vue-hook-optimizer 0.0.81 → 0.0.83

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/index.cjs CHANGED
@@ -1691,34 +1691,210 @@ function getMermaidText(graph, nodesUsedInTemplate, nodesUsedInStyle = /* @__PUR
1691
1691
 
1692
1692
  //#endregion
1693
1693
  //#region src/suggest/community.ts
1694
- function buildUndirectedGraph(graph) {
1695
- const undirected = /* @__PURE__ */ new Map();
1694
+ const COMMON_PREFIXES = [
1695
+ "handle",
1696
+ "on",
1697
+ "is",
1698
+ "has",
1699
+ "can",
1700
+ "should",
1701
+ "get",
1702
+ "set",
1703
+ "update",
1704
+ "toggle",
1705
+ "reset",
1706
+ "clear",
1707
+ "init",
1708
+ "fetch",
1709
+ "load",
1710
+ "save",
1711
+ "delete",
1712
+ "remove",
1713
+ "add",
1714
+ "create",
1715
+ "show",
1716
+ "hide",
1717
+ "open",
1718
+ "close",
1719
+ "enable",
1720
+ "disable",
1721
+ "validate",
1722
+ "check",
1723
+ "use"
1724
+ ];
1725
+ const COMMON_SUFFIXES = [
1726
+ "change",
1727
+ "changed",
1728
+ "handler",
1729
+ "callback",
1730
+ "listener",
1731
+ "state",
1732
+ "value",
1733
+ "data",
1734
+ "list",
1735
+ "items",
1736
+ "count",
1737
+ "index",
1738
+ "id",
1739
+ "name",
1740
+ "type",
1741
+ "status",
1742
+ "error",
1743
+ "loading",
1744
+ "visible",
1745
+ "disabled",
1746
+ "enabled",
1747
+ "active",
1748
+ "selected",
1749
+ "checked",
1750
+ "open",
1751
+ "closed"
1752
+ ];
1753
+ /**
1754
+ * Extract the base/root word from an identifier by removing common prefixes/suffixes.
1755
+ * Only removes prefixes at the start and suffixes at the end.
1756
+ * e.g., "handleOpenChange" -> ["open"]
1757
+ * "isVisible" -> ["visible"]
1758
+ * "userName" -> ["user", "name"]
1759
+ */
1760
+ function extractBaseWords(identifier) {
1761
+ const tokens = identifier.replace(/([a-z])([A-Z])/g, "$1_$2").replace(/([A-Z]+)([A-Z][a-z])/g, "$1_$2").toLowerCase().split(/[_\-\s]+/).filter(Boolean);
1762
+ if (tokens.length === 0) return [];
1763
+ if (tokens.length === 1) return tokens;
1764
+ let start = 0;
1765
+ if (COMMON_PREFIXES.includes(tokens[0])) start = 1;
1766
+ let end = tokens.length;
1767
+ if (COMMON_SUFFIXES.includes(tokens[tokens.length - 1])) end = tokens.length - 1;
1768
+ const words = tokens.slice(start, end);
1769
+ if (words.length === 0) return tokens.slice(start > 0 ? start : 0);
1770
+ return words;
1771
+ }
1772
+ /**
1773
+ * Calculate semantic similarity using cached base words.
1774
+ * Returns a value between 0 and 1.
1775
+ */
1776
+ function calculateSemanticSimilarityCached(labelA, labelB, wordsA, wordsB) {
1777
+ if (labelA === labelB) return 1;
1778
+ const lowerA = labelA.toLowerCase();
1779
+ const lowerB = labelB.toLowerCase();
1780
+ if (lowerA.includes(lowerB) || lowerB.includes(lowerA)) {
1781
+ const shorter = lowerA.length < lowerB.length ? lowerA : lowerB;
1782
+ const longer = lowerA.length < lowerB.length ? lowerB : lowerA;
1783
+ return shorter.length / longer.length;
1784
+ }
1785
+ if (wordsA.length === 0 || wordsB.length === 0) return 0;
1786
+ const setA = new Set(wordsA);
1787
+ const setB = new Set(wordsB);
1788
+ let sharedCount = 0;
1789
+ for (const word of setA) if (setB.has(word)) sharedCount++;
1790
+ if (sharedCount === 0) return 0;
1791
+ return sharedCount / (setA.size + setB.size - sharedCount);
1792
+ }
1793
+ /**
1794
+ * Build a weighted graph that combines structural connections with semantic similarity.
1795
+ *
1796
+ * Optimized algorithm:
1797
+ * 1. Cache extractBaseWords results to avoid repeated computation
1798
+ * 2. Build word-to-nodes bucket map, only compare nodes within same bucket
1799
+ * This reduces O(N²) to O(B × K²) where B = number of buckets, K = avg nodes per bucket
1800
+ */
1801
+ function buildWeightedGraph(graph, options = {}) {
1802
+ const { semanticWeight = 1, similarityThreshold = .3 } = options;
1803
+ const weighted = /* @__PURE__ */ new Map();
1804
+ const allNodes = /* @__PURE__ */ new Set();
1805
+ const connectedPairs = /* @__PURE__ */ new Set();
1696
1806
  for (const [node, edges] of graph) {
1697
- if (!undirected.has(node)) undirected.set(node, /* @__PURE__ */ new Set());
1698
- for (const edge of edges) {
1699
- undirected.get(node).add(edge.node);
1700
- if (!undirected.has(edge.node)) undirected.set(edge.node, /* @__PURE__ */ new Set());
1701
- undirected.get(edge.node).add(node);
1807
+ allNodes.add(node);
1808
+ for (const edge of edges) allNodes.add(edge.node);
1809
+ }
1810
+ for (const node of allNodes) weighted.set(node, /* @__PURE__ */ new Map());
1811
+ const structuralWeight = .85;
1812
+ for (const [node, edges] of graph) for (const edge of edges) {
1813
+ const currentWeight = weighted.get(node).get(edge.node) || 0;
1814
+ weighted.get(node).set(edge.node, Math.max(currentWeight, structuralWeight));
1815
+ const reverseWeight = weighted.get(edge.node).get(node) || 0;
1816
+ weighted.get(edge.node).set(node, Math.max(reverseWeight, structuralWeight));
1817
+ const pairKey = [node.label, edge.node.label].sort().join("|");
1818
+ connectedPairs.add(pairKey);
1819
+ }
1820
+ if (semanticWeight > 0) {
1821
+ const nodeWordsCache = /* @__PURE__ */ new Map();
1822
+ const wordToBucket = /* @__PURE__ */ new Map();
1823
+ for (const node of allNodes) {
1824
+ const words = extractBaseWords(node.label);
1825
+ nodeWordsCache.set(node, words);
1826
+ for (const word of words) {
1827
+ if (!wordToBucket.has(word)) wordToBucket.set(word, /* @__PURE__ */ new Set());
1828
+ wordToBucket.get(word).add(node);
1829
+ }
1830
+ }
1831
+ const comparedPairs = /* @__PURE__ */ new Set();
1832
+ for (const [_, bucket] of wordToBucket) {
1833
+ if (bucket.size < 2) continue;
1834
+ const bucketNodes = Array.from(bucket);
1835
+ for (let i = 0; i < bucketNodes.length; i++) for (let j = i + 1; j < bucketNodes.length; j++) {
1836
+ const nodeA = bucketNodes[i];
1837
+ const nodeB = bucketNodes[j];
1838
+ const comparedKey = [nodeA.label, nodeB.label].sort().join("|");
1839
+ if (comparedPairs.has(comparedKey)) continue;
1840
+ comparedPairs.add(comparedKey);
1841
+ const wordsA = nodeWordsCache.get(nodeA);
1842
+ const wordsB = nodeWordsCache.get(nodeB);
1843
+ const similarity = calculateSemanticSimilarityCached(nodeA.label, nodeB.label, wordsA, wordsB);
1844
+ if (similarity > similarityThreshold) {
1845
+ const isConnected = connectedPairs.has(comparedKey);
1846
+ const semanticEdgeWeight = similarity * semanticWeight;
1847
+ const currentAB = weighted.get(nodeA).get(nodeB) || 0;
1848
+ const newWeightAB = isConnected ? Math.max(currentAB, semanticEdgeWeight) : currentAB + semanticEdgeWeight;
1849
+ weighted.get(nodeA).set(nodeB, Math.min(newWeightAB, 2));
1850
+ const currentBA = weighted.get(nodeB).get(nodeA) || 0;
1851
+ const newWeightBA = isConnected ? Math.max(currentBA, semanticEdgeWeight) : currentBA + semanticEdgeWeight;
1852
+ weighted.get(nodeB).set(nodeA, Math.min(newWeightBA, 2));
1853
+ }
1854
+ }
1702
1855
  }
1703
1856
  }
1704
- return undirected;
1857
+ return weighted;
1705
1858
  }
1706
- function sortNodesDeterministically(nodes) {
1707
- return [...nodes].sort((a, b) => a.label.localeCompare(b.label));
1859
+ function createSeededRandom(seed) {
1860
+ if (seed === void 0) return Math.random;
1861
+ let state = seed;
1862
+ return () => {
1863
+ state = state * 1103515245 + 12345 & 2147483647;
1864
+ return state / 2147483647;
1865
+ };
1866
+ }
1867
+ function shuffleArray(array, random = Math.random) {
1868
+ const result = [...array];
1869
+ for (let i = result.length - 1; i > 0; i--) {
1870
+ const j = Math.floor(random() * (i + 1));
1871
+ [result[i], result[j]] = [result[j], result[i]];
1872
+ }
1873
+ return result;
1708
1874
  }
1709
1875
  /**
1710
- * Label Propagation Algorithm for community detection.
1876
+ * Label Propagation Algorithm for community detection with semantic awareness.
1711
1877
  *
1712
1878
  * Each node starts with its own unique label. In each iteration,
1713
- * nodes adopt the most frequent label among their neighbors.
1714
- * The algorithm converges when labels no longer change.
1879
+ * nodes adopt the most frequent label among their neighbors,
1880
+ * weighted by both structural connections and semantic similarity.
1881
+ *
1882
+ * Semantic similarity considers:
1883
+ * - Shared base words (e.g., "open" in "isOpen" and "handleOpenChange")
1884
+ * - Substring relationships
1885
+ * - Common naming patterns (handler/state pairs)
1715
1886
  *
1716
1887
  * This helps identify groups of nodes that are tightly connected
1717
1888
  * and could potentially be extracted into separate hooks.
1718
1889
  */
1719
- function detectCommunities(graph, maxIterations = 100) {
1720
- const undirectedGraph = buildUndirectedGraph(graph);
1721
- const nodes = Array.from(undirectedGraph.keys());
1890
+ function detectCommunities(graph, options = {}) {
1891
+ const { maxIterations = 100, semanticWeight = 1, similarityThreshold = .3 } = options;
1892
+ const random = createSeededRandom(options.seed);
1893
+ const weightedGraph = buildWeightedGraph(graph, {
1894
+ semanticWeight,
1895
+ similarityThreshold
1896
+ });
1897
+ const nodes = Array.from(weightedGraph.keys());
1722
1898
  if (nodes.length === 0) return {
1723
1899
  communities: [],
1724
1900
  nodeToCommuntiy: /* @__PURE__ */ new Map()
@@ -1732,24 +1908,24 @@ function detectCommunities(graph, maxIterations = 100) {
1732
1908
  while (changed && iterations < maxIterations) {
1733
1909
  changed = false;
1734
1910
  iterations++;
1735
- const sortedNodes = sortNodesDeterministically(nodes);
1736
- for (const node of sortedNodes) {
1737
- const neighbors = undirectedGraph.get(node);
1911
+ const shuffledNodes = shuffleArray(nodes, random);
1912
+ for (const node of shuffledNodes) {
1913
+ const neighbors = weightedGraph.get(node);
1738
1914
  if (!neighbors || neighbors.size === 0) continue;
1739
- const labelCounts = /* @__PURE__ */ new Map();
1740
- for (const neighbor of neighbors) {
1915
+ const labelWeights = /* @__PURE__ */ new Map();
1916
+ for (const [neighbor, weight] of neighbors) {
1741
1917
  const neighborLabel = labels.get(neighbor);
1742
- labelCounts.set(neighborLabel, (labelCounts.get(neighborLabel) || 0) + 1);
1918
+ labelWeights.set(neighborLabel, (labelWeights.get(neighborLabel) || 0) + weight);
1743
1919
  }
1744
- let maxCount = 0;
1920
+ let maxWeight = 0;
1745
1921
  let maxLabels = [];
1746
- for (const [label, count] of labelCounts) if (count > maxCount) {
1747
- maxCount = count;
1922
+ for (const [label, weight] of labelWeights) if (weight > maxWeight) {
1923
+ maxWeight = weight;
1748
1924
  maxLabels = [label];
1749
- } else if (count === maxCount) maxLabels.push(label);
1925
+ } else if (weight === maxWeight) maxLabels.push(label);
1750
1926
  const currentLabel = labels.get(node);
1751
1927
  if (maxLabels.includes(currentLabel)) continue;
1752
- const newLabel = Math.min(...maxLabels);
1928
+ const newLabel = maxLabels[Math.floor(random() * maxLabels.length)];
1753
1929
  if (newLabel !== currentLabel) {
1754
1930
  labels.set(node, newLabel);
1755
1931
  changed = true;
@@ -2052,7 +2228,7 @@ let SuggestionType = /* @__PURE__ */ function(SuggestionType$1) {
2052
2228
  return SuggestionType$1;
2053
2229
  }({});
2054
2230
  function gen(graph, nodesUsedInTemplate, nodesUsedInStyle = /* @__PURE__ */ new Set(), options) {
2055
- const { ellipsis = true } = options ?? {};
2231
+ const { ellipsis = true, communitySeed } = options ?? {};
2056
2232
  const usedNodes = new Set([...nodesUsedInTemplate, ...nodesUsedInStyle]);
2057
2233
  const suggestions = [];
2058
2234
  const splitedGraph = splitGraph(graph.edges);
@@ -2106,7 +2282,7 @@ function gen(graph, nodesUsedInTemplate, nodesUsedInStyle = /* @__PURE__ */ new
2106
2282
  nodeInfo: node
2107
2283
  });
2108
2284
  });
2109
- const communityResult = detectCommunities(graph.edges);
2285
+ const communityResult = detectCommunities(graph.edges, { seed: communitySeed });
2110
2286
  const { communities } = communityResult;
2111
2287
  const extractableCommunities = communities.filter((community) => {
2112
2288
  const nodes = Array.from(community.nodes);