venice-ai-sdk-provider 1.1.6 → 1.1.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +232 -232
- package/dist/index.js +5 -5
- package/dist/index.js.map +1 -1
- package/dist/index.mjs +5 -5
- package/dist/index.mjs.map +1 -1
- package/package.json +80 -80
package/README.md
CHANGED
|
@@ -1,232 +1,232 @@
|
|
|
1
|
-
# Venice Provider for Vercel AI SDK
|
|
2
|
-
|
|
3
|
-
The [Venice](https://venice.ai/) provider for the [Vercel AI SDK](https://sdk.vercel.ai/docs) gives access to uncensored, private AI models on the Venice API. Venice offers OpenAI-compatible endpoints with zero data retention and access to models like DeepSeek R1, Llama 3.1, Qwen, and more.
|
|
4
|
-
|
|
5
|
-
## Setup
|
|
6
|
-
|
|
7
|
-
```bash
|
|
8
|
-
# For pnpm
|
|
9
|
-
pnpm add venice-ai-sdk-provider
|
|
10
|
-
|
|
11
|
-
# For npm
|
|
12
|
-
npm install venice-ai-sdk-provider
|
|
13
|
-
|
|
14
|
-
# For yarn
|
|
15
|
-
yarn add venice-ai-sdk-provider
|
|
16
|
-
```
|
|
17
|
-
|
|
18
|
-
## Provider Instance
|
|
19
|
-
|
|
20
|
-
You can import the default provider instance `venice` from `venice-ai-sdk-provider` if you have set `VENICE_API_KEY` environment variable:
|
|
21
|
-
|
|
22
|
-
```ts
|
|
23
|
-
import { venice } from 'venice-ai-sdk-provider';
|
|
24
|
-
const model = venice("venice-uncensored");
|
|
25
|
-
```
|
|
26
|
-
|
|
27
|
-
Or instance it manually:
|
|
28
|
-
```ts
|
|
29
|
-
import { createVenice } from 'venice-ai-sdk-provider';
|
|
30
|
-
const venice = createVenice({ apiKey: "your-api-key" });
|
|
31
|
-
const model = venice("venice-uncensored");
|
|
32
|
-
```
|
|
33
|
-
|
|
34
|
-
## Example
|
|
35
|
-
|
|
36
|
-
```ts
|
|
37
|
-
import { venice } from 'venice-ai-sdk-provider';
|
|
38
|
-
import { generateText } from 'ai';
|
|
39
|
-
|
|
40
|
-
const { text } = await generateText({
|
|
41
|
-
model: venice('venice-uncensored'),
|
|
42
|
-
prompt: 'Write a vegetarian lasagna recipe for 4 people.',
|
|
43
|
-
});
|
|
44
|
-
```
|
|
45
|
-
|
|
46
|
-
## Supported models
|
|
47
|
-
|
|
48
|
-
This list is not definitive. Venice regularly adds new models to their system. You can find the latest list of models [here](https://docs.venice.ai/models/overview).
|
|
49
|
-
|
|
50
|
-
## Venice-Specific Features
|
|
51
|
-
|
|
52
|
-
### Web Search
|
|
53
|
-
|
|
54
|
-
Enable real-time web search with citations on all Venice text models:
|
|
55
|
-
|
|
56
|
-
```ts
|
|
57
|
-
import { venice } from 'venice-ai-sdk-provider';
|
|
58
|
-
import { generateText } from 'ai';
|
|
59
|
-
|
|
60
|
-
const { text } = await generateText({
|
|
61
|
-
model: venice('venice-uncensored'),
|
|
62
|
-
prompt: 'What are the latest developments in AI?',
|
|
63
|
-
providerOptions: {
|
|
64
|
-
venice: {
|
|
65
|
-
veniceParameters: {
|
|
66
|
-
enableWebSearch: 'auto',
|
|
67
|
-
},
|
|
68
|
-
},
|
|
69
|
-
},
|
|
70
|
-
});
|
|
71
|
-
```
|
|
72
|
-
|
|
73
|
-
### Reasoning Mode
|
|
74
|
-
|
|
75
|
-
Enable advanced step-by-step reasoning with visible thinking process:
|
|
76
|
-
|
|
77
|
-
```ts
|
|
78
|
-
import { venice } from 'venice-ai-sdk-provider';
|
|
79
|
-
import { generateText } from 'ai';
|
|
80
|
-
|
|
81
|
-
const { text } = await generateText({
|
|
82
|
-
model: venice('qwen3-235b-a22b-thinking-2507'),
|
|
83
|
-
prompt: 'Solve: If x + 2y = 10 and 3x - y = 5, what are x and y?',
|
|
84
|
-
providerOptions: {
|
|
85
|
-
venice: {
|
|
86
|
-
veniceParameters: {
|
|
87
|
-
stripThinkingResponse: false,
|
|
88
|
-
},
|
|
89
|
-
},
|
|
90
|
-
},
|
|
91
|
-
});
|
|
92
|
-
```
|
|
93
|
-
|
|
94
|
-
#### Reasoning Effort
|
|
95
|
-
|
|
96
|
-
Control the depth of reasoning for models that support it:
|
|
97
|
-
|
|
98
|
-
```ts
|
|
99
|
-
import { venice } from 'venice-ai-sdk-provider';
|
|
100
|
-
import { generateText } from 'ai';
|
|
101
|
-
|
|
102
|
-
const { text } = await generateText({
|
|
103
|
-
model: venice('gemini-3-pro-preview'),
|
|
104
|
-
prompt: 'Prove that there are infinitely many primes',
|
|
105
|
-
providerOptions: {
|
|
106
|
-
venice: {
|
|
107
|
-
reasoningEffort: 'high',
|
|
108
|
-
},
|
|
109
|
-
},
|
|
110
|
-
});
|
|
111
|
-
```
|
|
112
|
-
|
|
113
|
-
Options: `low` (fast, minimal thinking), `medium` (default, balanced), `high` (deep thinking, best for complex problems).
|
|
114
|
-
|
|
115
|
-
### Tool Calling
|
|
116
|
-
|
|
117
|
-
Venice supports function calling on compatible models:
|
|
118
|
-
|
|
119
|
-
```ts
|
|
120
|
-
import { venice } from 'venice-ai-sdk-provider';
|
|
121
|
-
import { generateText } from 'ai';
|
|
122
|
-
|
|
123
|
-
const { text } = await generateText({
|
|
124
|
-
model: venice('qwen3-next-80b),
|
|
125
|
-
tools: {
|
|
126
|
-
get_weather: {
|
|
127
|
-
description: 'Get current weather for a location',
|
|
128
|
-
parameters: z.object({
|
|
129
|
-
location: z.string().describe('City name'),
|
|
130
|
-
}),
|
|
131
|
-
execute: async ({ location }) => {
|
|
132
|
-
return { temperature: 72, condition: 'sunny' };
|
|
133
|
-
},
|
|
134
|
-
},
|
|
135
|
-
},
|
|
136
|
-
prompt: 'What is the weather like in New York?',
|
|
137
|
-
});
|
|
138
|
-
```
|
|
139
|
-
|
|
140
|
-
### Vision
|
|
141
|
-
|
|
142
|
-
Process images with vision-compatible models. Venice supports two ways to provide images:
|
|
143
|
-
|
|
144
|
-
#### Option 1: Using image URL
|
|
145
|
-
|
|
146
|
-
```ts
|
|
147
|
-
import { venice } from 'venice-ai-sdk-provider';
|
|
148
|
-
import { generateText } from 'ai';
|
|
149
|
-
|
|
150
|
-
const { text } = await generateText({
|
|
151
|
-
model: venice('mistral-31-24b'),
|
|
152
|
-
messages: [
|
|
153
|
-
{
|
|
154
|
-
role: 'user',
|
|
155
|
-
content: [
|
|
156
|
-
{ type: 'text', text: 'What do you see in this image?' },
|
|
157
|
-
{
|
|
158
|
-
type: 'image_url',
|
|
159
|
-
image_url: { url: 'https://example.com/image.jpg' },
|
|
160
|
-
},
|
|
161
|
-
],
|
|
162
|
-
},
|
|
163
|
-
],
|
|
164
|
-
});
|
|
165
|
-
```
|
|
166
|
-
|
|
167
|
-
#### Option 2: Using image data (base64)
|
|
168
|
-
|
|
169
|
-
```ts
|
|
170
|
-
import { venice } from 'venice-ai-sdk-provider';
|
|
171
|
-
import { generateText } from 'ai';
|
|
172
|
-
import { readFile } from 'fs/promises';
|
|
173
|
-
|
|
174
|
-
const imageBuffer = await readFile('path/to/image.jpg');
|
|
175
|
-
const imageBase64 = imageBuffer.toString('base64');
|
|
176
|
-
|
|
177
|
-
const { text } = await generateText({
|
|
178
|
-
model: venice('mistral-31-24b'),
|
|
179
|
-
messages: [
|
|
180
|
-
{
|
|
181
|
-
role: 'user',
|
|
182
|
-
content: [
|
|
183
|
-
{ type: 'text', text: 'What do you see in this image?' },
|
|
184
|
-
{
|
|
185
|
-
type: 'image_url',
|
|
186
|
-
image_url: { url: `data:image/jpeg;base64,${imageBase64}` },
|
|
187
|
-
},
|
|
188
|
-
],
|
|
189
|
-
},
|
|
190
|
-
],
|
|
191
|
-
});
|
|
192
|
-
```
|
|
193
|
-
|
|
194
|
-
Note: Use vision-capable models like `mistral-31-24b` for image analysis.
|
|
195
|
-
|
|
196
|
-
## Embeddings
|
|
197
|
-
|
|
198
|
-
Venice supports embedding models for semantic search and RAG pipelines:
|
|
199
|
-
|
|
200
|
-
```ts
|
|
201
|
-
import { embed } from 'ai';
|
|
202
|
-
import { venice } from 'venice-ai-sdk-provider';
|
|
203
|
-
|
|
204
|
-
const { embedding } = await embed({
|
|
205
|
-
model: venice.textEmbeddingModel('text-embedding-bge-m3'),
|
|
206
|
-
value: 'sunny day at the beach',
|
|
207
|
-
});
|
|
208
|
-
|
|
209
|
-
console.log(embedding);
|
|
210
|
-
```
|
|
211
|
-
|
|
212
|
-
## API Key Configuration
|
|
213
|
-
|
|
214
|
-
Set your Venice API key as an environment variable:
|
|
215
|
-
|
|
216
|
-
```bash
|
|
217
|
-
export VENICE_API_KEY=your-api-key-here
|
|
218
|
-
```
|
|
219
|
-
|
|
220
|
-
Or pass it directly when creating a provider instance:
|
|
221
|
-
|
|
222
|
-
```ts
|
|
223
|
-
import { createVenice } from 'venice-ai-sdk-provider';
|
|
224
|
-
|
|
225
|
-
const venice = createVenice({ apiKey: 'your-api-key' });
|
|
226
|
-
```
|
|
227
|
-
|
|
228
|
-
## Learn More
|
|
229
|
-
|
|
230
|
-
- [Venice API Documentation](https://docs.venice.ai/)
|
|
231
|
-
- [Venice Models Overview](https://docs.venice.ai/models/overview)
|
|
232
|
-
- [Vercel AI SDK Documentation](https://sdk.vercel.ai/docs)
|
|
1
|
+
# Venice Provider for Vercel AI SDK
|
|
2
|
+
|
|
3
|
+
The [Venice](https://venice.ai/) provider for the [Vercel AI SDK](https://sdk.vercel.ai/docs) gives access to uncensored, private AI models on the Venice API. Venice offers OpenAI-compatible endpoints with zero data retention and access to models like DeepSeek R1, Llama 3.1, Qwen, and more.
|
|
4
|
+
|
|
5
|
+
## Setup
|
|
6
|
+
|
|
7
|
+
```bash
|
|
8
|
+
# For pnpm
|
|
9
|
+
pnpm add venice-ai-sdk-provider
|
|
10
|
+
|
|
11
|
+
# For npm
|
|
12
|
+
npm install venice-ai-sdk-provider
|
|
13
|
+
|
|
14
|
+
# For yarn
|
|
15
|
+
yarn add venice-ai-sdk-provider
|
|
16
|
+
```
|
|
17
|
+
|
|
18
|
+
## Provider Instance
|
|
19
|
+
|
|
20
|
+
You can import the default provider instance `venice` from `venice-ai-sdk-provider` if you have set `VENICE_API_KEY` environment variable:
|
|
21
|
+
|
|
22
|
+
```ts
|
|
23
|
+
import { venice } from 'venice-ai-sdk-provider';
|
|
24
|
+
const model = venice("venice-uncensored");
|
|
25
|
+
```
|
|
26
|
+
|
|
27
|
+
Or instance it manually:
|
|
28
|
+
```ts
|
|
29
|
+
import { createVenice } from 'venice-ai-sdk-provider';
|
|
30
|
+
const venice = createVenice({ apiKey: "your-api-key" });
|
|
31
|
+
const model = venice("venice-uncensored");
|
|
32
|
+
```
|
|
33
|
+
|
|
34
|
+
## Example
|
|
35
|
+
|
|
36
|
+
```ts
|
|
37
|
+
import { venice } from 'venice-ai-sdk-provider';
|
|
38
|
+
import { generateText } from 'ai';
|
|
39
|
+
|
|
40
|
+
const { text } = await generateText({
|
|
41
|
+
model: venice('venice-uncensored'),
|
|
42
|
+
prompt: 'Write a vegetarian lasagna recipe for 4 people.',
|
|
43
|
+
});
|
|
44
|
+
```
|
|
45
|
+
|
|
46
|
+
## Supported models
|
|
47
|
+
|
|
48
|
+
This list is not definitive. Venice regularly adds new models to their system. You can find the latest list of models [here](https://docs.venice.ai/models/overview).
|
|
49
|
+
|
|
50
|
+
## Venice-Specific Features
|
|
51
|
+
|
|
52
|
+
### Web Search
|
|
53
|
+
|
|
54
|
+
Enable real-time web search with citations on all Venice text models:
|
|
55
|
+
|
|
56
|
+
```ts
|
|
57
|
+
import { venice } from 'venice-ai-sdk-provider';
|
|
58
|
+
import { generateText } from 'ai';
|
|
59
|
+
|
|
60
|
+
const { text } = await generateText({
|
|
61
|
+
model: venice('venice-uncensored'),
|
|
62
|
+
prompt: 'What are the latest developments in AI?',
|
|
63
|
+
providerOptions: {
|
|
64
|
+
venice: {
|
|
65
|
+
veniceParameters: {
|
|
66
|
+
enableWebSearch: 'auto',
|
|
67
|
+
},
|
|
68
|
+
},
|
|
69
|
+
},
|
|
70
|
+
});
|
|
71
|
+
```
|
|
72
|
+
|
|
73
|
+
### Reasoning Mode
|
|
74
|
+
|
|
75
|
+
Enable advanced step-by-step reasoning with visible thinking process:
|
|
76
|
+
|
|
77
|
+
```ts
|
|
78
|
+
import { venice } from 'venice-ai-sdk-provider';
|
|
79
|
+
import { generateText } from 'ai';
|
|
80
|
+
|
|
81
|
+
const { text } = await generateText({
|
|
82
|
+
model: venice('qwen3-235b-a22b-thinking-2507'),
|
|
83
|
+
prompt: 'Solve: If x + 2y = 10 and 3x - y = 5, what are x and y?',
|
|
84
|
+
providerOptions: {
|
|
85
|
+
venice: {
|
|
86
|
+
veniceParameters: {
|
|
87
|
+
stripThinkingResponse: false,
|
|
88
|
+
},
|
|
89
|
+
},
|
|
90
|
+
},
|
|
91
|
+
});
|
|
92
|
+
```
|
|
93
|
+
|
|
94
|
+
#### Reasoning Effort
|
|
95
|
+
|
|
96
|
+
Control the depth of reasoning for models that support it:
|
|
97
|
+
|
|
98
|
+
```ts
|
|
99
|
+
import { venice } from 'venice-ai-sdk-provider';
|
|
100
|
+
import { generateText } from 'ai';
|
|
101
|
+
|
|
102
|
+
const { text } = await generateText({
|
|
103
|
+
model: venice('gemini-3-pro-preview'),
|
|
104
|
+
prompt: 'Prove that there are infinitely many primes',
|
|
105
|
+
providerOptions: {
|
|
106
|
+
venice: {
|
|
107
|
+
reasoningEffort: 'high',
|
|
108
|
+
},
|
|
109
|
+
},
|
|
110
|
+
});
|
|
111
|
+
```
|
|
112
|
+
|
|
113
|
+
Options: `low` (fast, minimal thinking), `medium` (default, balanced), `high` (deep thinking, best for complex problems).
|
|
114
|
+
|
|
115
|
+
### Tool Calling
|
|
116
|
+
|
|
117
|
+
Venice supports function calling on compatible models:
|
|
118
|
+
|
|
119
|
+
```ts
|
|
120
|
+
import { venice } from 'venice-ai-sdk-provider';
|
|
121
|
+
import { generateText } from 'ai';
|
|
122
|
+
|
|
123
|
+
const { text } = await generateText({
|
|
124
|
+
model: venice('qwen3-next-80b),
|
|
125
|
+
tools: {
|
|
126
|
+
get_weather: {
|
|
127
|
+
description: 'Get current weather for a location',
|
|
128
|
+
parameters: z.object({
|
|
129
|
+
location: z.string().describe('City name'),
|
|
130
|
+
}),
|
|
131
|
+
execute: async ({ location }) => {
|
|
132
|
+
return { temperature: 72, condition: 'sunny' };
|
|
133
|
+
},
|
|
134
|
+
},
|
|
135
|
+
},
|
|
136
|
+
prompt: 'What is the weather like in New York?',
|
|
137
|
+
});
|
|
138
|
+
```
|
|
139
|
+
|
|
140
|
+
### Vision
|
|
141
|
+
|
|
142
|
+
Process images with vision-compatible models. Venice supports two ways to provide images:
|
|
143
|
+
|
|
144
|
+
#### Option 1: Using image URL
|
|
145
|
+
|
|
146
|
+
```ts
|
|
147
|
+
import { venice } from 'venice-ai-sdk-provider';
|
|
148
|
+
import { generateText } from 'ai';
|
|
149
|
+
|
|
150
|
+
const { text } = await generateText({
|
|
151
|
+
model: venice('mistral-31-24b'),
|
|
152
|
+
messages: [
|
|
153
|
+
{
|
|
154
|
+
role: 'user',
|
|
155
|
+
content: [
|
|
156
|
+
{ type: 'text', text: 'What do you see in this image?' },
|
|
157
|
+
{
|
|
158
|
+
type: 'image_url',
|
|
159
|
+
image_url: { url: 'https://example.com/image.jpg' },
|
|
160
|
+
},
|
|
161
|
+
],
|
|
162
|
+
},
|
|
163
|
+
],
|
|
164
|
+
});
|
|
165
|
+
```
|
|
166
|
+
|
|
167
|
+
#### Option 2: Using image data (base64)
|
|
168
|
+
|
|
169
|
+
```ts
|
|
170
|
+
import { venice } from 'venice-ai-sdk-provider';
|
|
171
|
+
import { generateText } from 'ai';
|
|
172
|
+
import { readFile } from 'fs/promises';
|
|
173
|
+
|
|
174
|
+
const imageBuffer = await readFile('path/to/image.jpg');
|
|
175
|
+
const imageBase64 = imageBuffer.toString('base64');
|
|
176
|
+
|
|
177
|
+
const { text } = await generateText({
|
|
178
|
+
model: venice('mistral-31-24b'),
|
|
179
|
+
messages: [
|
|
180
|
+
{
|
|
181
|
+
role: 'user',
|
|
182
|
+
content: [
|
|
183
|
+
{ type: 'text', text: 'What do you see in this image?' },
|
|
184
|
+
{
|
|
185
|
+
type: 'image_url',
|
|
186
|
+
image_url: { url: `data:image/jpeg;base64,${imageBase64}` },
|
|
187
|
+
},
|
|
188
|
+
],
|
|
189
|
+
},
|
|
190
|
+
],
|
|
191
|
+
});
|
|
192
|
+
```
|
|
193
|
+
|
|
194
|
+
Note: Use vision-capable models like `mistral-31-24b` for image analysis.
|
|
195
|
+
|
|
196
|
+
## Embeddings
|
|
197
|
+
|
|
198
|
+
Venice supports embedding models for semantic search and RAG pipelines:
|
|
199
|
+
|
|
200
|
+
```ts
|
|
201
|
+
import { embed } from 'ai';
|
|
202
|
+
import { venice } from 'venice-ai-sdk-provider';
|
|
203
|
+
|
|
204
|
+
const { embedding } = await embed({
|
|
205
|
+
model: venice.textEmbeddingModel('text-embedding-bge-m3'),
|
|
206
|
+
value: 'sunny day at the beach',
|
|
207
|
+
});
|
|
208
|
+
|
|
209
|
+
console.log(embedding);
|
|
210
|
+
```
|
|
211
|
+
|
|
212
|
+
## API Key Configuration
|
|
213
|
+
|
|
214
|
+
Set your Venice API key as an environment variable:
|
|
215
|
+
|
|
216
|
+
```bash
|
|
217
|
+
export VENICE_API_KEY=your-api-key-here
|
|
218
|
+
```
|
|
219
|
+
|
|
220
|
+
Or pass it directly when creating a provider instance:
|
|
221
|
+
|
|
222
|
+
```ts
|
|
223
|
+
import { createVenice } from 'venice-ai-sdk-provider';
|
|
224
|
+
|
|
225
|
+
const venice = createVenice({ apiKey: 'your-api-key' });
|
|
226
|
+
```
|
|
227
|
+
|
|
228
|
+
## Learn More
|
|
229
|
+
|
|
230
|
+
- [Venice API Documentation](https://docs.venice.ai/)
|
|
231
|
+
- [Venice Models Overview](https://docs.venice.ai/models/overview)
|
|
232
|
+
- [Vercel AI SDK Documentation](https://sdk.vercel.ai/docs)
|