weave-typescript 0.9.0 → 0.10.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/weaveapi/llmx/v1/architecture.pb.d.ts +298 -10
- package/dist/weaveapi/llmx/v1/capabilities.pb.d.ts +219 -1
- package/dist/weaveapi/llmx/v1/capabilities.pb.js +11 -0
- package/dist/weaveapi/llmx/v1/model.pb.d.ts +236 -52
- package/dist/weaveapi/llmx/v1/pricing.pb.d.ts +229 -31
- package/dist/weaveapi/llmx/v1/pricing.pb.js +140 -14
- package/dist/weaveapi/llmx/v1/provider.pb.d.ts +39 -0
- package/dist/weaveapi/llmx/v1/service.pb.d.ts +158 -11
- package/package.json +1 -1
|
@@ -258,97 +258,385 @@ export declare enum LicenseType {
|
|
|
258
258
|
}
|
|
259
259
|
export declare function licenseTypeFromJSON(object: any): LicenseType;
|
|
260
260
|
export declare function licenseTypeToJSON(object: LicenseType): string;
|
|
261
|
-
/** Architecture describes
|
|
261
|
+
/** Architecture describes the technical architecture of an AI model. */
|
|
262
262
|
export interface Architecture {
|
|
263
|
+
/**
|
|
264
|
+
* Fundamental architecture type (Transformer, Mamba, etc.).
|
|
265
|
+
* Example: BASE_ARCHITECTURE_TRANSFORMER for GPT models
|
|
266
|
+
*/
|
|
263
267
|
baseArchitecture: BaseArchitecture;
|
|
268
|
+
/**
|
|
269
|
+
* Specific model family/variant.
|
|
270
|
+
* Example: MODEL_ARCHITECTURE_GPT for GPT-4, MODEL_ARCHITECTURE_LLAMA for LLaMA
|
|
271
|
+
*/
|
|
264
272
|
modelArchitecture: ModelArchitecture;
|
|
273
|
+
/**
|
|
274
|
+
* Total learnable parameters in billions.
|
|
275
|
+
* Example: 175 for GPT-3 (175B parameters)
|
|
276
|
+
*/
|
|
265
277
|
parameterCount: number;
|
|
278
|
+
/**
|
|
279
|
+
* Parameters activated per forward pass (for MoE models).
|
|
280
|
+
* Example: 8B active out of 141B total for Mixtral-8x7B
|
|
281
|
+
*/
|
|
266
282
|
activeParameters: number;
|
|
283
|
+
/**
|
|
284
|
+
* Total parameters including non-trainable (embeddings, etc.).
|
|
285
|
+
* May be slightly higher than parameter_count
|
|
286
|
+
*/
|
|
267
287
|
totalParameters: number;
|
|
288
|
+
/**
|
|
289
|
+
* Number of transformer/attention layers.
|
|
290
|
+
* Example: 96 for GPT-3, 32 for 7B models
|
|
291
|
+
*/
|
|
268
292
|
layerCount: number;
|
|
293
|
+
/**
|
|
294
|
+
* Hidden dimension size of the model.
|
|
295
|
+
* Example: 12288 for GPT-3, 4096 for smaller models
|
|
296
|
+
*/
|
|
269
297
|
hiddenSize: number;
|
|
298
|
+
/**
|
|
299
|
+
* Number of attention heads in multi-head attention.
|
|
300
|
+
* Example: 96 for GPT-3, 32 for 7B models
|
|
301
|
+
*/
|
|
270
302
|
attentionHeads: number;
|
|
303
|
+
/**
|
|
304
|
+
* Size of the token vocabulary.
|
|
305
|
+
* Example: 50257 for GPT-2/3, 32000 for LLaMA
|
|
306
|
+
*/
|
|
271
307
|
vocabularySize: number;
|
|
308
|
+
/**
|
|
309
|
+
* Type of position encoding used.
|
|
310
|
+
* Example: POSITION_EMBEDDING_ROTARY for modern models (RoPE)
|
|
311
|
+
*/
|
|
272
312
|
positionEmbedding: PositionEmbedding;
|
|
313
|
+
/**
|
|
314
|
+
* Activation function in feed-forward layers.
|
|
315
|
+
* Example: ACTIVATION_FUNCTION_SWIGLU for LLaMA models
|
|
316
|
+
*/
|
|
273
317
|
activationFunction: ActivationFunction;
|
|
318
|
+
/**
|
|
319
|
+
* Whether this is a Mixture of Experts model.
|
|
320
|
+
* Example: true for Mixtral, GPT-4 (rumored), false for dense models
|
|
321
|
+
*/
|
|
274
322
|
isMixtureOfExperts: boolean;
|
|
323
|
+
/**
|
|
324
|
+
* Total number of expert networks (for MoE).
|
|
325
|
+
* Example: 8 for Mixtral-8x7B
|
|
326
|
+
*/
|
|
275
327
|
expertCount: number;
|
|
328
|
+
/**
|
|
329
|
+
* Number of experts activated per token (for MoE).
|
|
330
|
+
* Example: 2 for Mixtral (2 experts per token out of 8)
|
|
331
|
+
*/
|
|
276
332
|
expertsPerToken: number;
|
|
277
333
|
}
|
|
278
|
-
/** Training contains
|
|
334
|
+
/** Training contains information about how the model was trained. */
|
|
279
335
|
export interface Training {
|
|
280
|
-
/**
|
|
336
|
+
/**
|
|
337
|
+
* Size of training dataset.
|
|
338
|
+
* Examples: "1T tokens", "45TB text", "100B tokens"
|
|
339
|
+
*/
|
|
281
340
|
trainingDataSize: string;
|
|
341
|
+
/**
|
|
342
|
+
* List of data sources used for training.
|
|
343
|
+
* Examples: ["Common Crawl", "Wikipedia", "Books", "GitHub", "ArXiv"]
|
|
344
|
+
*/
|
|
282
345
|
trainingDataSources: string[];
|
|
346
|
+
/**
|
|
347
|
+
* Description of data mixture/proportions.
|
|
348
|
+
* Example: "60% web, 20% books, 10% code, 10% reference"
|
|
349
|
+
*/
|
|
283
350
|
dataMixture: string;
|
|
284
|
-
/**
|
|
351
|
+
/**
|
|
352
|
+
* Total training time.
|
|
353
|
+
* Examples: "3 months", "6 weeks", "90 days"
|
|
354
|
+
*/
|
|
285
355
|
trainingDuration: string;
|
|
286
|
-
/**
|
|
356
|
+
/**
|
|
357
|
+
* Hardware used for training.
|
|
358
|
+
* Examples: "10000 H100 GPUs", "512 A100 80GB", "TPU v4 pods"
|
|
359
|
+
*/
|
|
287
360
|
trainingHardware: string;
|
|
288
|
-
/**
|
|
361
|
+
/**
|
|
362
|
+
* Estimated training cost.
|
|
363
|
+
* Examples: "$100M", "$4.6M", "Not disclosed"
|
|
364
|
+
*/
|
|
289
365
|
trainingCost: string;
|
|
366
|
+
/**
|
|
367
|
+
* Primary training technique used.
|
|
368
|
+
* Example: TRAINING_TECHNIQUE_REINFORCEMENT_LEARNING_FROM_HUMAN_FEEDBACK
|
|
369
|
+
*/
|
|
290
370
|
trainingTechnique: TrainingTechnique;
|
|
371
|
+
/**
|
|
372
|
+
* Training batch size per step.
|
|
373
|
+
* Example: 2048, 4096
|
|
374
|
+
*/
|
|
291
375
|
batchSize: number;
|
|
376
|
+
/**
|
|
377
|
+
* Peak learning rate used.
|
|
378
|
+
* Example: 0.0001, 3e-4
|
|
379
|
+
*/
|
|
292
380
|
learningRate: number;
|
|
381
|
+
/**
|
|
382
|
+
* Total number of training steps/iterations.
|
|
383
|
+
* Example: 1000000
|
|
384
|
+
*/
|
|
293
385
|
trainingSteps: number;
|
|
386
|
+
/**
|
|
387
|
+
* Number of warmup steps for learning rate schedule.
|
|
388
|
+
* Example: 2000
|
|
389
|
+
*/
|
|
294
390
|
warmupSteps: number;
|
|
391
|
+
/**
|
|
392
|
+
* Whether model supports fine-tuning via API.
|
|
393
|
+
* Example: true for GPT-3.5, false for GPT-4
|
|
394
|
+
*/
|
|
295
395
|
fineTuningAvailable: boolean;
|
|
396
|
+
/**
|
|
397
|
+
* Minimum training examples required for fine-tuning.
|
|
398
|
+
* Example: 10 for OpenAI models
|
|
399
|
+
*/
|
|
296
400
|
minFineTuneExamples: number;
|
|
401
|
+
/**
|
|
402
|
+
* Maximum training examples allowed for fine-tuning.
|
|
403
|
+
* Example: 100000 for GPT-3.5
|
|
404
|
+
*/
|
|
297
405
|
maxFineTuneExamples: number;
|
|
406
|
+
/**
|
|
407
|
+
* Supported data formats for fine-tuning.
|
|
408
|
+
* Example: [DATA_FORMAT_JSONL, DATA_FORMAT_CSV]
|
|
409
|
+
*/
|
|
298
410
|
fineTuneFormats: DataFormat[];
|
|
299
411
|
}
|
|
300
|
-
/** TechnicalSpecs contains
|
|
412
|
+
/** TechnicalSpecs contains hardware and software requirements for running the model. */
|
|
301
413
|
export interface TechnicalSpecs {
|
|
414
|
+
/**
|
|
415
|
+
* Minimum system RAM required in GB.
|
|
416
|
+
* Example: 32 for 7B models, 64 for 13B models
|
|
417
|
+
*/
|
|
302
418
|
minMemoryGb: number;
|
|
419
|
+
/**
|
|
420
|
+
* Recommended system RAM for optimal performance in GB.
|
|
421
|
+
* Example: 64 for 7B models, 128 for 13B models
|
|
422
|
+
*/
|
|
303
423
|
recommendedMemoryGb: number;
|
|
424
|
+
/**
|
|
425
|
+
* Minimum GPU VRAM required in GB.
|
|
426
|
+
* Example: 24 for 7B fp16, 48 for 13B fp16
|
|
427
|
+
*/
|
|
304
428
|
minGpuMemoryGb: number;
|
|
429
|
+
/**
|
|
430
|
+
* Disk storage required for model files in GB.
|
|
431
|
+
* Example: 15 for 7B models, 30 for 13B models
|
|
432
|
+
*/
|
|
305
433
|
storageGb: number;
|
|
434
|
+
/**
|
|
435
|
+
* Quantization method if applicable.
|
|
436
|
+
* Example: QUANTIZATION_INT8 for 8-bit quantized models
|
|
437
|
+
*/
|
|
306
438
|
quantization: Quantization;
|
|
439
|
+
/**
|
|
440
|
+
* Numerical precision used.
|
|
441
|
+
* Example: PRECISION_FP16 for half-precision inference
|
|
442
|
+
*/
|
|
307
443
|
precision: Precision;
|
|
444
|
+
/**
|
|
445
|
+
* Optimization level/profile.
|
|
446
|
+
* Examples: "O3", "fast", "balanced", "memory-optimized"
|
|
447
|
+
*/
|
|
308
448
|
optimizationLevel: string;
|
|
449
|
+
/**
|
|
450
|
+
* List of compatible GPU types.
|
|
451
|
+
* Example: [GPU_TYPE_A100, GPU_TYPE_H100, GPU_TYPE_RTX_4090]
|
|
452
|
+
*/
|
|
309
453
|
supportedGpus: GPUType[];
|
|
454
|
+
/**
|
|
455
|
+
* Whether CUDA is required for GPU inference.
|
|
456
|
+
* Example: true for NVIDIA GPUs, false for CPU-only
|
|
457
|
+
*/
|
|
310
458
|
requiresCuda: boolean;
|
|
459
|
+
/**
|
|
460
|
+
* Minimum CUDA version required.
|
|
461
|
+
* Examples: "11.8", "12.0"
|
|
462
|
+
*/
|
|
311
463
|
cudaVersion: string;
|
|
464
|
+
/**
|
|
465
|
+
* Recommended inference framework.
|
|
466
|
+
* Example: INFERENCE_FRAMEWORK_VLLM for high-throughput serving
|
|
467
|
+
*/
|
|
312
468
|
inferenceFramework: InferenceFramework;
|
|
469
|
+
/**
|
|
470
|
+
* Format of distributed model files.
|
|
471
|
+
* Example: MODEL_FORMAT_SAFETENSORS for HuggingFace models
|
|
472
|
+
*/
|
|
313
473
|
modelFormat: ModelFormat;
|
|
474
|
+
/**
|
|
475
|
+
* Total size of model files in GB.
|
|
476
|
+
* Example: 13.5 for 7B model in fp16
|
|
477
|
+
*/
|
|
314
478
|
modelSizeGb: number;
|
|
479
|
+
/**
|
|
480
|
+
* Format of model checkpoint files.
|
|
481
|
+
* Example: CHECKPOINT_FORMAT_PYTORCH for .pt files
|
|
482
|
+
*/
|
|
315
483
|
checkpointFormat: CheckpointFormat;
|
|
484
|
+
/**
|
|
485
|
+
* Number of model shard files.
|
|
486
|
+
* Example: 2 for models split across multiple files
|
|
487
|
+
*/
|
|
316
488
|
numberOfFiles: number;
|
|
489
|
+
/**
|
|
490
|
+
* List of compatible CPU architectures.
|
|
491
|
+
* Example: [CPU_TYPE_X86_64, CPU_TYPE_ARM64]
|
|
492
|
+
*/
|
|
317
493
|
supportedCpus: CPUType[];
|
|
494
|
+
/**
|
|
495
|
+
* Serving framework/stack.
|
|
496
|
+
* Examples: "TGI", "vLLM", "llama.cpp"
|
|
497
|
+
*/
|
|
318
498
|
servingFramework: string;
|
|
499
|
+
/**
|
|
500
|
+
* Pre-built container image if available.
|
|
501
|
+
* Example: "nvcr.io/nvidia/pytorch:23.10-py3"
|
|
502
|
+
*/
|
|
319
503
|
containerImage: string;
|
|
320
|
-
/**
|
|
504
|
+
/**
|
|
505
|
+
* Minimum GPU for reasonable performance.
|
|
506
|
+
* Example: GPU_TYPE_RTX_3090 for 7B models
|
|
507
|
+
*/
|
|
321
508
|
minimumGpu: GPUType;
|
|
509
|
+
/**
|
|
510
|
+
* Minimum GPU memory for basic inference in GB.
|
|
511
|
+
* Example: 16 for 7B int8 models
|
|
512
|
+
*/
|
|
322
513
|
minimumGpuMemoryGb: number;
|
|
514
|
+
/**
|
|
515
|
+
* Whether model can run on CPU (even if slowly).
|
|
516
|
+
* Example: true for smaller quantized models
|
|
517
|
+
*/
|
|
323
518
|
cpuCompatible: boolean;
|
|
519
|
+
/**
|
|
520
|
+
* Recommended GPU memory for good performance in GB.
|
|
521
|
+
* Example: 24 for 7B fp16 with reasonable batch size
|
|
522
|
+
*/
|
|
324
523
|
recommendedGpuMemoryGb: number;
|
|
325
524
|
}
|
|
326
|
-
/** Safety contains safety and
|
|
525
|
+
/** Safety contains safety, moderation, and compliance features. */
|
|
327
526
|
export interface Safety {
|
|
527
|
+
/**
|
|
528
|
+
* Built-in content moderation strictness.
|
|
529
|
+
* Example: MODERATION_LEVEL_HIGH for family-friendly models
|
|
530
|
+
*/
|
|
328
531
|
moderationLevel: ModerationLevel;
|
|
532
|
+
/**
|
|
533
|
+
* Whether automatic content filtering is enabled.
|
|
534
|
+
* Example: true for models that block harmful content
|
|
535
|
+
*/
|
|
329
536
|
contentFiltering: boolean;
|
|
537
|
+
/**
|
|
538
|
+
* List of active safety filters.
|
|
539
|
+
* Examples: ["violence", "sexual", "hate", "self-harm", "illegal"]
|
|
540
|
+
*/
|
|
330
541
|
safetyFilters: string[];
|
|
542
|
+
/**
|
|
543
|
+
* Bias assessment rating.
|
|
544
|
+
* Examples: "Low", "Medium", "High", "Evaluated"
|
|
545
|
+
*/
|
|
331
546
|
biasRating: string;
|
|
547
|
+
/**
|
|
548
|
+
* Toxicity score from evaluations (0-1).
|
|
549
|
+
* Example: 0.02 for well-aligned models (lower is better)
|
|
550
|
+
*/
|
|
332
551
|
toxicityScore: number;
|
|
552
|
+
/**
|
|
553
|
+
* GDPR (General Data Protection Regulation) compliance.
|
|
554
|
+
* Example: true for models that don't retain user data
|
|
555
|
+
*/
|
|
333
556
|
gdprCompliant: boolean;
|
|
557
|
+
/**
|
|
558
|
+
* HIPAA (Health Insurance Portability and Accountability Act) compliance.
|
|
559
|
+
* Example: true for medical-safe models
|
|
560
|
+
*/
|
|
334
561
|
hipaaCompliant: boolean;
|
|
562
|
+
/**
|
|
563
|
+
* SOC 2 (Service Organization Control 2) compliance.
|
|
564
|
+
* Example: true for enterprise-grade security
|
|
565
|
+
*/
|
|
335
566
|
soc2Compliant: boolean;
|
|
567
|
+
/**
|
|
568
|
+
* ISO certification status.
|
|
569
|
+
* Example: true for ISO 27001 certified services
|
|
570
|
+
*/
|
|
336
571
|
isoCertified: boolean;
|
|
572
|
+
/**
|
|
573
|
+
* Can refuse harmful or inappropriate requests.
|
|
574
|
+
* Example: true for models trained to decline harmful tasks
|
|
575
|
+
*/
|
|
337
576
|
refusalCapability: boolean;
|
|
577
|
+
/**
|
|
578
|
+
* Whether outputs include watermarking.
|
|
579
|
+
* Example: true for models with detectible AI signatures
|
|
580
|
+
*/
|
|
338
581
|
watermarkOutput: boolean;
|
|
582
|
+
/**
|
|
583
|
+
* Built-in safety guardrails.
|
|
584
|
+
* Examples: ["constitutional-ai", "harmlessness", "helpfulness"]
|
|
585
|
+
*/
|
|
339
586
|
builtInGuardrails: string[];
|
|
587
|
+
/**
|
|
588
|
+
* Supports custom safety guardrails.
|
|
589
|
+
* Example: true if users can add their own safety rules
|
|
590
|
+
*/
|
|
340
591
|
customGuardrails: boolean;
|
|
341
592
|
}
|
|
342
|
-
/** Licensing contains license and usage terms */
|
|
593
|
+
/** Licensing contains license and usage terms for the model. */
|
|
343
594
|
export interface Licensing {
|
|
595
|
+
/**
|
|
596
|
+
* Type of license governing model use.
|
|
597
|
+
* Example: LICENSE_TYPE_APACHE_2_0, LICENSE_TYPE_PROPRIETARY
|
|
598
|
+
*/
|
|
344
599
|
licenseType: LicenseType;
|
|
600
|
+
/**
|
|
601
|
+
* URL to full license text.
|
|
602
|
+
* Example: "https://github.com/meta-llama/llama/blob/main/LICENSE"
|
|
603
|
+
*/
|
|
345
604
|
licenseUrl: string;
|
|
605
|
+
/**
|
|
606
|
+
* Whether source code is openly available.
|
|
607
|
+
* Example: true for research papers with code
|
|
608
|
+
*/
|
|
346
609
|
isOpenSource: boolean;
|
|
610
|
+
/**
|
|
611
|
+
* Whether model weights are publicly downloadable.
|
|
612
|
+
* Example: true for LLaMA, Mistral; false for GPT-4
|
|
613
|
+
*/
|
|
347
614
|
isOpenWeights: boolean;
|
|
615
|
+
/**
|
|
616
|
+
* Allowed for commercial/business use.
|
|
617
|
+
* Example: true for Apache/MIT licensed models
|
|
618
|
+
*/
|
|
348
619
|
commercialUse: boolean;
|
|
620
|
+
/**
|
|
621
|
+
* Allowed for research purposes.
|
|
622
|
+
* Example: true for most models, even proprietary ones
|
|
623
|
+
*/
|
|
349
624
|
researchUse: boolean;
|
|
625
|
+
/**
|
|
626
|
+
* Must attribute/cite when using.
|
|
627
|
+
* Example: true for CC-BY licenses
|
|
628
|
+
*/
|
|
350
629
|
attributionRequired: boolean;
|
|
630
|
+
/**
|
|
631
|
+
* Derivatives must use same license.
|
|
632
|
+
* Example: true for GPL, CC-BY-SA licenses
|
|
633
|
+
*/
|
|
351
634
|
shareAlikeRequired: boolean;
|
|
635
|
+
/**
|
|
636
|
+
* Specific usage restrictions or conditions.
|
|
637
|
+
* Examples: ["No use for surveillance", "Monthly active user limits",
|
|
638
|
+
* "No competitive use against provider"]
|
|
639
|
+
*/
|
|
352
640
|
usageRestrictions: string[];
|
|
353
641
|
}
|
|
354
642
|
export declare const Architecture: MessageFns<Architecture>;
|