vision-camera-face-detection 2.2.3 → 2.2.4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +319 -6
- package/VisionCameraFaceDetection.podspec +2 -2
- package/android/build.gradle +4 -6
- package/package.json +5 -5
package/README.md
CHANGED
|
@@ -1,24 +1,337 @@
|
|
|
1
1
|
# vision-camera-face-detection
|
|
2
2
|
|
|
3
|
-
|
|
3
|
+
A high-performance Face Detection plugin for [React Native Vision Camera](https://github.com/mrousavy/react-native-vision-camera) V4. Powered by Google ML Kit Face Detection for real-time face detection with landmarks, contours, classification, and TensorFlow Lite support for face recognition.
|
|
4
|
+
|
|
5
|
+
[](https://www.npmjs.com/package/vision-camera-face-detection)
|
|
6
|
+
[](https://github.com/edritech93/vision-camera-face-detection/blob/main/LICENSE)
|
|
7
|
+
|
|
8
|
+
## Features
|
|
9
|
+
|
|
10
|
+
- 🚀 Real-time face detection using Google ML Kit
|
|
11
|
+
- 📍 Face landmarks detection (eyes, ears, nose, cheeks, mouth)
|
|
12
|
+
- 🎯 Face contours detection
|
|
13
|
+
- 😊 Face classification (smiling, eyes open probability)
|
|
14
|
+
- 📐 Face angles (pitch, roll, yaw)
|
|
15
|
+
- 🔄 Face tracking across frames
|
|
16
|
+
- 🧠 TensorFlow Lite integration for face recognition/embedding
|
|
17
|
+
- ⚡ Optimized async processing without blocking camera preview
|
|
18
|
+
|
|
19
|
+
## Requirements
|
|
20
|
+
|
|
21
|
+
- React Native >= 0.83
|
|
22
|
+
- Node.js >= 20
|
|
23
|
+
- react-native-vision-camera >= 4.6
|
|
24
|
+
- react-native-worklets-core >= 1.5
|
|
25
|
+
- iOS 15.5+
|
|
26
|
+
- Android minSdkVersion 24+
|
|
4
27
|
|
|
5
28
|
## Installation
|
|
6
29
|
|
|
7
30
|
```sh
|
|
8
31
|
npm install vision-camera-face-detection
|
|
32
|
+
# or
|
|
33
|
+
yarn add vision-camera-face-detection
|
|
34
|
+
```
|
|
35
|
+
|
|
36
|
+
### iOS
|
|
37
|
+
|
|
38
|
+
Add the following to your `Podfile`:
|
|
39
|
+
|
|
40
|
+
```ruby
|
|
41
|
+
pod 'GoogleMLKit/FaceDetection', '~> 6.0.0'
|
|
9
42
|
```
|
|
10
43
|
|
|
44
|
+
Then run:
|
|
45
|
+
|
|
46
|
+
```sh
|
|
47
|
+
cd ios && pod install
|
|
48
|
+
```
|
|
49
|
+
|
|
50
|
+
For TensorFlow Lite support, add the TFLite model file (e.g., `mobile_face_net.tflite`) to your iOS project.
|
|
51
|
+
|
|
52
|
+
### Android
|
|
53
|
+
|
|
54
|
+
No additional setup required. The library automatically links the required ML Kit dependencies.
|
|
55
|
+
|
|
56
|
+
For TensorFlow Lite support, place your model file in the `assets` folder.
|
|
57
|
+
|
|
11
58
|
## Usage
|
|
12
59
|
|
|
60
|
+
### Basic Face Detection
|
|
61
|
+
|
|
62
|
+
```tsx
|
|
63
|
+
import React, { useRef } from 'react';
|
|
64
|
+
import { StyleSheet, View } from 'react-native';
|
|
65
|
+
import {
|
|
66
|
+
useCameraDevice,
|
|
67
|
+
useCameraPermission,
|
|
68
|
+
} from 'react-native-vision-camera';
|
|
69
|
+
import {
|
|
70
|
+
Camera,
|
|
71
|
+
type Face,
|
|
72
|
+
type FaceDetectionOptions,
|
|
73
|
+
} from 'vision-camera-face-detection';
|
|
74
|
+
|
|
75
|
+
export default function App() {
|
|
76
|
+
const { hasPermission, requestPermission } = useCameraPermission();
|
|
77
|
+
const device = useCameraDevice('front');
|
|
78
|
+
|
|
79
|
+
const faceDetectionOptions: FaceDetectionOptions = {
|
|
80
|
+
performanceMode: 'fast',
|
|
81
|
+
classificationMode: 'all',
|
|
82
|
+
landmarkMode: 'all',
|
|
83
|
+
contourMode: 'none',
|
|
84
|
+
};
|
|
85
|
+
|
|
86
|
+
const handleFacesDetected = (faces: Face[], frame: Frame) => {
|
|
87
|
+
console.log('Detected faces:', faces.length);
|
|
88
|
+
|
|
89
|
+
if (faces.length > 0) {
|
|
90
|
+
const face = faces[0];
|
|
91
|
+
console.log('Face bounds:', face.bounds);
|
|
92
|
+
console.log('Smiling probability:', face.smilingProbability);
|
|
93
|
+
console.log('Left eye open:', face.leftEyeOpenProbability);
|
|
94
|
+
console.log('Right eye open:', face.rightEyeOpenProbability);
|
|
95
|
+
}
|
|
96
|
+
};
|
|
97
|
+
|
|
98
|
+
if (!hasPermission) {
|
|
99
|
+
requestPermission();
|
|
100
|
+
return null;
|
|
101
|
+
}
|
|
102
|
+
|
|
103
|
+
if (!device) return null;
|
|
104
|
+
|
|
105
|
+
return (
|
|
106
|
+
<View style={styles.container}>
|
|
107
|
+
<Camera
|
|
108
|
+
style={StyleSheet.absoluteFill}
|
|
109
|
+
device={device}
|
|
110
|
+
isActive={true}
|
|
111
|
+
faceDetectionOptions={faceDetectionOptions}
|
|
112
|
+
faceDetectionCallback={handleFacesDetected}
|
|
113
|
+
/>
|
|
114
|
+
</View>
|
|
115
|
+
);
|
|
116
|
+
}
|
|
117
|
+
|
|
118
|
+
const styles = StyleSheet.create({
|
|
119
|
+
container: {
|
|
120
|
+
flex: 1,
|
|
121
|
+
},
|
|
122
|
+
});
|
|
123
|
+
```
|
|
124
|
+
|
|
125
|
+
### Using the `useFaceDetector` Hook
|
|
126
|
+
|
|
127
|
+
For more control, you can use the `useFaceDetector` hook directly with a custom frame processor:
|
|
128
|
+
|
|
129
|
+
```tsx
|
|
130
|
+
import { useFrameProcessor } from 'react-native-vision-camera';
|
|
131
|
+
import {
|
|
132
|
+
useFaceDetector,
|
|
133
|
+
type FaceDetectionOptions,
|
|
134
|
+
} from 'vision-camera-face-detection';
|
|
135
|
+
|
|
136
|
+
const faceDetectionOptions: FaceDetectionOptions = {
|
|
137
|
+
performanceMode: 'accurate',
|
|
138
|
+
landmarkMode: 'all',
|
|
139
|
+
contourMode: 'all',
|
|
140
|
+
classificationMode: 'all',
|
|
141
|
+
};
|
|
142
|
+
|
|
143
|
+
const { detectFaces } = useFaceDetector(faceDetectionOptions);
|
|
144
|
+
|
|
145
|
+
const frameProcessor = useFrameProcessor(
|
|
146
|
+
(frame) => {
|
|
147
|
+
'worklet';
|
|
148
|
+
const faces = detectFaces(frame);
|
|
149
|
+
console.log('Faces:', faces);
|
|
150
|
+
},
|
|
151
|
+
[detectFaces]
|
|
152
|
+
);
|
|
153
|
+
```
|
|
154
|
+
|
|
155
|
+
### TensorFlow Lite Integration
|
|
156
|
+
|
|
157
|
+
For face recognition/embedding using TensorFlow Lite:
|
|
13
158
|
|
|
14
|
-
```
|
|
15
|
-
import {
|
|
159
|
+
```tsx
|
|
160
|
+
import {
|
|
161
|
+
initTensor,
|
|
162
|
+
detectFromBase64,
|
|
163
|
+
type DetectBas64Type,
|
|
164
|
+
} from 'vision-camera-face-detection';
|
|
16
165
|
|
|
17
|
-
//
|
|
166
|
+
// Initialize TensorFlow Lite model
|
|
167
|
+
await initTensor('mobile_face_net', 1);
|
|
18
168
|
|
|
19
|
-
|
|
169
|
+
// Detect face from base64 image and get embedding
|
|
170
|
+
const result: DetectBas64Type = await detectFromBase64(base64Image);
|
|
171
|
+
console.log('Face embedding:', result.data);
|
|
172
|
+
console.log('Cropped face base64:', result.base64);
|
|
20
173
|
```
|
|
21
174
|
|
|
175
|
+
## API Reference
|
|
176
|
+
|
|
177
|
+
### `<Camera />` Component
|
|
178
|
+
|
|
179
|
+
A wrapper around Vision Camera that includes face detection.
|
|
180
|
+
|
|
181
|
+
| Prop | Type | Description |
|
|
182
|
+
| ----------------------- | --------------------------------------- | -------------------------------- |
|
|
183
|
+
| `faceDetectionOptions` | `FaceDetectionOptions` | Configuration for face detection |
|
|
184
|
+
| `faceDetectionCallback` | `(faces: Face[], frame: Frame) => void` | Callback when faces are detected |
|
|
185
|
+
| `...props` | `CameraProps` | All Vision Camera props |
|
|
186
|
+
|
|
187
|
+
### `FaceDetectionOptions`
|
|
188
|
+
|
|
189
|
+
| Option | Type | Default | Description |
|
|
190
|
+
| -------------------- | ---------------------- | --------- | ---------------------------------------- |
|
|
191
|
+
| `performanceMode` | `'fast' \| 'accurate'` | `'fast'` | Favor speed or accuracy |
|
|
192
|
+
| `landmarkMode` | `'none' \| 'all'` | `'none'` | Detect facial landmarks |
|
|
193
|
+
| `contourMode` | `'none' \| 'all'` | `'none'` | Detect face contours |
|
|
194
|
+
| `classificationMode` | `'none' \| 'all'` | `'none'` | Classify faces (smiling, eyes open) |
|
|
195
|
+
| `minFaceSize` | `number` | `0.15` | Minimum face size ratio |
|
|
196
|
+
| `trackingEnabled` | `boolean` | `false` | Enable face tracking across frames |
|
|
197
|
+
| `autoMode` | `boolean` | `false` | Auto scale bounds for screen coordinates |
|
|
198
|
+
| `windowWidth` | `number` | `1.0` | Screen width for auto scaling |
|
|
199
|
+
| `windowHeight` | `number` | `1.0` | Screen height for auto scaling |
|
|
200
|
+
| `cameraFacing` | `'front' \| 'back'` | `'front'` | Current camera position |
|
|
201
|
+
| `enableTensor` | `boolean` | `false` | Enable TensorFlow Lite processing |
|
|
202
|
+
|
|
203
|
+
### `Face` Interface
|
|
204
|
+
|
|
205
|
+
```typescript
|
|
206
|
+
interface Face {
|
|
207
|
+
pitchAngle: number; // Head rotation around X-axis
|
|
208
|
+
rollAngle: number; // Head rotation around Z-axis
|
|
209
|
+
yawAngle: number; // Head rotation around Y-axis
|
|
210
|
+
bounds: Bounds; // Face bounding box
|
|
211
|
+
leftEyeOpenProbability: number; // 0.0 to 1.0
|
|
212
|
+
rightEyeOpenProbability: number; // 0.0 to 1.0
|
|
213
|
+
smilingProbability: number; // 0.0 to 1.0
|
|
214
|
+
contours?: Contours; // Face contour points
|
|
215
|
+
landmarks?: Landmarks; // Face landmark points
|
|
216
|
+
data: number[]; // Face embedding (when TensorFlow enabled)
|
|
217
|
+
}
|
|
218
|
+
|
|
219
|
+
interface Bounds {
|
|
220
|
+
x: number;
|
|
221
|
+
y: number;
|
|
222
|
+
width: number;
|
|
223
|
+
height: number;
|
|
224
|
+
}
|
|
225
|
+
```
|
|
226
|
+
|
|
227
|
+
### `Landmarks` Interface
|
|
228
|
+
|
|
229
|
+
```typescript
|
|
230
|
+
interface Landmarks {
|
|
231
|
+
LEFT_CHEEK: Point;
|
|
232
|
+
LEFT_EAR: Point;
|
|
233
|
+
LEFT_EYE: Point;
|
|
234
|
+
MOUTH_BOTTOM: Point;
|
|
235
|
+
MOUTH_LEFT: Point;
|
|
236
|
+
MOUTH_RIGHT: Point;
|
|
237
|
+
NOSE_BASE: Point;
|
|
238
|
+
RIGHT_CHEEK: Point;
|
|
239
|
+
RIGHT_EAR: Point;
|
|
240
|
+
RIGHT_EYE: Point;
|
|
241
|
+
}
|
|
242
|
+
```
|
|
243
|
+
|
|
244
|
+
### `Contours` Interface
|
|
245
|
+
|
|
246
|
+
```typescript
|
|
247
|
+
interface Contours {
|
|
248
|
+
FACE: Point[];
|
|
249
|
+
LEFT_EYEBROW_TOP: Point[];
|
|
250
|
+
LEFT_EYEBROW_BOTTOM: Point[];
|
|
251
|
+
RIGHT_EYEBROW_TOP: Point[];
|
|
252
|
+
RIGHT_EYEBROW_BOTTOM: Point[];
|
|
253
|
+
LEFT_EYE: Point[];
|
|
254
|
+
RIGHT_EYE: Point[];
|
|
255
|
+
UPPER_LIP_TOP: Point[];
|
|
256
|
+
UPPER_LIP_BOTTOM: Point[];
|
|
257
|
+
LOWER_LIP_TOP: Point[];
|
|
258
|
+
LOWER_LIP_BOTTOM: Point[];
|
|
259
|
+
NOSE_BRIDGE: Point[];
|
|
260
|
+
NOSE_BOTTOM: Point[];
|
|
261
|
+
LEFT_CHEEK: Point[];
|
|
262
|
+
RIGHT_CHEEK: Point[];
|
|
263
|
+
}
|
|
264
|
+
```
|
|
265
|
+
|
|
266
|
+
### TensorFlow Lite Functions
|
|
267
|
+
|
|
268
|
+
#### `initTensor(modelPath: string, count?: number): Promise<string>`
|
|
269
|
+
|
|
270
|
+
Initialize TensorFlow Lite model for face recognition.
|
|
271
|
+
|
|
272
|
+
- `modelPath`: Name of the TFLite model file (without extension)
|
|
273
|
+
- `count`: Number of threads (optional)
|
|
274
|
+
|
|
275
|
+
#### `detectFromBase64(imageString: string): Promise<DetectBas64Type>`
|
|
276
|
+
|
|
277
|
+
Detect face from base64 image and return face embedding.
|
|
278
|
+
|
|
279
|
+
```typescript
|
|
280
|
+
type DetectBas64Type = {
|
|
281
|
+
base64: string; // Cropped face image
|
|
282
|
+
data: number[]; // Face embedding array
|
|
283
|
+
message: string; // Status message
|
|
284
|
+
leftEyeOpenProbability: number;
|
|
285
|
+
rightEyeOpenProbability: number;
|
|
286
|
+
smilingProbability: number;
|
|
287
|
+
};
|
|
288
|
+
```
|
|
289
|
+
|
|
290
|
+
## Example: Face Comparison
|
|
291
|
+
|
|
292
|
+
```tsx
|
|
293
|
+
// Calculate Euclidean distance between two face embeddings
|
|
294
|
+
function compareFaces(embedding1: number[], embedding2: number[]): number {
|
|
295
|
+
let distance = 0.0;
|
|
296
|
+
for (let i = 0; i < embedding1.length; i++) {
|
|
297
|
+
const diff = embedding1[i] - embedding2[i];
|
|
298
|
+
distance += diff * diff;
|
|
299
|
+
}
|
|
300
|
+
return distance; // Lower = more similar
|
|
301
|
+
}
|
|
302
|
+
|
|
303
|
+
// Usage
|
|
304
|
+
const distance = compareFaces(knownFaceEmbedding, detectedFaceEmbedding);
|
|
305
|
+
const isSamePerson = distance < 1.0; // Threshold may vary
|
|
306
|
+
```
|
|
307
|
+
|
|
308
|
+
## Troubleshooting
|
|
309
|
+
|
|
310
|
+
### iOS Build Issues
|
|
311
|
+
|
|
312
|
+
If you encounter build issues on iOS, ensure you have:
|
|
313
|
+
|
|
314
|
+
1. Run `pod install` after adding the package
|
|
315
|
+
2. Added the required permissions in `Info.plist`:
|
|
316
|
+
```xml
|
|
317
|
+
<key>NSCameraUsageDescription</key>
|
|
318
|
+
<string>Camera access is required for face detection</string>
|
|
319
|
+
```
|
|
320
|
+
|
|
321
|
+
### Android Build Issues
|
|
322
|
+
|
|
323
|
+
If you encounter build issues on Android:
|
|
324
|
+
|
|
325
|
+
1. Ensure `minSdkVersion` is at least 24
|
|
326
|
+
2. Ensure `compileSdkVersion` and `targetSdkVersion` are at least 36
|
|
327
|
+
3. Enable `multiDexEnabled` if needed
|
|
328
|
+
|
|
329
|
+
### Performance Tips
|
|
330
|
+
|
|
331
|
+
- Use `performanceMode: 'fast'` for real-time applications
|
|
332
|
+
- Disable `contourMode` and `landmarkMode` if not needed
|
|
333
|
+
- Use `minFaceSize` to filter small faces
|
|
334
|
+
- Disable `trackingEnabled` when using `contourMode`
|
|
22
335
|
|
|
23
336
|
## Contributing
|
|
24
337
|
|
|
@@ -30,4 +343,4 @@ MIT
|
|
|
30
343
|
|
|
31
344
|
---
|
|
32
345
|
|
|
33
|
-
Made with [
|
|
346
|
+
Made with ❤️ by [Yudi Edri Alviska](https://github.com/edritech93)
|
|
@@ -16,9 +16,9 @@ Pod::Spec.new do |s|
|
|
|
16
16
|
|
|
17
17
|
s.source_files = "ios/**/*.{h,m,mm,swift}"
|
|
18
18
|
|
|
19
|
-
s.dependency 'GoogleMLKit/FaceDetection'
|
|
19
|
+
s.dependency 'GoogleMLKit/FaceDetection'
|
|
20
20
|
s.dependency "VisionCamera"
|
|
21
|
-
s.dependency "TensorFlowLiteSwift", "2.
|
|
21
|
+
s.dependency "TensorFlowLiteSwift", "~> 2.17.0"
|
|
22
22
|
|
|
23
23
|
# Use install_modules_dependencies helper to install the dependencies if React Native version >=0.71.0.
|
|
24
24
|
# See https://github.com/facebook/react-native/blob/febf6b7f33fdb4904669f99d795eba4c0f95d7bf/scripts/cocoapods/new_architecture.rb#L79.
|
package/android/build.gradle
CHANGED
|
@@ -85,12 +85,10 @@ dependencies {
|
|
|
85
85
|
implementation "com.facebook.react:react-android"
|
|
86
86
|
implementation "org.jetbrains.kotlin:kotlin-stdlib:$kotlin_version"
|
|
87
87
|
api project(":react-native-vision-camera")
|
|
88
|
-
implementation "androidx.annotation:annotation:1.
|
|
89
|
-
implementation "androidx.camera:camera-core:1.
|
|
88
|
+
implementation "androidx.annotation:annotation:1.9.1"
|
|
89
|
+
implementation "androidx.camera:camera-core:1.5.2"
|
|
90
90
|
implementation "com.google.mlkit:face-detection:16.1.7"
|
|
91
|
-
implementation 'com.google.ai.edge.litert:litert:1.4.
|
|
92
|
-
implementation 'com.google.ai.edge.litert:litert-
|
|
93
|
-
implementation 'com.google.ai.edge.litert:litert-support:1.4.0'
|
|
94
|
-
implementation 'com.google.ai.edge.litert:litert-metadata:1.4.0'
|
|
91
|
+
implementation 'com.google.ai.edge.litert:litert:1.4.1'
|
|
92
|
+
implementation 'com.google.ai.edge.litert:litert-support:1.4.1'
|
|
95
93
|
}
|
|
96
94
|
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "vision-camera-face-detection",
|
|
3
|
-
"version": "2.2.
|
|
3
|
+
"version": "2.2.4",
|
|
4
4
|
"description": "Plugin Face Detection for Vision Camera 4",
|
|
5
5
|
"source": "./src/index.tsx",
|
|
6
6
|
"main": "./lib/commonjs/index.js",
|
|
@@ -77,17 +77,17 @@
|
|
|
77
77
|
"eslint-plugin-prettier": "^5.0.1",
|
|
78
78
|
"jest": "^29.7.0",
|
|
79
79
|
"prettier": "^3.0.3",
|
|
80
|
-
"react": "19.
|
|
81
|
-
"react-native": "0.
|
|
80
|
+
"react": "19.2.0",
|
|
81
|
+
"react-native": "0.83.1",
|
|
82
82
|
"react-native-builder-bob": "^0.36.0",
|
|
83
|
-
"react-native-vision-camera": "^4.7.
|
|
83
|
+
"react-native-vision-camera": "^4.7.3",
|
|
84
84
|
"react-native-worklets-core": "^1.6.2",
|
|
85
85
|
"release-it": "^17.10.0",
|
|
86
86
|
"turbo": "^1.10.7",
|
|
87
87
|
"typescript": "^5.2.2"
|
|
88
88
|
},
|
|
89
89
|
"resolutions": {
|
|
90
|
-
"@types/react": "^
|
|
90
|
+
"@types/react": "^19.2.0"
|
|
91
91
|
},
|
|
92
92
|
"peerDependencies": {
|
|
93
93
|
"react": "*",
|