ int64_t ne1);
444
+
445
+ GGML_API struct ggml_tensor * ggml_new_tensor_3d(
446
+ struct ggml_context * ctx,
447
+ enum ggml_type type,
448
+ int64_t ne0,
449
+ int64_t ne1,
450
+ int64_t ne2);
451
+
452
+ GGML_API struct ggml_tensor * ggml_new_tensor_4d(
453
+ struct ggml_context * ctx,
454
+ enum ggml_type type,
455
+ int64_t ne0,
456
+ int64_t ne1,
457
+ int64_t ne2,
458
+ int64_t ne3);
459
+
460
+ GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
461
+ GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
462
+
463
+ GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
464
+ GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
465
+
466
+ GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
467
+ GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
468
+ GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
469
+
470
+ GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
471
+ GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
472
+
473
+ GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
474
+ GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
670
475
 
671
- int n_threads;
476
+ GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
477
+ GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
672
478
 
673
- // delta-based convergence test
479
+ GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor);
480
+ GGML_API void ggml_set_name(struct ggml_tensor * tensor, const char * name);
481
+
482
+ //
483
+ // operations on tensors with backpropagation
484
+ //
485
+
486
+ GGML_API struct ggml_tensor * ggml_dup(
487
+ struct ggml_context * ctx,
488
+ struct ggml_tensor * a);
489
+
490
+ GGML_API struct ggml_tensor * ggml_add(
491
+ struct ggml_context * ctx,
492
+ struct ggml_tensor * a,
493
+ struct ggml_tensor * b);
494
+
495
+ GGML_API struct ggml_tensor * ggml_add_inplace(
496
+ struct ggml_context * ctx,
497
+ struct ggml_tensor * a,
498
+ struct ggml_tensor * b);
499
+
500
+ GGML_API struct ggml_tensor * ggml_sub(
501
+ struct ggml_context * ctx,
502
+ struct ggml_tensor * a,
503
+ struct ggml_tensor * b);
504
+
505
+ GGML_API struct ggml_tensor * ggml_mul(
506
+ struct ggml_context * ctx,
507
+ struct ggml_tensor * a,
508
+ struct ggml_tensor * b);
509
+
510
+ GGML_API struct ggml_tensor * ggml_div(
511
+ struct ggml_context * ctx,
512
+ struct ggml_tensor * a,
513
+ struct ggml_tensor * b);
514
+
515
+ GGML_API struct ggml_tensor * ggml_sqr(
516
+ struct ggml_context * ctx,
517
+ struct ggml_tensor * a);
518
+
519
+ GGML_API struct ggml_tensor * ggml_sqrt(
520
+ struct ggml_context * ctx,
521
+ struct ggml_tensor * a);
522
+
523
+ // return scalar
524
+ // TODO: compute sum along rows
525
+ GGML_API struct ggml_tensor * ggml_sum(
526
+ struct ggml_context * ctx,
527
+ struct ggml_tensor * a);
528
+
529
+ // mean along rows
530
+ GGML_API struct ggml_tensor * ggml_mean(
531
+ struct ggml_context * ctx,
532
+ struct ggml_tensor * a);
533
+
534
+ // if a is the same shape as b, and a is not parameter, return a
535
+ // otherwise, return a new tensor: repeat(a) to fit in b
536
+ GGML_API struct ggml_tensor * ggml_repeat(
537
+ struct ggml_context * ctx,
538
+ struct ggml_tensor * a,
539
+ struct ggml_tensor * b);
540
+
541
+ GGML_API struct ggml_tensor * ggml_abs(
542
+ struct ggml_context * ctx,
543
+ struct ggml_tensor * a);
544
+
545
+ GGML_API struct ggml_tensor * ggml_sgn(
546
+ struct ggml_context * ctx,
547
+ struct ggml_tensor * a);
548
+
549
+ GGML_API struct ggml_tensor * ggml_neg(
550
+ struct ggml_context * ctx,
551
+ struct ggml_tensor * a);
552
+
553
+ GGML_API struct ggml_tensor * ggml_step(
554
+ struct ggml_context * ctx,
555
+ struct ggml_tensor * a);
556
+
557
+ GGML_API struct ggml_tensor * ggml_relu(
558
+ struct ggml_context * ctx,
559
+ struct ggml_tensor * a);
560
+
561
+ // TODO: double-check this computation is correct
562
+ GGML_API struct ggml_tensor * ggml_gelu(
563
+ struct ggml_context * ctx,
564
+ struct ggml_tensor * a);
565
+
566
+ GGML_API struct ggml_tensor * ggml_silu(
567
+ struct ggml_context * ctx,
568
+ struct ggml_tensor * a);
569
+
570
+ // normalize along rows
571
+ // TODO: eps is hardcoded to 1e-5 for now
572
+ GGML_API struct ggml_tensor * ggml_norm(
573
+ struct ggml_context * ctx,
574
+ struct ggml_tensor * a);
575
+
576
+ GGML_API struct ggml_tensor * ggml_rms_norm(
577
+ struct ggml_context * ctx,
578
+ struct ggml_tensor * a);
579
+
580
+ // A: m rows, n columns
581
+ // B: p rows, n columns (i.e. we transpose it internally)
582
+ // result is m columns, p rows
583
+ GGML_API struct ggml_tensor * ggml_mul_mat(
584
+ struct ggml_context * ctx,
585
+ struct ggml_tensor * a,
586
+ struct ggml_tensor * b);
587
+
588
+ //
589
+ // operations on tensors without backpropagation
590
+ //
591
+
592
+ // in-place, returns view(a)
593
+ GGML_API struct ggml_tensor * ggml_scale(
594
+ struct ggml_context * ctx,
595
+ struct ggml_tensor * a,
596
+ struct ggml_tensor * b);
597
+
598
+ // a -> b, return view(b)
599
+ GGML_API struct ggml_tensor * ggml_cpy(
600
+ struct ggml_context * ctx,
601
+ struct ggml_tensor * a,
602
+ struct ggml_tensor * b);
603
+
604
+ // make contiguous
605
+ GGML_API struct ggml_tensor * ggml_cont(
606
+ struct ggml_context * ctx,
607
+ struct ggml_tensor * a);
608
+
609
+ // return view(a), b specifies the new shape
610
+ // TODO: when we start computing gradient, make a copy instead of view
611
+ GGML_API struct ggml_tensor * ggml_reshape(
612
+ struct ggml_context * ctx,
613
+ struct ggml_tensor * a,
614
+ struct ggml_tensor * b);
615
+
616
+ // return view(a)
617
+ // TODO: when we start computing gradient, make a copy instead of view
618
+ GGML_API struct ggml_tensor * ggml_reshape_2d(
619
+ struct ggml_context * ctx,
620
+ struct ggml_tensor * a,
621
+ int64_t ne0,
622
+ int64_t ne1);
623
+
624
+ // return view(a)
625
+ // TODO: when we start computing gradient, make a copy instead of view
626
+ GGML_API struct ggml_tensor * ggml_reshape_3d(
627
+ struct ggml_context * ctx,
628
+ struct ggml_tensor * a,
629
+ int64_t ne0,
630
+ int64_t ne1,
631
+ int64_t ne2);
632
+
633
+ // offset in bytes
634
+ GGML_API struct ggml_tensor * ggml_view_1d(
635
+ struct ggml_context * ctx,
636
+ struct ggml_tensor * a,
637
+ int64_t ne0,
638
+ size_t offset);
639
+
640
+ GGML_API struct ggml_tensor * ggml_view_2d(
641
+ struct ggml_context * ctx,
642
+ struct ggml_tensor * a,
643
+ int64_t ne0,
644
+ int64_t ne1,
645
+ size_t nb1, // row stride in bytes
646
+ size_t offset);
647
+
648
+ GGML_API struct ggml_tensor * ggml_view_3d(
649
+ struct ggml_context * ctx,
650
+ struct ggml_tensor * a,
651
+ int64_t ne0,
652
+ int64_t ne1,
653
+ int64_t ne2,
654
+ size_t nb1, // row stride in bytes
655
+ size_t nb2, // slice stride in bytes
656
+ size_t offset);
657
+
658
+ GGML_API struct ggml_tensor * ggml_permute(
659
+ struct ggml_context * ctx,
660
+ struct ggml_tensor * a,
661
+ int axis0,
662
+ int axis1,
663
+ int axis2,
664
+ int axis3);
665
+
666
+ // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
667
+ GGML_API struct ggml_tensor * ggml_transpose(
668
+ struct ggml_context * ctx,
669
+ struct ggml_tensor * a);
670
+
671
+ GGML_API struct ggml_tensor * ggml_get_rows(
672
+ struct ggml_context * ctx,
673
+ struct ggml_tensor * a,
674
+ struct ggml_tensor * b);
675
+
676
+ // set elements above the diagonal to -INF
677
+ // in-place, returns view(a)
678
+ GGML_API struct ggml_tensor * ggml_diag_mask_inf(
679
+ struct ggml_context * ctx,
680
+ struct ggml_tensor * a,
681
+ int n_past);
682
+
683
+ // in-place, returns view(a)
684
+ GGML_API struct ggml_tensor * ggml_soft_max(
685
+ struct ggml_context * ctx,
686
+ struct ggml_tensor * a);
687
+
688
+ // rotary position embedding
689
+ // in-place, returns view(a)
690
+ // if mode & 1 == 1, skip n_past elements
691
+ // if mode & 2 == 1, GPT-NeoX style
692
+ // TODO: avoid creating a new tensor every time
693
+ GGML_API struct ggml_tensor * ggml_rope(
694
+ struct ggml_context * ctx,
695
+ struct ggml_tensor * a,
696
+ int n_past,
697
+ int n_dims,
698
+ int mode);
699
+
700
+ // alibi position embedding
701
+ // in-place, returns view(a)
702
+ struct ggml_tensor * ggml_alibi(
703
+ struct ggml_context * ctx,
704
+ struct ggml_tensor * a,
705
+ int n_past,
706
+ int n_head);
707
+
708
+ // padding = 1
709
+ // TODO: we don't support extra parameters for now
710
+ // that's why we are hard-coding the stride, padding, and dilation
711
+ // not great ..
712
+ GGML_API struct ggml_tensor * ggml_conv_1d_1s(
713
+ struct ggml_context * ctx,
714
+ struct ggml_tensor * a,
715
+ struct ggml_tensor * b);
716
+
717
+ GGML_API struct ggml_tensor * ggml_conv_1d_2s(
718
+ struct ggml_context * ctx,
719
+ struct ggml_tensor * a,
720
+ struct ggml_tensor * b);
721
+
722
+ GGML_API struct ggml_tensor * ggml_flash_attn(
723
+ struct ggml_context * ctx,
724
+ struct ggml_tensor * q,
725
+ struct ggml_tensor * k,
726
+ struct ggml_tensor * v,
727
+ bool masked);
728
+
729
+ GGML_API struct ggml_tensor * ggml_flash_ff(
730
+ struct ggml_context * ctx,
731
+ struct ggml_tensor * a,
732
+ struct ggml_tensor * b0,
733
+ struct ggml_tensor * b1,
734
+ struct ggml_tensor * c0,
735
+ struct ggml_tensor * c1);
736
+
737
+ // Mapping operations
738
+ typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *);
739
+ typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
740
+
741
+ GGML_API struct ggml_tensor * ggml_map_unary_f32(
742
+ struct ggml_context * ctx,
743
+ struct ggml_tensor * a,
744
+ const ggml_unary_op_f32_t fun);
745
+
746
+ GGML_API struct ggml_tensor * ggml_map_binary_f32(
747
+ struct ggml_context * ctx,
748
+ struct ggml_tensor * a,
749
+ struct ggml_tensor * b,
750
+ const ggml_binary_op_f32_t fun);
751
+
752
+ //
753
+ // automatic differentiation
754
+ //
755
+
756
+ GGML_API void ggml_set_param(
757
+ struct ggml_context * ctx,
758
+ struct ggml_tensor * tensor);
759
+
760
+ GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
761
+
762
+ GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
763
+ GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
764
+
765
+ GGML_API void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
766
+ GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
767
+
768
+ // print info and performance information for the graph
769
+ GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
770
+
771
+ // dump the graph into a file using the dot format
772
+ GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
773
+
774
+ //
775
+ // optimization
674
776
  //
675
- // if past == 0 - disabled
676
- // if past > 0:
677
- // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
777
+
778
+ // optimization methods
779
+ enum ggml_opt_type {
780
+ GGML_OPT_ADAM,
781
+ GGML_OPT_LBFGS,
782
+ };
783
+
784
+ // linesearch methods
785
+ enum ggml_linesearch {
786
+ GGML_LINESEARCH_DEFAULT = 1,
787
+
788
+ GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
789
+ GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
790
+ GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
791
+ };
792
+
793
+ // optimization return values
794
+ enum ggml_opt_result {
795
+ GGML_OPT_OK = 0,
796
+ GGML_OPT_DID_NOT_CONVERGE,
797
+ GGML_OPT_NO_CONTEXT,
798
+ GGML_OPT_INVALID_WOLFE,
799
+ GGML_OPT_FAIL,
800
+
801
+ GGML_LINESEARCH_FAIL = -128,
802
+ GGML_LINESEARCH_MINIMUM_STEP,
803
+ GGML_LINESEARCH_MAXIMUM_STEP,
804
+ GGML_LINESEARCH_MAXIMUM_ITERATIONS,
805
+ GGML_LINESEARCH_INVALID_PARAMETERS,
806
+ };
807
+
808
+ // optimization parameters
678
809
  //
679
- int past;
680
- float delta;
810
+ // see ggml.c (ggml_opt_default_params) for default values
811
+ //
812
+ struct ggml_opt_params {
813
+ enum ggml_opt_type type;
814
+
815
+ int n_threads;
816
+
817
+ // delta-based convergence test
818
+ //
819
+ // if past == 0 - disabled
820
+ // if past > 0:
821
+ // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
822
+ //
823
+ int past;
824
+ float delta;
825
+
826
+ // maximum number of iterations without improvement
827
+ //
828
+ // if 0 - disabled
829
+ // if > 0:
830
+ // assume convergence if no cost improvement in this number of iterations
831
+ //
832
+ int max_no_improvement;
833
+
834
+ bool print_forward_graph;
835
+ bool print_backward_graph;
836
+
837
+ // ADAM parameters
838
+ struct {
839
+ int n_iter;
840
+
841
+ float alpha; // learning rate
842
+ float beta1;
843
+ float beta2;
844
+ float eps; // epsilon for numerical stability
845
+ float eps_f; // epsilon for convergence test
846
+ float eps_g; // epsilon for convergence test
847
+ } adam;
848
+
849
+ // LBFGS parameters
850
+ struct {
851
+ int m; // number of corrections to approximate the inv. Hessian
852
+ int n_iter;
853
+ int max_linesearch;
854
+
855
+ float eps; // convergence tolerance
856
+ float ftol; // line search tolerance
857
+ float wolfe;
858
+ float min_step;
859
+ float max_step;
860
+
861
+ enum ggml_linesearch linesearch;
862
+ } lbfgs;
863
+ };
864
+
865
+ GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
866
+
867
+ // optimize the function defined by the tensor f
868
+ GGML_API enum ggml_opt_result ggml_opt(
869
+ struct ggml_context * ctx,
870
+ struct ggml_opt_params params,
871
+ struct ggml_tensor * f);
872
+
873
+ //
874
+ // quantization
875
+ //
876
+
877
+ GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
878
+ GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
879
+ GGML_API size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist);
880
+ GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
881
+ GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
882
+ GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
883
+
884
+ GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
681
885
 
682
- // maximum number of iterations without improvement
683
886
  //
684
- // if 0 - disabled
685
- // if > 0:
686
- // assume convergence if no cost improvement in this number of iterations
887
+ // system info
687
888
  //
688
- int max_no_improvement;
689
-
690
- bool print_forward_graph;
691
- bool print_backward_graph;
692
-
693
- // ADAM parameters
694
- struct {
695
- int n_iter;
696
-
697
- float alpha; // learning rate
698
- float beta1;
699
- float beta2;
700
- float eps; // epsilon for numerical stability
701
- float eps_f; // epsilon for convergence test
702
- float eps_g; // epsilon for convergence test
703
- } adam;
704
-
705
- // LBFGS parameters
706
- struct {
707
- int m; // number of corrections to approximate the inv. Hessian
708
- int n_iter;
709
- int max_linesearch;
710
-
711
- float eps; // convergence tolerance
712
- float ftol; // line search tolerance
713
- float wolfe;
714
- float min_step;
715
- float max_step;
716
-
717
- enum ggml_linesearch linesearch;
718
- } lbfgs;
719
- };
720
-
721
- struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
722
-
723
- // optimize the function defined by the tensor f
724
- enum ggml_opt_result ggml_opt(
725
- struct ggml_context * ctx,
726
- struct ggml_opt_params params,
727
- struct ggml_tensor * f);
728
-
729
- //
730
- // system info
731
- //
732
-
733
- int ggml_cpu_has_avx(void);
734
- int ggml_cpu_has_avx2(void);
735
- int ggml_cpu_has_avx512(void);
736
- int ggml_cpu_has_fma(void);
737
- int ggml_cpu_has_neon(void);
738
- int ggml_cpu_has_arm_fma(void);
739
- int ggml_cpu_has_f16c(void);
740
- int ggml_cpu_has_fp16_va(void);
741
- int ggml_cpu_has_wasm_simd(void);
742
- int ggml_cpu_has_blas(void);
743
- int ggml_cpu_has_sse3(void);
744
- int ggml_cpu_has_vsx(void);
889
+
890
+ GGML_API int ggml_cpu_has_avx (void);
891
+ GGML_API int ggml_cpu_has_avx2 (void);
892
+ GGML_API int ggml_cpu_has_avx512 (void);
893
+ GGML_API int ggml_cpu_has_avx512_vbmi(void);
894
+ GGML_API int ggml_cpu_has_avx512_vnni(void);
895
+ GGML_API int ggml_cpu_has_fma (void);
896
+ GGML_API int ggml_cpu_has_neon (void);
897
+ GGML_API int ggml_cpu_has_arm_fma (void);
898
+ GGML_API int ggml_cpu_has_f16c (void);
899
+ GGML_API int ggml_cpu_has_fp16_va (void);
900
+ GGML_API int ggml_cpu_has_wasm_simd (void);
901
+ GGML_API int ggml_cpu_has_blas (void);
902
+ GGML_API int ggml_cpu_has_cublas (void);
903
+ GGML_API int ggml_cpu_has_clblast (void);
904
+ GGML_API int ggml_cpu_has_gpublas (void);
905
+ GGML_API int ggml_cpu_has_sse3 (void);
906
+ GGML_API int ggml_cpu_has_vsx (void);
907
+
908
+ //
909
+ // Internal types and functions exposed for tests and benchmarks
910
+ //
911
+
912
+ #ifdef __cplusplus
913
+ // restrict not standard in C++
914
+ #define GGML_RESTRICT
915
+ #else
916
+ #define GGML_RESTRICT restrict
917
+ #endif
918
+ typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
919
+ typedef void (*quantize_row_q_t) (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
920
+ typedef void (*vec_dot_q_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
921
+
922
+ typedef struct {
923
+ dequantize_row_q_t dequantize_row_q;
924
+ quantize_row_q_t quantize_row_q;
925
+ quantize_row_q_t quantize_row_q_reference;
926
+ quantize_row_q_t quantize_row_q_dot;
927
+ vec_dot_q_t vec_dot_q;
928
+ enum ggml_type vec_dot_type;
929
+ } quantize_fns_t;
930
+
931
+ quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
745
932
 
746
933
  #ifdef __cplusplus
747
934
  }