token-speed-tester 1.4.2 → 1.5.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.en.md +11 -0
- package/README.md +11 -0
- package/dist/index.js +164 -52
- package/dist/index.js.map +1 -1
- package/package.json +4 -2
package/README.en.md
CHANGED
|
@@ -18,6 +18,7 @@ A powerful command-line tool for testing token output speed of LLM APIs. Support
|
|
|
18
18
|
- **TTFT** (Time to First Token): Latency before first token arrives
|
|
19
19
|
- **Average Speed**: Mean tokens per second
|
|
20
20
|
- **Peak Speed**: Fastest speed over a 10-token window
|
|
21
|
+
- **Peak TPS**: Highest tokens received within a single second
|
|
21
22
|
- **TPS Curve**: Tokens received per second throughout the stream
|
|
22
23
|
- **Statistical Analysis**: Mean, min, max, and standard deviation across multiple test runs
|
|
23
24
|
- **ASCII Visualization**: Beautiful terminal-based charts and tables
|
|
@@ -123,12 +124,15 @@ Prompt: 写一篇关于 AI 的短文
|
|
|
123
124
|
|
|
124
125
|
⏳ 正在运行测试...
|
|
125
126
|
|
|
127
|
+
模型输出 (流式):
|
|
128
|
+
|
|
126
129
|
[运行 1]
|
|
127
130
|
TTFT: 523ms
|
|
128
131
|
总耗时: 3245ms
|
|
129
132
|
总 Token 数: 412
|
|
130
133
|
平均速度: 126.96 tokens/s
|
|
131
134
|
峰值速度: 156.32 tokens/s
|
|
135
|
+
峰值 TPS: 168.00 tokens/s
|
|
132
136
|
|
|
133
137
|
[运行 2]
|
|
134
138
|
TTFT: 487ms
|
|
@@ -136,6 +140,7 @@ Prompt: 写一篇关于 AI 的短文
|
|
|
136
140
|
总 Token 数: 398
|
|
137
141
|
平均速度: 124.84 tokens/s
|
|
138
142
|
峰值速度: 158.41 tokens/s
|
|
143
|
+
峰值 TPS: 171.00 tokens/s
|
|
139
144
|
|
|
140
145
|
[运行 3]
|
|
141
146
|
TTFT: 501ms
|
|
@@ -143,6 +148,7 @@ Prompt: 写一篇关于 AI 的短文
|
|
|
143
148
|
总 Token 数: 405
|
|
144
149
|
平均速度: 122.28 tokens/s
|
|
145
150
|
峰值速度: 154.23 tokens/s
|
|
151
|
+
峰值 TPS: 166.00 tokens/s
|
|
146
152
|
|
|
147
153
|
======================================================================
|
|
148
154
|
Token 速度测试报告
|
|
@@ -161,6 +167,8 @@ Token 速度测试报告
|
|
|
161
167
|
│ 平均速度 │ 124.69 │ 122.28 │ 126.96 │ 1.88 │
|
|
162
168
|
├──────────────────────────────────────────────────────────────────────┤
|
|
163
169
|
│ 峰值速度 │ 156.32 │ 154.23 │ 158.41 │ 1.82 │
|
|
170
|
+
├──────────────────────────────────────────────────────────────────────┤
|
|
171
|
+
│ 峰值 TPS │ 168.33 │ 166.00 │ 171.00 │ 2.05 │
|
|
164
172
|
└──────────────────────────────────────────────────────────────────────┘
|
|
165
173
|
|
|
166
174
|
Token 速度趋势图 (TPS)
|
|
@@ -199,8 +207,11 @@ TPS 分布
|
|
|
199
207
|
| **Total Tokens** | Number of output tokens received |
|
|
200
208
|
| **Average Speed** | Mean tokens per second (totalTokens / totalTime × 1000) |
|
|
201
209
|
| **Peak Speed** | Fastest speed measured over a sliding 10-token window |
|
|
210
|
+
| **Peak TPS** | Highest tokens received within a single second |
|
|
202
211
|
| **TPS Curve** | Tokens received per second throughout the streaming response |
|
|
203
212
|
|
|
213
|
+
Note: Token counting uses the model tokenizer per stream chunk; boundary splits may cause slight differences.
|
|
214
|
+
|
|
204
215
|
## Development
|
|
205
216
|
|
|
206
217
|
### Running Tests
|
package/README.md
CHANGED
|
@@ -18,6 +18,7 @@
|
|
|
18
18
|
- **TTFT**(首字延迟):首个 Token 到达前的延迟
|
|
19
19
|
- **平均速度**:每秒平均 Token 数
|
|
20
20
|
- **峰值速度**:10 个 Token 滑动窗口内的最快速度
|
|
21
|
+
- **峰值 TPS**:单秒内的最高 Token 数
|
|
21
22
|
- **TPS 曲线**:整个流式响应中每秒接收的 Token 数
|
|
22
23
|
- **统计分析**:多次测试运行的均值、最小值、最大值和标准差
|
|
23
24
|
- **ASCII 可视化**:精美的终端图表和数据表格
|
|
@@ -123,12 +124,15 @@ Prompt: 写一篇关于 AI 的短文
|
|
|
123
124
|
|
|
124
125
|
⏳ 正在运行测试...
|
|
125
126
|
|
|
127
|
+
模型输出 (流式):
|
|
128
|
+
|
|
126
129
|
[运行 1]
|
|
127
130
|
TTFT: 523ms
|
|
128
131
|
总耗时: 3245ms
|
|
129
132
|
总 Token 数: 412
|
|
130
133
|
平均速度: 126.96 tokens/s
|
|
131
134
|
峰值速度: 156.32 tokens/s
|
|
135
|
+
峰值 TPS: 168.00 tokens/s
|
|
132
136
|
|
|
133
137
|
[运行 2]
|
|
134
138
|
TTFT: 487ms
|
|
@@ -136,6 +140,7 @@ Prompt: 写一篇关于 AI 的短文
|
|
|
136
140
|
总 Token 数: 398
|
|
137
141
|
平均速度: 124.84 tokens/s
|
|
138
142
|
峰值速度: 158.41 tokens/s
|
|
143
|
+
峰值 TPS: 171.00 tokens/s
|
|
139
144
|
|
|
140
145
|
[运行 3]
|
|
141
146
|
TTFT: 501ms
|
|
@@ -143,6 +148,7 @@ Prompt: 写一篇关于 AI 的短文
|
|
|
143
148
|
总 Token 数: 405
|
|
144
149
|
平均速度: 122.28 tokens/s
|
|
145
150
|
峰值速度: 154.23 tokens/s
|
|
151
|
+
峰值 TPS: 166.00 tokens/s
|
|
146
152
|
|
|
147
153
|
======================================================================
|
|
148
154
|
Token 速度测试报告
|
|
@@ -161,6 +167,8 @@ Token 速度测试报告
|
|
|
161
167
|
│ 平均速度 │ 124.69 │ 122.28 │ 126.96 │ 1.88 │
|
|
162
168
|
├──────────────────────────────────────────────────────────────────────┤
|
|
163
169
|
│ 峰值速度 │ 156.32 │ 154.23 │ 158.41 │ 1.82 │
|
|
170
|
+
├──────────────────────────────────────────────────────────────────────┤
|
|
171
|
+
│ 峰值 TPS │ 168.33 │ 166.00 │ 171.00 │ 2.05 │
|
|
164
172
|
└──────────────────────────────────────────────────────────────────────┘
|
|
165
173
|
|
|
166
174
|
Token 速度趋势图 (TPS)
|
|
@@ -199,8 +207,11 @@ TPS 分布
|
|
|
199
207
|
| **总 Token 数** | 接收到的输出 Token 数量 |
|
|
200
208
|
| **平均速度** | 每秒平均 Token 数(totalTokens / totalTime × 1000) |
|
|
201
209
|
| **峰值速度** | 10 个 Token 滑动窗口内测量的最快速度 |
|
|
210
|
+
| **峰值 TPS** | 单秒内最高 Token 数 |
|
|
202
211
|
| **TPS 曲线** | 整个流式响应中每秒接收的 Token 数 |
|
|
203
212
|
|
|
213
|
+
注:Token 统计基于模型 tokenizer,并按流式分片计数,分片边界可能带来轻微差异。
|
|
214
|
+
|
|
204
215
|
## 开发
|
|
205
216
|
|
|
206
217
|
### 运行测试
|
package/dist/index.js
CHANGED
|
@@ -50,13 +50,34 @@ function parseConfig(args) {
|
|
|
50
50
|
}
|
|
51
51
|
|
|
52
52
|
// src/client.ts
|
|
53
|
+
import { performance } from "perf_hooks";
|
|
53
54
|
import Anthropic from "@anthropic-ai/sdk";
|
|
54
55
|
import OpenAI from "openai";
|
|
56
|
+
|
|
57
|
+
// src/tokenizer.ts
|
|
58
|
+
import { encoding_for_model, get_encoding } from "tiktoken";
|
|
59
|
+
var FALLBACK_ENCODING = "cl100k_base";
|
|
60
|
+
function createTokenizer(model) {
|
|
61
|
+
try {
|
|
62
|
+
const normalized = model.trim();
|
|
63
|
+
if (!normalized) {
|
|
64
|
+
return get_encoding(FALLBACK_ENCODING);
|
|
65
|
+
}
|
|
66
|
+
return encoding_for_model(normalized);
|
|
67
|
+
} catch {
|
|
68
|
+
return get_encoding(FALLBACK_ENCODING);
|
|
69
|
+
}
|
|
70
|
+
}
|
|
71
|
+
|
|
72
|
+
// src/client.ts
|
|
55
73
|
async function anthropicStreamTest(config) {
|
|
56
|
-
const startTime =
|
|
74
|
+
const startTime = performance.now();
|
|
57
75
|
const tokenTimes = [];
|
|
58
76
|
let ttft = 0;
|
|
59
77
|
let firstTokenRecorded = false;
|
|
78
|
+
let tokenCount = 0;
|
|
79
|
+
let wroteOutput = false;
|
|
80
|
+
const encoding = createTokenizer(config.model);
|
|
60
81
|
const client = new Anthropic({
|
|
61
82
|
apiKey: config.apiKey,
|
|
62
83
|
baseURL: config.baseURL
|
|
@@ -69,16 +90,23 @@ async function anthropicStreamTest(config) {
|
|
|
69
90
|
stream: true
|
|
70
91
|
});
|
|
71
92
|
for await (const event of stream) {
|
|
72
|
-
const currentTime =
|
|
93
|
+
const currentTime = performance.now();
|
|
73
94
|
if (event.type === "content_block_delta" && event.delta.type === "text_delta") {
|
|
74
95
|
const text = event.delta.text;
|
|
75
96
|
if (text && text.length > 0) {
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
97
|
+
process.stdout.write(text);
|
|
98
|
+
wroteOutput = true;
|
|
99
|
+
const encoded = encoding.encode(text);
|
|
100
|
+
const newTokens = encoded.length;
|
|
101
|
+
if (newTokens > 0) {
|
|
102
|
+
if (!firstTokenRecorded) {
|
|
103
|
+
ttft = currentTime - startTime;
|
|
104
|
+
firstTokenRecorded = true;
|
|
105
|
+
}
|
|
106
|
+
for (let i = 0; i < newTokens; i++) {
|
|
107
|
+
tokenTimes.push(currentTime - startTime);
|
|
108
|
+
}
|
|
109
|
+
tokenCount += newTokens;
|
|
82
110
|
}
|
|
83
111
|
}
|
|
84
112
|
}
|
|
@@ -88,21 +116,29 @@ async function anthropicStreamTest(config) {
|
|
|
88
116
|
throw new Error(`Anthropic API error: ${error.message}`);
|
|
89
117
|
}
|
|
90
118
|
throw error;
|
|
119
|
+
} finally {
|
|
120
|
+
if (wroteOutput) {
|
|
121
|
+
process.stdout.write("\n");
|
|
122
|
+
}
|
|
123
|
+
encoding.free();
|
|
91
124
|
}
|
|
92
|
-
const endTime =
|
|
125
|
+
const endTime = performance.now();
|
|
93
126
|
const totalTime = endTime - startTime;
|
|
94
127
|
return {
|
|
95
128
|
ttft,
|
|
96
129
|
tokens: tokenTimes,
|
|
97
|
-
totalTokens:
|
|
130
|
+
totalTokens: tokenCount,
|
|
98
131
|
totalTime
|
|
99
132
|
};
|
|
100
133
|
}
|
|
101
134
|
async function openaiStreamTest(config) {
|
|
102
|
-
const startTime =
|
|
135
|
+
const startTime = performance.now();
|
|
103
136
|
const tokenTimes = [];
|
|
104
137
|
let ttft = 0;
|
|
105
138
|
let firstTokenRecorded = false;
|
|
139
|
+
let tokenCount = 0;
|
|
140
|
+
let wroteOutput = false;
|
|
141
|
+
const encoding = createTokenizer(config.model);
|
|
106
142
|
const client = new OpenAI({
|
|
107
143
|
apiKey: config.apiKey,
|
|
108
144
|
baseURL: config.baseURL
|
|
@@ -115,16 +151,25 @@ async function openaiStreamTest(config) {
|
|
|
115
151
|
stream: true
|
|
116
152
|
});
|
|
117
153
|
for await (const chunk of stream) {
|
|
118
|
-
const currentTime =
|
|
154
|
+
const currentTime = performance.now();
|
|
119
155
|
const delta = chunk.choices[0]?.delta;
|
|
120
156
|
if (delta?.content) {
|
|
121
157
|
const content = delta.content;
|
|
122
|
-
if (
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
158
|
+
if (content.length > 0) {
|
|
159
|
+
process.stdout.write(content);
|
|
160
|
+
wroteOutput = true;
|
|
161
|
+
const encoded = encoding.encode(content);
|
|
162
|
+
const newTokens = encoded.length;
|
|
163
|
+
if (newTokens > 0) {
|
|
164
|
+
if (!firstTokenRecorded) {
|
|
165
|
+
ttft = currentTime - startTime;
|
|
166
|
+
firstTokenRecorded = true;
|
|
167
|
+
}
|
|
168
|
+
for (let i = 0; i < newTokens; i++) {
|
|
169
|
+
tokenTimes.push(currentTime - startTime);
|
|
170
|
+
}
|
|
171
|
+
tokenCount += newTokens;
|
|
172
|
+
}
|
|
128
173
|
}
|
|
129
174
|
}
|
|
130
175
|
}
|
|
@@ -133,13 +178,18 @@ async function openaiStreamTest(config) {
|
|
|
133
178
|
throw new Error(`OpenAI API error: ${error.message}`);
|
|
134
179
|
}
|
|
135
180
|
throw error;
|
|
181
|
+
} finally {
|
|
182
|
+
if (wroteOutput) {
|
|
183
|
+
process.stdout.write("\n");
|
|
184
|
+
}
|
|
185
|
+
encoding.free();
|
|
136
186
|
}
|
|
137
|
-
const endTime =
|
|
187
|
+
const endTime = performance.now();
|
|
138
188
|
const totalTime = endTime - startTime;
|
|
139
189
|
return {
|
|
140
190
|
ttft,
|
|
141
191
|
tokens: tokenTimes,
|
|
142
|
-
totalTokens:
|
|
192
|
+
totalTokens: tokenCount,
|
|
143
193
|
totalTime
|
|
144
194
|
};
|
|
145
195
|
}
|
|
@@ -153,6 +203,12 @@ async function streamTest(config) {
|
|
|
153
203
|
async function runMultipleTests(config) {
|
|
154
204
|
const results = [];
|
|
155
205
|
for (let i = 0; i < config.runCount; i++) {
|
|
206
|
+
if (config.runCount > 1) {
|
|
207
|
+
const label = `
|
|
208
|
+
[\u8FD0\u884C ${i + 1}/${config.runCount}]`;
|
|
209
|
+
console.log(label);
|
|
210
|
+
console.log("-".repeat(label.length - 1));
|
|
211
|
+
}
|
|
156
212
|
const result = await streamTest(config);
|
|
157
213
|
results.push(result);
|
|
158
214
|
}
|
|
@@ -169,23 +225,24 @@ function calculateAverageSpeed(metrics) {
|
|
|
169
225
|
}
|
|
170
226
|
return metrics.totalTokens / metrics.totalTime * 1e3;
|
|
171
227
|
}
|
|
228
|
+
var MIN_PEAK_WINDOW_MS = 50;
|
|
172
229
|
function calculatePeakSpeed(metrics, windowSize = 10) {
|
|
173
230
|
if (metrics.tokens.length < windowSize) {
|
|
174
231
|
if (metrics.tokens.length < 2) {
|
|
175
232
|
return 0;
|
|
176
233
|
}
|
|
177
234
|
const totalTime = metrics.tokens[metrics.tokens.length - 1] - metrics.tokens[0];
|
|
178
|
-
|
|
235
|
+
const durationMs = Math.max(totalTime, MIN_PEAK_WINDOW_MS);
|
|
236
|
+
return (metrics.tokens.length - 1) / durationMs * 1e3;
|
|
179
237
|
}
|
|
180
238
|
let maxSpeed = 0;
|
|
181
239
|
for (let i = 0; i <= metrics.tokens.length - windowSize; i++) {
|
|
182
240
|
const startTime = metrics.tokens[i];
|
|
183
241
|
const endTime = metrics.tokens[i + windowSize - 1];
|
|
184
242
|
const duration = endTime - startTime;
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
}
|
|
243
|
+
const durationMs = Math.max(duration, MIN_PEAK_WINDOW_MS);
|
|
244
|
+
const speed = (windowSize - 1) / durationMs * 1e3;
|
|
245
|
+
maxSpeed = Math.max(maxSpeed, speed);
|
|
189
246
|
}
|
|
190
247
|
return maxSpeed;
|
|
191
248
|
}
|
|
@@ -208,13 +265,15 @@ function calculateTPS(metrics) {
|
|
|
208
265
|
return tps;
|
|
209
266
|
}
|
|
210
267
|
function calculateMetrics(metrics) {
|
|
268
|
+
const tps = calculateTPS(metrics);
|
|
211
269
|
return {
|
|
212
270
|
ttft: calculateTTFT(metrics),
|
|
213
271
|
totalTime: metrics.totalTime,
|
|
214
272
|
totalTokens: metrics.totalTokens,
|
|
215
273
|
averageSpeed: calculateAverageSpeed(metrics),
|
|
216
274
|
peakSpeed: calculatePeakSpeed(metrics),
|
|
217
|
-
|
|
275
|
+
peakTps: tps.length > 0 ? Math.max(...tps) : 0,
|
|
276
|
+
tps
|
|
218
277
|
};
|
|
219
278
|
}
|
|
220
279
|
function mean(values) {
|
|
@@ -237,6 +296,7 @@ function calculateStats(allMetrics) {
|
|
|
237
296
|
const totalTokens = allMetrics.map((m) => m.totalTokens);
|
|
238
297
|
const averageSpeeds = allMetrics.map((m) => m.averageSpeed);
|
|
239
298
|
const peakSpeeds = allMetrics.map((m) => m.peakSpeed);
|
|
299
|
+
const peakTpsValues = allMetrics.map((m) => m.peakTps);
|
|
240
300
|
const maxTpsLength = Math.max(...allMetrics.map((m) => m.tps.length));
|
|
241
301
|
const avgTps = [];
|
|
242
302
|
for (let i = 0; i < maxTpsLength; i++) {
|
|
@@ -250,6 +310,7 @@ function calculateStats(allMetrics) {
|
|
|
250
310
|
totalTokens: mean(totalTokens),
|
|
251
311
|
averageSpeed: mean(averageSpeeds),
|
|
252
312
|
peakSpeed: mean(peakSpeeds),
|
|
313
|
+
peakTps: mean(peakTpsValues),
|
|
253
314
|
tps: avgTps
|
|
254
315
|
},
|
|
255
316
|
min: {
|
|
@@ -258,6 +319,7 @@ function calculateStats(allMetrics) {
|
|
|
258
319
|
totalTokens: Math.min(...totalTokens),
|
|
259
320
|
averageSpeed: Math.min(...averageSpeeds),
|
|
260
321
|
peakSpeed: Math.min(...peakSpeeds),
|
|
322
|
+
peakTps: Math.min(...peakTpsValues),
|
|
261
323
|
tps: []
|
|
262
324
|
},
|
|
263
325
|
max: {
|
|
@@ -266,6 +328,7 @@ function calculateStats(allMetrics) {
|
|
|
266
328
|
totalTokens: Math.max(...totalTokens),
|
|
267
329
|
averageSpeed: Math.max(...averageSpeeds),
|
|
268
330
|
peakSpeed: Math.max(...peakSpeeds),
|
|
331
|
+
peakTps: Math.max(...peakTpsValues),
|
|
269
332
|
tps: []
|
|
270
333
|
},
|
|
271
334
|
stdDev: {
|
|
@@ -274,6 +337,7 @@ function calculateStats(allMetrics) {
|
|
|
274
337
|
totalTokens: standardDeviation(totalTokens),
|
|
275
338
|
averageSpeed: standardDeviation(averageSpeeds),
|
|
276
339
|
peakSpeed: standardDeviation(peakSpeeds),
|
|
340
|
+
peakTps: standardDeviation(peakTpsValues),
|
|
277
341
|
tps: []
|
|
278
342
|
},
|
|
279
343
|
sampleSize
|
|
@@ -281,39 +345,68 @@ function calculateStats(allMetrics) {
|
|
|
281
345
|
}
|
|
282
346
|
|
|
283
347
|
// src/chart.ts
|
|
348
|
+
import stringWidth from "string-width";
|
|
284
349
|
var BLOCK_CHAR = "\u2588";
|
|
285
350
|
var CHART_WIDTH = 50;
|
|
286
351
|
var CHART_HEIGHT = 10;
|
|
352
|
+
var STAT_LABEL_WIDTH = 15;
|
|
353
|
+
var STAT_VALUE_WIDTH = 10;
|
|
354
|
+
var Y_LABEL_WIDTH = 4;
|
|
355
|
+
function padEndWidth(text, width) {
|
|
356
|
+
const currentWidth = stringWidth(text);
|
|
357
|
+
if (currentWidth >= width) {
|
|
358
|
+
return text;
|
|
359
|
+
}
|
|
360
|
+
return text + " ".repeat(width - currentWidth);
|
|
361
|
+
}
|
|
362
|
+
function padStartWidth(text, width) {
|
|
363
|
+
const currentWidth = stringWidth(text);
|
|
364
|
+
if (currentWidth >= width) {
|
|
365
|
+
return text;
|
|
366
|
+
}
|
|
367
|
+
return " ".repeat(width - currentWidth) + text;
|
|
368
|
+
}
|
|
287
369
|
function renderSpeedChart(tps, maxSpeed) {
|
|
288
370
|
if (tps.length === 0) {
|
|
289
371
|
return "No data available for chart";
|
|
290
372
|
}
|
|
291
373
|
const actualMax = maxSpeed ?? Math.max(...tps, 1);
|
|
292
374
|
const maxVal = Math.max(actualMax, 1);
|
|
375
|
+
const buildRow = (label, bars) => `\u2502 ${padStartWidth(label, Y_LABEL_WIDTH)} \u2524${bars} \u2502`;
|
|
376
|
+
const emptyRow = buildRow("0", " ".repeat(CHART_WIDTH));
|
|
377
|
+
const chartWidth = stringWidth(emptyRow) - 2;
|
|
378
|
+
const axisPrefix = `\u2502 ${padStartWidth("", Y_LABEL_WIDTH)} \u253C`;
|
|
293
379
|
const lines = [];
|
|
294
380
|
lines.push("Token \u901F\u5EA6\u8D8B\u52BF\u56FE (TPS)");
|
|
295
|
-
lines.push("\u250C" + "\u2500".repeat(
|
|
381
|
+
lines.push("\u250C" + "\u2500".repeat(chartWidth) + "\u2510");
|
|
296
382
|
for (let row = CHART_HEIGHT - 1; row >= 0; row--) {
|
|
297
383
|
const value = row / (CHART_HEIGHT - 1) * maxVal;
|
|
298
|
-
const label = value.toFixed(0)
|
|
299
|
-
let
|
|
384
|
+
const label = value.toFixed(0);
|
|
385
|
+
let bars = "";
|
|
300
386
|
for (let col = 0; col < CHART_WIDTH; col++) {
|
|
301
387
|
const index = Math.floor(col / CHART_WIDTH * tps.length);
|
|
302
388
|
const tpsValue = tps[index] ?? 0;
|
|
303
389
|
const normalizedHeight = tpsValue / maxVal * (CHART_HEIGHT - 1);
|
|
304
|
-
|
|
305
|
-
chartRow += BLOCK_CHAR;
|
|
306
|
-
} else {
|
|
307
|
-
chartRow += " ";
|
|
308
|
-
}
|
|
390
|
+
bars += normalizedHeight >= row ? BLOCK_CHAR : " ";
|
|
309
391
|
}
|
|
310
|
-
|
|
311
|
-
lines.push(chartRow);
|
|
392
|
+
lines.push(buildRow(label, bars));
|
|
312
393
|
}
|
|
313
|
-
lines.push("\
|
|
314
|
-
lines.push("\u2514" + "\u2500".repeat(
|
|
394
|
+
lines.push(`${axisPrefix}${"\u2500".repeat(CHART_WIDTH)} \u2502`);
|
|
395
|
+
lines.push("\u2514" + "\u2500".repeat(chartWidth) + "\u2518");
|
|
315
396
|
const xLabels = generateXLabels(tps.length, 6);
|
|
316
|
-
|
|
397
|
+
const labelLine = new Array(CHART_WIDTH).fill(" ");
|
|
398
|
+
const maxIndex = Math.max(tps.length - 1, 1);
|
|
399
|
+
for (const label of xLabels) {
|
|
400
|
+
const seconds = parseInt(label.replace("s", ""), 10);
|
|
401
|
+
const position = Math.min(
|
|
402
|
+
CHART_WIDTH - 1,
|
|
403
|
+
Math.round(seconds / maxIndex * (CHART_WIDTH - 1))
|
|
404
|
+
);
|
|
405
|
+
for (let i = 0; i < label.length && position + i < CHART_WIDTH; i++) {
|
|
406
|
+
labelLine[position + i] = label[i];
|
|
407
|
+
}
|
|
408
|
+
}
|
|
409
|
+
lines.push(" ".repeat(stringWidth(axisPrefix)) + labelLine.join(""));
|
|
317
410
|
return lines.join("\n");
|
|
318
411
|
}
|
|
319
412
|
function generateXLabels(dataPoints, maxLabels) {
|
|
@@ -345,13 +438,19 @@ function renderTPSHistogram(tps) {
|
|
|
345
438
|
histogram[bucketIndex]++;
|
|
346
439
|
}
|
|
347
440
|
const maxCount = Math.max(...histogram, 1);
|
|
348
|
-
|
|
441
|
+
const labels = histogram.map((_, i) => {
|
|
349
442
|
const bucketStart = (i * bucketSize).toFixed(1);
|
|
350
443
|
const bucketEnd = ((i + 1) * bucketSize).toFixed(1);
|
|
444
|
+
return `${bucketStart}-${bucketEnd}`;
|
|
445
|
+
});
|
|
446
|
+
const labelWidth = Math.max(...labels.map((l) => stringWidth(l)));
|
|
447
|
+
for (let i = 0; i < buckets; i++) {
|
|
448
|
+
const label = padEndWidth(labels[i], labelWidth);
|
|
351
449
|
const count = histogram[i];
|
|
352
450
|
const barLength = Math.round(count / maxCount * CHART_WIDTH);
|
|
353
451
|
const bar = BLOCK_CHAR.repeat(barLength);
|
|
354
|
-
|
|
452
|
+
const countSuffix = count > 0 ? ` ${count}` : "";
|
|
453
|
+
lines.push(`${label} \u2502${bar}${countSuffix}`);
|
|
355
454
|
}
|
|
356
455
|
return lines.join("\n");
|
|
357
456
|
}
|
|
@@ -359,11 +458,11 @@ function renderStatsTable(stats) {
|
|
|
359
458
|
const lines = [];
|
|
360
459
|
lines.push("");
|
|
361
460
|
lines.push("\u7EDF\u8BA1\u6C47\u603B (N=" + stats.sampleSize + ")");
|
|
362
|
-
|
|
363
|
-
|
|
364
|
-
|
|
365
|
-
);
|
|
366
|
-
lines.push("\u251C" + "\u2500".repeat(
|
|
461
|
+
const headerRow = "\u2502 " + padEndWidth("\u6307\u6807", STAT_LABEL_WIDTH) + " \u2502 " + padStartWidth("\u5747\u503C", STAT_VALUE_WIDTH) + " \u2502 " + padStartWidth("\u6700\u5C0F\u503C", STAT_VALUE_WIDTH) + " \u2502 " + padStartWidth("\u6700\u5927\u503C", STAT_VALUE_WIDTH) + " \u2502 " + padStartWidth("\u6807\u51C6\u5DEE", STAT_VALUE_WIDTH) + " \u2502";
|
|
462
|
+
const tableWidth = stringWidth(headerRow) - 2;
|
|
463
|
+
lines.push("\u250C" + "\u2500".repeat(tableWidth) + "\u2510");
|
|
464
|
+
lines.push(headerRow);
|
|
465
|
+
lines.push("\u251C" + "\u2500".repeat(tableWidth) + "\u2524");
|
|
367
466
|
lines.push(
|
|
368
467
|
formatStatRow(
|
|
369
468
|
"TTFT (ms)",
|
|
@@ -374,7 +473,7 @@ function renderStatsTable(stats) {
|
|
|
374
473
|
"f"
|
|
375
474
|
)
|
|
376
475
|
);
|
|
377
|
-
lines.push("\u251C" + "\u2500".repeat(
|
|
476
|
+
lines.push("\u251C" + "\u2500".repeat(tableWidth) + "\u2524");
|
|
378
477
|
lines.push(
|
|
379
478
|
formatStatRow(
|
|
380
479
|
"\u603B\u8017\u65F6 (ms)",
|
|
@@ -385,7 +484,7 @@ function renderStatsTable(stats) {
|
|
|
385
484
|
"f"
|
|
386
485
|
)
|
|
387
486
|
);
|
|
388
|
-
lines.push("\u251C" + "\u2500".repeat(
|
|
487
|
+
lines.push("\u251C" + "\u2500".repeat(tableWidth) + "\u2524");
|
|
389
488
|
lines.push(
|
|
390
489
|
formatStatRow(
|
|
391
490
|
"\u603B Token \u6570",
|
|
@@ -396,7 +495,7 @@ function renderStatsTable(stats) {
|
|
|
396
495
|
"f"
|
|
397
496
|
)
|
|
398
497
|
);
|
|
399
|
-
lines.push("\u251C" + "\u2500".repeat(
|
|
498
|
+
lines.push("\u251C" + "\u2500".repeat(tableWidth) + "\u2524");
|
|
400
499
|
lines.push(
|
|
401
500
|
formatStatRow(
|
|
402
501
|
"\u5E73\u5747\u901F\u5EA6",
|
|
@@ -407,7 +506,7 @@ function renderStatsTable(stats) {
|
|
|
407
506
|
"f"
|
|
408
507
|
)
|
|
409
508
|
);
|
|
410
|
-
lines.push("\u251C" + "\u2500".repeat(
|
|
509
|
+
lines.push("\u251C" + "\u2500".repeat(tableWidth) + "\u2524");
|
|
411
510
|
lines.push(
|
|
412
511
|
formatStatRow(
|
|
413
512
|
"\u5CF0\u503C\u901F\u5EA6",
|
|
@@ -418,12 +517,23 @@ function renderStatsTable(stats) {
|
|
|
418
517
|
"f"
|
|
419
518
|
)
|
|
420
519
|
);
|
|
421
|
-
lines.push("\
|
|
520
|
+
lines.push("\u251C" + "\u2500".repeat(tableWidth) + "\u2524");
|
|
521
|
+
lines.push(
|
|
522
|
+
formatStatRow(
|
|
523
|
+
"\u5CF0\u503C TPS",
|
|
524
|
+
stats.mean.peakTps,
|
|
525
|
+
stats.min.peakTps,
|
|
526
|
+
stats.max.peakTps,
|
|
527
|
+
stats.stdDev.peakTps,
|
|
528
|
+
"f"
|
|
529
|
+
)
|
|
530
|
+
);
|
|
531
|
+
lines.push("\u2514" + "\u2500".repeat(tableWidth) + "\u2518");
|
|
422
532
|
return lines.join("\n");
|
|
423
533
|
}
|
|
424
534
|
function formatStatRow(label, mean2, min, max, stdDev, format) {
|
|
425
535
|
const fmt = (n) => format === "f" ? n.toFixed(2) : n.toFixed(0);
|
|
426
|
-
return "\u2502 " + label
|
|
536
|
+
return "\u2502 " + padEndWidth(label, STAT_LABEL_WIDTH) + " \u2502 " + padStartWidth(fmt(mean2), STAT_VALUE_WIDTH) + " \u2502 " + padStartWidth(fmt(min), STAT_VALUE_WIDTH) + " \u2502 " + padStartWidth(fmt(max), STAT_VALUE_WIDTH) + " \u2502 " + padStartWidth(fmt(stdDev), STAT_VALUE_WIDTH) + " \u2502";
|
|
427
537
|
}
|
|
428
538
|
function formatTimeWithDecimals(ms) {
|
|
429
539
|
if (ms === Math.floor(ms)) {
|
|
@@ -440,6 +550,7 @@ function renderSingleResult(metrics, runIndex) {
|
|
|
440
550
|
lines.push(` \u603B Token \u6570: ${metrics.totalTokens}`);
|
|
441
551
|
lines.push(` \u5E73\u5747\u901F\u5EA6: ${metrics.averageSpeed.toFixed(2)} tokens/s`);
|
|
442
552
|
lines.push(` \u5CF0\u503C\u901F\u5EA6: ${metrics.peakSpeed.toFixed(2)} tokens/s`);
|
|
553
|
+
lines.push(` \u5CF0\u503C TPS: ${metrics.peakTps.toFixed(2)} tokens/s`);
|
|
443
554
|
return lines.join("\n");
|
|
444
555
|
}
|
|
445
556
|
function renderReport(stats) {
|
|
@@ -496,6 +607,7 @@ async function main() {
|
|
|
496
607
|
);
|
|
497
608
|
console.log(chalk.gray("\u2500".repeat(50)));
|
|
498
609
|
console.log(chalk.yellow("\n\u23F3 \u6B63\u5728\u8FD0\u884C\u6D4B\u8BD5...\n"));
|
|
610
|
+
console.log(chalk.gray("\u6A21\u578B\u8F93\u51FA (\u6D41\u5F0F):\n"));
|
|
499
611
|
const results = await runMultipleTests(config);
|
|
500
612
|
const allMetrics = results.map((r) => calculateMetrics(r));
|
|
501
613
|
for (let i = 0; i < allMetrics.length; i++) {
|
package/dist/index.js.map
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"sources":["../src/index.ts","../src/config.ts","../src/client.ts","../src/metrics.ts","../src/chart.ts"],"sourcesContent":["#!/usr/bin/env node\nimport { readFileSync } from \"node:fs\";\nimport { dirname, join } from \"node:path\";\nimport { fileURLToPath } from \"node:url\";\nimport { Command } from \"commander\";\nimport chalk from \"chalk\";\nimport type { Provider } from \"./config.js\";\nimport { parseConfig } from \"./config.js\";\nimport { runMultipleTests } from \"./client.js\";\nimport { calculateMetrics, calculateStats } from \"./metrics.js\";\nimport { renderReport, renderSingleResult } from \"./chart.js\";\n\nfunction getCliVersion(): string {\n try {\n const currentDir = dirname(fileURLToPath(import.meta.url));\n const packagePath = join(currentDir, \"..\", \"package.json\");\n const packageJson = JSON.parse(readFileSync(packagePath, \"utf-8\")) as { version?: string };\n return packageJson.version ?? \"unknown\";\n } catch {\n return \"unknown\";\n }\n}\n\nconst program = new Command();\n\nprogram\n .name(\"token-speed-test\")\n .description(\"A CLI tool to test LLM API token output speed\")\n .version(getCliVersion());\n\nprogram\n .option(\"-k, --api-key <key>\", \"API Key (required)\", \"\")\n .option(\"-p, --provider <provider>\", \"API provider: anthropic or openai\", \"anthropic\")\n .option(\"-u, --url <url>\", \"Custom API endpoint URL\")\n .option(\"-m, --model <model>\", \"Model name\")\n .option(\"--max-tokens <number>\", \"Maximum output tokens\", \"1024\")\n .option(\"-r, --runs <number>\", \"Number of test runs\", \"3\")\n .option(\"--prompt <text>\", \"Test prompt\", \"写一篇关于 AI 的短文\")\n .parse(process.argv);\n\nconst options = program.opts();\n\nasync function main() {\n try {\n // 解析配置\n const config = parseConfig({\n apiKey: options.apiKey,\n provider: options.provider as Provider,\n url: options.url,\n model: options.model,\n maxTokens: parseInt(options.maxTokens, 10),\n runs: parseInt(options.runs, 10),\n prompt: options.prompt,\n });\n\n // 显示配置信息\n console.log(chalk.cyan(\"\\n🚀 Token 速度测试工具\"));\n console.log(chalk.gray(\"─\".repeat(50)));\n console.log(chalk.gray(`Provider: ${chalk.white(config.provider)}`));\n console.log(chalk.gray(`Model: ${chalk.white(config.model)}`));\n console.log(chalk.gray(`Max Tokens: ${chalk.white(config.maxTokens)}`));\n console.log(chalk.gray(`Runs: ${chalk.white(config.runCount)}`));\n console.log(\n chalk.gray(\n `Prompt: ${chalk.white(config.prompt.substring(0, 50))}${config.prompt.length > 50 ? \"...\" : \"\"}`\n )\n );\n console.log(chalk.gray(\"─\".repeat(50)));\n\n // 执行测试\n console.log(chalk.yellow(\"\\n⏳ 正在运行测试...\\n\"));\n\n const results = await runMultipleTests(config);\n\n // 计算指标\n const allMetrics = results.map((r) => calculateMetrics(r));\n\n // 显示每次运行的结果\n for (let i = 0; i < allMetrics.length; i++) {\n console.log(chalk.gray(renderSingleResult(allMetrics[i], i)));\n }\n\n // 计算统计\n const stats = calculateStats(allMetrics);\n\n // 显示报告\n console.log(chalk.cyan(\"\\n\" + renderReport(stats)));\n\n console.log(chalk.green(\"\\n✅ 测试完成!\\n\"));\n } catch (error) {\n if (error instanceof Error) {\n console.error(chalk.red(`\\n❌ 错误: ${error.message}\\n`));\n } else {\n console.error(chalk.red(\"\\n❌ 发生未知错误\\n\"));\n }\n process.exit(1);\n }\n}\n\nvoid main();\n","export type Provider = \"anthropic\" | \"openai\";\n\nexport interface Config {\n provider: Provider;\n apiKey: string;\n baseURL?: string;\n model: string;\n maxTokens: number;\n runCount: number;\n prompt: string;\n}\n\nexport interface ParsedArgs {\n apiKey: string;\n provider?: Provider;\n url?: string;\n model?: string;\n maxTokens?: number;\n runs?: number;\n prompt?: string;\n}\n\nconst DEFAULT_MODELS: Record<Provider, string> = {\n anthropic: \"claude-opus-4-5-20251101\",\n openai: \"gpt-5.2\",\n};\n\nconst DEFAULT_MAX_TOKENS = 1024;\nconst DEFAULT_RUNS = 3;\nconst DEFAULT_PROMPT = \"写一篇关于 AI 的短文\";\n\n/**\n * 解析命令行参数并生成配置\n */\nexport function parseConfig(args: ParsedArgs): Config {\n const {\n apiKey,\n provider = \"anthropic\",\n url,\n model,\n maxTokens = DEFAULT_MAX_TOKENS,\n runs = DEFAULT_RUNS,\n prompt = DEFAULT_PROMPT,\n } = args;\n\n // 验证必填参数\n if (!apiKey || apiKey.trim() === \"\") {\n throw new Error(\"API Key is required. Use --api-key or -k to provide it.\");\n }\n\n // 验证 provider\n if (provider !== \"anthropic\" && provider !== \"openai\") {\n throw new Error(`Invalid provider: ${provider}. Must be 'anthropic' or 'openai'.`);\n }\n\n // 验证数值参数\n if (!Number.isFinite(maxTokens) || !Number.isInteger(maxTokens) || maxTokens <= 0) {\n throw new Error(`Invalid max-tokens: ${maxTokens}. Must be a positive integer.`);\n }\n\n if (!Number.isFinite(runs) || !Number.isInteger(runs) || runs <= 0) {\n throw new Error(`Invalid runs: ${runs}. Must be a positive integer.`);\n }\n\n // 使用默认模型或用户指定的模型\n const finalModel = model || DEFAULT_MODELS[provider];\n\n return {\n provider,\n apiKey: apiKey.trim(),\n baseURL: url?.trim(),\n model: finalModel,\n maxTokens,\n runCount: runs,\n prompt: prompt.trim(),\n };\n}\n\n/**\n * 获取默认模型名称\n */\nexport function getDefaultModel(provider: Provider): string {\n return DEFAULT_MODELS[provider];\n}\n\n/**\n * 验证配置有效性\n */\nexport function validateConfig(config: Config): { valid: boolean; error?: string } {\n if (!config.apiKey) {\n return { valid: false, error: \"API Key is required\" };\n }\n\n if (config.provider !== \"anthropic\" && config.provider !== \"openai\") {\n return { valid: false, error: `Invalid provider: ${config.provider}` };\n }\n\n if (\n !Number.isFinite(config.maxTokens) ||\n !Number.isInteger(config.maxTokens) ||\n config.maxTokens <= 0\n ) {\n return { valid: false, error: \"maxTokens must be a positive integer\" };\n }\n\n if (\n !Number.isFinite(config.runCount) ||\n !Number.isInteger(config.runCount) ||\n config.runCount <= 0\n ) {\n return { valid: false, error: \"runCount must be a positive integer\" };\n }\n\n if (!config.prompt || config.prompt.trim() === \"\") {\n return { valid: false, error: \"prompt cannot be empty\" };\n }\n\n return { valid: true };\n}\n// test\n","import Anthropic from \"@anthropic-ai/sdk\";\nimport OpenAI from \"openai\";\nimport type { Config } from \"./config.js\";\nimport type { StreamMetrics } from \"./metrics.js\";\n\n/**\n * 执行 Anthropic API 流式测试\n */\nexport async function anthropicStreamTest(config: Config): Promise<StreamMetrics> {\n const startTime = Date.now();\n const tokenTimes: number[] = [];\n let ttft = 0;\n let firstTokenRecorded = false;\n\n const client = new Anthropic({\n apiKey: config.apiKey,\n baseURL: config.baseURL,\n });\n\n try {\n const stream = await client.messages.create({\n model: config.model,\n max_tokens: config.maxTokens,\n messages: [{ role: \"user\", content: config.prompt }],\n stream: true,\n });\n\n for await (const event of stream) {\n const currentTime = Date.now();\n\n if (event.type === \"content_block_delta\" && event.delta.type === \"text_delta\") {\n const text = event.delta.text;\n\n if (text && text.length > 0) {\n if (!firstTokenRecorded) {\n ttft = currentTime - startTime;\n firstTokenRecorded = true;\n }\n\n // 记录每个字符的到达时间(作为近似的 token 时间)\n for (let i = 0; i < text.length; i++) {\n tokenTimes.push(currentTime - startTime);\n }\n }\n }\n }\n } catch (error) {\n if (error instanceof Error) {\n throw new Error(`Anthropic API error: ${error.message}`);\n }\n throw error;\n }\n\n const endTime = Date.now();\n const totalTime = endTime - startTime;\n\n return {\n ttft,\n tokens: tokenTimes,\n totalTokens: tokenTimes.length,\n totalTime,\n };\n}\n\n/**\n * 执行 OpenAI API 流式测试\n */\nexport async function openaiStreamTest(config: Config): Promise<StreamMetrics> {\n const startTime = Date.now();\n const tokenTimes: number[] = [];\n let ttft = 0;\n let firstTokenRecorded = false;\n\n const client = new OpenAI({\n apiKey: config.apiKey,\n baseURL: config.baseURL,\n });\n\n try {\n const stream = await client.chat.completions.create({\n model: config.model,\n max_tokens: config.maxTokens,\n messages: [{ role: \"user\", content: config.prompt }],\n stream: true,\n });\n\n for await (const chunk of stream) {\n const currentTime = Date.now();\n\n const delta = chunk.choices[0]?.delta;\n\n if (delta?.content) {\n const content = delta.content;\n\n if (!firstTokenRecorded && content.length > 0) {\n ttft = currentTime - startTime;\n firstTokenRecorded = true;\n }\n\n // 记录每个字符的到达时间\n for (let i = 0; i < content.length; i++) {\n tokenTimes.push(currentTime - startTime);\n }\n }\n }\n } catch (error) {\n if (error instanceof Error) {\n throw new Error(`OpenAI API error: ${error.message}`);\n }\n throw error;\n }\n\n const endTime = Date.now();\n const totalTime = endTime - startTime;\n\n return {\n ttft,\n tokens: tokenTimes,\n totalTokens: tokenTimes.length,\n totalTime,\n };\n}\n\n/**\n * 根据配置执行流式测试\n */\nexport async function streamTest(config: Config): Promise<StreamMetrics> {\n if (config.provider === \"anthropic\") {\n return anthropicStreamTest(config);\n } else {\n return openaiStreamTest(config);\n }\n}\n\n/**\n * 执行多次测试\n */\nexport async function runMultipleTests(config: Config): Promise<StreamMetrics[]> {\n const results: StreamMetrics[] = [];\n\n for (let i = 0; i < config.runCount; i++) {\n const result = await streamTest(config);\n results.push(result);\n }\n\n return results;\n}\n","/**\n * 单次流式测试的原始计时数据\n */\nexport interface StreamMetrics {\n ttft: number; // Time to First Token (ms)\n tokens: number[]; // 每个 token 的到达时间(相对开始时间,单位:ms)\n totalTokens: number;\n totalTime: number;\n}\n\n/**\n * 计算后的统计指标\n */\nexport interface CalculatedMetrics {\n ttft: number; // Time to First Token (ms)\n totalTime: number; // 总耗时 (ms)\n totalTokens: number; // 总 token 数\n averageSpeed: number; // 平均速度 (tokens/s)\n peakSpeed: number; // 峰值速度 (tokens/s)\n tps: number[]; // 每秒 token 数 (TPS curve)\n}\n\n/**\n * 多次测试的统计结果\n */\nexport interface StatsResult {\n mean: CalculatedMetrics;\n min: CalculatedMetrics;\n max: CalculatedMetrics;\n stdDev: CalculatedMetrics;\n sampleSize: number;\n}\n\n/**\n * 计算 TTFT (Time to First Token)\n */\nexport function calculateTTFT(metrics: StreamMetrics): number {\n return metrics.ttft;\n}\n\n/**\n * 计算平均速度 (tokens/s)\n */\nexport function calculateAverageSpeed(metrics: StreamMetrics): number {\n if (metrics.totalTime <= 0) {\n return 0;\n }\n return (metrics.totalTokens / metrics.totalTime) * 1000;\n}\n\n/**\n * 计算峰值速度 - 最快连续 N 个 token 的平均速度\n */\nexport function calculatePeakSpeed(metrics: StreamMetrics, windowSize: number = 10): number {\n if (metrics.tokens.length < windowSize) {\n // 如果 token 数少于窗口大小,使用全部 token 计算\n if (metrics.tokens.length < 2) {\n return 0;\n }\n const totalTime = metrics.tokens[metrics.tokens.length - 1] - metrics.tokens[0];\n return totalTime > 0 ? ((metrics.tokens.length - 1) / totalTime) * 1000 : 0;\n }\n\n let maxSpeed = 0;\n for (let i = 0; i <= metrics.tokens.length - windowSize; i++) {\n const startTime = metrics.tokens[i];\n const endTime = metrics.tokens[i + windowSize - 1];\n const duration = endTime - startTime;\n if (duration > 0) {\n const speed = ((windowSize - 1) / duration) * 1000;\n maxSpeed = Math.max(maxSpeed, speed);\n }\n }\n\n return maxSpeed;\n}\n\n/**\n * 计算 TPS (Tokens Per Second) 曲线\n */\nexport function calculateTPS(metrics: StreamMetrics): number[] {\n if (metrics.tokens.length === 0) {\n return [];\n }\n\n const totalDuration = metrics.tokens[metrics.tokens.length - 1];\n const totalSeconds = Math.ceil(totalDuration / 1000);\n\n if (totalSeconds <= 0) {\n return metrics.tokens.length > 0 ? [metrics.tokens.length] : [];\n }\n\n const tps: number[] = new Array(totalSeconds).fill(0);\n\n // 计算每秒内的 token 数\n for (const tokenTime of metrics.tokens) {\n const secondIndex = Math.floor(tokenTime / 1000);\n if (secondIndex < tps.length) {\n tps[secondIndex]++;\n }\n }\n\n return tps;\n}\n\n/**\n * 从 StreamMetrics 计算完整的指标\n */\nexport function calculateMetrics(metrics: StreamMetrics): CalculatedMetrics {\n return {\n ttft: calculateTTFT(metrics),\n totalTime: metrics.totalTime,\n totalTokens: metrics.totalTokens,\n averageSpeed: calculateAverageSpeed(metrics),\n peakSpeed: calculatePeakSpeed(metrics),\n tps: calculateTPS(metrics),\n };\n}\n\n/**\n * 计算一组数值的平均值\n */\nfunction mean(values: number[]): number {\n if (values.length === 0) return 0;\n return values.reduce((sum, v) => sum + v, 0) / values.length;\n}\n\n/**\n * 计算一组数值的标准差\n */\nfunction standardDeviation(values: number[]): number {\n if (values.length < 2) return 0;\n const avg = mean(values);\n const squareDiffs = values.map((v) => Math.pow(v - avg, 2));\n return Math.sqrt(mean(squareDiffs));\n}\n\n/**\n * 从多个 CalculatedMetrics 计算统计结果\n */\nexport function calculateStats(allMetrics: CalculatedMetrics[]): StatsResult {\n if (allMetrics.length === 0) {\n throw new Error(\"Cannot calculate stats from empty metrics array\");\n }\n\n const sampleSize = allMetrics.length;\n\n // 提取各项指标的数组\n const ttfts = allMetrics.map((m) => m.ttft);\n const totalTimes = allMetrics.map((m) => m.totalTime);\n const totalTokens = allMetrics.map((m) => m.totalTokens);\n const averageSpeeds = allMetrics.map((m) => m.averageSpeed);\n const peakSpeeds = allMetrics.map((m) => m.peakSpeed);\n\n // 找到最长的 TPS 数组\n const maxTpsLength = Math.max(...allMetrics.map((m) => m.tps.length));\n const avgTps: number[] = [];\n for (let i = 0; i < maxTpsLength; i++) {\n const values = allMetrics.map((m) => m.tps[i] ?? 0);\n avgTps.push(mean(values));\n }\n\n return {\n mean: {\n ttft: mean(ttfts),\n totalTime: mean(totalTimes),\n totalTokens: mean(totalTokens),\n averageSpeed: mean(averageSpeeds),\n peakSpeed: mean(peakSpeeds),\n tps: avgTps,\n },\n min: {\n ttft: Math.min(...ttfts),\n totalTime: Math.min(...totalTimes),\n totalTokens: Math.min(...totalTokens),\n averageSpeed: Math.min(...averageSpeeds),\n peakSpeed: Math.min(...peakSpeeds),\n tps: [],\n },\n max: {\n ttft: Math.max(...ttfts),\n totalTime: Math.max(...totalTimes),\n totalTokens: Math.max(...totalTokens),\n averageSpeed: Math.max(...averageSpeeds),\n peakSpeed: Math.max(...peakSpeeds),\n tps: [],\n },\n stdDev: {\n ttft: standardDeviation(ttfts),\n totalTime: standardDeviation(totalTimes),\n totalTokens: standardDeviation(totalTokens),\n averageSpeed: standardDeviation(averageSpeeds),\n peakSpeed: standardDeviation(peakSpeeds),\n tps: [],\n },\n sampleSize,\n };\n}\n\n/**\n * 格式化速度显示\n */\nexport function formatSpeed(tokensPerSecond: number): string {\n return tokensPerSecond.toFixed(2);\n}\n\n/**\n * 格式化时间显示\n */\nexport function formatTime(ms: number): string {\n if (ms < 1000) {\n return `${ms.toFixed(0)}ms`;\n }\n return `${(ms / 1000).toFixed(2)}s`;\n}\n","import type { CalculatedMetrics, StatsResult } from \"./metrics.js\";\n\nconst BLOCK_CHAR = \"█\";\nconst CHART_WIDTH = 50;\nconst CHART_HEIGHT = 10;\n\n/**\n * 渲染速度趋势图\n */\nexport function renderSpeedChart(tps: number[], maxSpeed?: number): string {\n if (tps.length === 0) {\n return \"No data available for chart\";\n }\n\n const actualMax = maxSpeed ?? Math.max(...tps, 1);\n const maxVal = Math.max(actualMax, 1);\n\n const lines: string[] = [];\n lines.push(\"Token 速度趋势图 (TPS)\");\n\n // Y 轴标签和边框\n lines.push(\"┌\" + \"─\".repeat(CHART_WIDTH) + \"┐\");\n\n for (let row = CHART_HEIGHT - 1; row >= 0; row--) {\n const value = (row / (CHART_HEIGHT - 1)) * maxVal;\n const label = value.toFixed(0).padStart(4);\n\n let chartRow = \"│ \" + label + \" ┤\";\n\n for (let col = 0; col < CHART_WIDTH; col++) {\n const index = Math.floor((col / CHART_WIDTH) * tps.length);\n const tpsValue = tps[index] ?? 0;\n const normalizedHeight = (tpsValue / maxVal) * (CHART_HEIGHT - 1);\n\n if (normalizedHeight >= row) {\n chartRow += BLOCK_CHAR;\n } else {\n chartRow += \" \";\n }\n }\n\n chartRow += \" │\";\n lines.push(chartRow);\n }\n\n // X 轴\n lines.push(\"│ \" + \"0\".padStart(CHART_WIDTH) + \"s │\");\n lines.push(\"└\" + \"─\".repeat(CHART_WIDTH) + \"┘\");\n\n // X 轴标签 (时间标记)\n const xLabels = generateXLabels(tps.length, 6);\n lines.push(\" \" + xLabels.join(\" \"));\n\n return lines.join(\"\\n\");\n}\n\n/**\n * 生成 X 轴时间标签\n */\nfunction generateXLabels(dataPoints: number, maxLabels: number): string[] {\n if (dataPoints <= 1) {\n return [\"0s\"];\n }\n\n const labels: string[] = [];\n const step = Math.max(1, Math.floor(dataPoints / maxLabels));\n\n for (let i = 0; i < dataPoints; i += step) {\n labels.push(`${i}s`);\n }\n\n // 确保最后一个标签是结束时间\n if (labels[labels.length - 1] !== `${dataPoints - 1}s`) {\n labels.push(`${dataPoints - 1}s`);\n }\n\n return labels;\n}\n\n/**\n * 渲染 TPS 直方图\n */\nexport function renderTPSHistogram(tps: number[]): string {\n if (tps.length === 0) {\n return \"No TPS data available\";\n }\n\n const lines: string[] = [];\n lines.push(\"TPS 分布\");\n\n // 计算分布区间\n const maxTps = Math.max(...tps, 1);\n const buckets = 10;\n const bucketSize = maxTps / buckets;\n const histogram = new Array(buckets).fill(0);\n\n for (const t of tps) {\n const bucketIndex = Math.min(Math.floor(t / bucketSize), buckets - 1);\n histogram[bucketIndex]++;\n }\n\n const maxCount = Math.max(...histogram, 1);\n\n for (let i = 0; i < buckets; i++) {\n const bucketStart = (i * bucketSize).toFixed(1);\n const bucketEnd = ((i + 1) * bucketSize).toFixed(1);\n const count = histogram[i];\n const barLength = Math.round((count / maxCount) * CHART_WIDTH);\n const bar = BLOCK_CHAR.repeat(barLength);\n\n lines.push(`${bucketStart}-${bucketEnd} │${bar} ${count}`);\n }\n\n return lines.join(\"\\n\");\n}\n\n/**\n * 渲染统计汇总表\n */\nexport function renderStatsTable(stats: StatsResult): string {\n const lines: string[] = [];\n lines.push(\"\");\n lines.push(\"统计汇总 (N=\" + stats.sampleSize + \")\");\n lines.push(\"┌\" + \"─\".repeat(70) + \"┐\");\n\n // 表头\n lines.push(\n \"│ \" +\n \"指标\".padEnd(15) +\n \" │ \" +\n \"均值\".padStart(10) +\n \" │ \" +\n \"最小值\".padStart(10) +\n \" │ \" +\n \"最大值\".padStart(10) +\n \" │ \" +\n \"标准差\".padStart(10) +\n \" │\"\n );\n lines.push(\"├\" + \"─\".repeat(70) + \"┤\");\n\n // TTFT\n lines.push(\n formatStatRow(\n \"TTFT (ms)\",\n stats.mean.ttft,\n stats.min.ttft,\n stats.max.ttft,\n stats.stdDev.ttft,\n \"f\"\n )\n );\n lines.push(\"├\" + \"─\".repeat(70) + \"┤\");\n\n // 总耗时\n lines.push(\n formatStatRow(\n \"总耗时 (ms)\",\n stats.mean.totalTime,\n stats.min.totalTime,\n stats.max.totalTime,\n stats.stdDev.totalTime,\n \"f\"\n )\n );\n lines.push(\"├\" + \"─\".repeat(70) + \"┤\");\n\n // 总 token 数\n lines.push(\n formatStatRow(\n \"总 Token 数\",\n stats.mean.totalTokens,\n stats.min.totalTokens,\n stats.max.totalTokens,\n stats.stdDev.totalTokens,\n \"f\"\n )\n );\n lines.push(\"├\" + \"─\".repeat(70) + \"┤\");\n\n // 平均速度\n lines.push(\n formatStatRow(\n \"平均速度\",\n stats.mean.averageSpeed,\n stats.min.averageSpeed,\n stats.max.averageSpeed,\n stats.stdDev.averageSpeed,\n \"f\"\n )\n );\n lines.push(\"├\" + \"─\".repeat(70) + \"┤\");\n\n // 峰值速度\n lines.push(\n formatStatRow(\n \"峰值速度\",\n stats.mean.peakSpeed,\n stats.min.peakSpeed,\n stats.max.peakSpeed,\n stats.stdDev.peakSpeed,\n \"f\"\n )\n );\n\n lines.push(\"└\" + \"─\".repeat(70) + \"┘\");\n\n return lines.join(\"\\n\");\n}\n\n/**\n * 格式化统计表格的一行\n */\nfunction formatStatRow(\n label: string,\n mean: number,\n min: number,\n max: number,\n stdDev: number,\n format: \"f\" | \"d\"\n): string {\n const fmt = (n: number) => (format === \"f\" ? n.toFixed(2) : n.toFixed(0));\n\n return (\n \"│ \" +\n label.padEnd(15) +\n \" │ \" +\n fmt(mean).padStart(10) +\n \" │ \" +\n fmt(min).padStart(10) +\n \" │ \" +\n fmt(max).padStart(10) +\n \" │ \" +\n fmt(stdDev).padStart(10) +\n \" │\"\n );\n}\n\n/**\n * 格式化时间显示(带小数)\n */\nfunction formatTimeWithDecimals(ms: number): string {\n if (ms === Math.floor(ms)) {\n return `${ms.toFixed(0)}ms`;\n }\n return `${ms.toFixed(2)}ms`;\n}\n\n/**\n * 渲染单次测试结果\n */\nexport function renderSingleResult(metrics: CalculatedMetrics, runIndex: number): string {\n const lines: string[] = [];\n lines.push(`\\n[运行 ${runIndex + 1}]`);\n lines.push(` TTFT: ${formatTimeWithDecimals(metrics.ttft)}`);\n lines.push(` 总耗时: ${formatTimeWithDecimals(metrics.totalTime)}`);\n lines.push(` 总 Token 数: ${metrics.totalTokens}`);\n lines.push(` 平均速度: ${metrics.averageSpeed.toFixed(2)} tokens/s`);\n lines.push(` 峰值速度: ${metrics.peakSpeed.toFixed(2)} tokens/s`);\n return lines.join(\"\\n\");\n}\n\n/**\n * 渲染完整的测试报告\n */\nexport function renderReport(stats: StatsResult): string {\n const lines: string[] = [];\n\n lines.push(\"\\n\" + \"═\".repeat(72));\n lines.push(\"Token 速度测试报告\");\n lines.push(\"═\".repeat(72));\n\n // 汇总统计\n lines.push(renderStatsTable(stats));\n\n // 速度趋势图\n if (stats.mean.tps.length > 0) {\n lines.push(\"\\n\" + renderSpeedChart(stats.mean.tps));\n }\n\n // TPS 直方图\n if (stats.mean.tps.length > 0) {\n lines.push(\"\\n\" + renderTPSHistogram(stats.mean.tps));\n }\n\n return lines.join(\"\\n\");\n}\n"],"mappings":";;;AACA,SAAS,oBAAoB;AAC7B,SAAS,SAAS,YAAY;AAC9B,SAAS,qBAAqB;AAC9B,SAAS,eAAe;AACxB,OAAO,WAAW;;;ACiBlB,IAAM,iBAA2C;AAAA,EAC/C,WAAW;AAAA,EACX,QAAQ;AACV;AAEA,IAAM,qBAAqB;AAC3B,IAAM,eAAe;AACrB,IAAM,iBAAiB;AAKhB,SAAS,YAAY,MAA0B;AACpD,QAAM;AAAA,IACJ;AAAA,IACA,WAAW;AAAA,IACX;AAAA,IACA;AAAA,IACA,YAAY;AAAA,IACZ,OAAO;AAAA,IACP,SAAS;AAAA,EACX,IAAI;AAGJ,MAAI,CAAC,UAAU,OAAO,KAAK,MAAM,IAAI;AACnC,UAAM,IAAI,MAAM,yDAAyD;AAAA,EAC3E;AAGA,MAAI,aAAa,eAAe,aAAa,UAAU;AACrD,UAAM,IAAI,MAAM,qBAAqB,QAAQ,oCAAoC;AAAA,EACnF;AAGA,MAAI,CAAC,OAAO,SAAS,SAAS,KAAK,CAAC,OAAO,UAAU,SAAS,KAAK,aAAa,GAAG;AACjF,UAAM,IAAI,MAAM,uBAAuB,SAAS,+BAA+B;AAAA,EACjF;AAEA,MAAI,CAAC,OAAO,SAAS,IAAI,KAAK,CAAC,OAAO,UAAU,IAAI,KAAK,QAAQ,GAAG;AAClE,UAAM,IAAI,MAAM,iBAAiB,IAAI,+BAA+B;AAAA,EACtE;AAGA,QAAM,aAAa,SAAS,eAAe,QAAQ;AAEnD,SAAO;AAAA,IACL;AAAA,IACA,QAAQ,OAAO,KAAK;AAAA,IACpB,SAAS,KAAK,KAAK;AAAA,IACnB,OAAO;AAAA,IACP;AAAA,IACA,UAAU;AAAA,IACV,QAAQ,OAAO,KAAK;AAAA,EACtB;AACF;;;AC5EA,OAAO,eAAe;AACtB,OAAO,YAAY;AAOnB,eAAsB,oBAAoB,QAAwC;AAChF,QAAM,YAAY,KAAK,IAAI;AAC3B,QAAM,aAAuB,CAAC;AAC9B,MAAI,OAAO;AACX,MAAI,qBAAqB;AAEzB,QAAM,SAAS,IAAI,UAAU;AAAA,IAC3B,QAAQ,OAAO;AAAA,IACf,SAAS,OAAO;AAAA,EAClB,CAAC;AAED,MAAI;AACF,UAAM,SAAS,MAAM,OAAO,SAAS,OAAO;AAAA,MAC1C,OAAO,OAAO;AAAA,MACd,YAAY,OAAO;AAAA,MACnB,UAAU,CAAC,EAAE,MAAM,QAAQ,SAAS,OAAO,OAAO,CAAC;AAAA,MACnD,QAAQ;AAAA,IACV,CAAC;AAED,qBAAiB,SAAS,QAAQ;AAChC,YAAM,cAAc,KAAK,IAAI;AAE7B,UAAI,MAAM,SAAS,yBAAyB,MAAM,MAAM,SAAS,cAAc;AAC7E,cAAM,OAAO,MAAM,MAAM;AAEzB,YAAI,QAAQ,KAAK,SAAS,GAAG;AAC3B,cAAI,CAAC,oBAAoB;AACvB,mBAAO,cAAc;AACrB,iCAAqB;AAAA,UACvB;AAGA,mBAAS,IAAI,GAAG,IAAI,KAAK,QAAQ,KAAK;AACpC,uBAAW,KAAK,cAAc,SAAS;AAAA,UACzC;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF,SAAS,OAAO;AACd,QAAI,iBAAiB,OAAO;AAC1B,YAAM,IAAI,MAAM,wBAAwB,MAAM,OAAO,EAAE;AAAA,IACzD;AACA,UAAM;AAAA,EACR;AAEA,QAAM,UAAU,KAAK,IAAI;AACzB,QAAM,YAAY,UAAU;AAE5B,SAAO;AAAA,IACL;AAAA,IACA,QAAQ;AAAA,IACR,aAAa,WAAW;AAAA,IACxB;AAAA,EACF;AACF;AAKA,eAAsB,iBAAiB,QAAwC;AAC7E,QAAM,YAAY,KAAK,IAAI;AAC3B,QAAM,aAAuB,CAAC;AAC9B,MAAI,OAAO;AACX,MAAI,qBAAqB;AAEzB,QAAM,SAAS,IAAI,OAAO;AAAA,IACxB,QAAQ,OAAO;AAAA,IACf,SAAS,OAAO;AAAA,EAClB,CAAC;AAED,MAAI;AACF,UAAM,SAAS,MAAM,OAAO,KAAK,YAAY,OAAO;AAAA,MAClD,OAAO,OAAO;AAAA,MACd,YAAY,OAAO;AAAA,MACnB,UAAU,CAAC,EAAE,MAAM,QAAQ,SAAS,OAAO,OAAO,CAAC;AAAA,MACnD,QAAQ;AAAA,IACV,CAAC;AAED,qBAAiB,SAAS,QAAQ;AAChC,YAAM,cAAc,KAAK,IAAI;AAE7B,YAAM,QAAQ,MAAM,QAAQ,CAAC,GAAG;AAEhC,UAAI,OAAO,SAAS;AAClB,cAAM,UAAU,MAAM;AAEtB,YAAI,CAAC,sBAAsB,QAAQ,SAAS,GAAG;AAC7C,iBAAO,cAAc;AACrB,+BAAqB;AAAA,QACvB;AAGA,iBAAS,IAAI,GAAG,IAAI,QAAQ,QAAQ,KAAK;AACvC,qBAAW,KAAK,cAAc,SAAS;AAAA,QACzC;AAAA,MACF;AAAA,IACF;AAAA,EACF,SAAS,OAAO;AACd,QAAI,iBAAiB,OAAO;AAC1B,YAAM,IAAI,MAAM,qBAAqB,MAAM,OAAO,EAAE;AAAA,IACtD;AACA,UAAM;AAAA,EACR;AAEA,QAAM,UAAU,KAAK,IAAI;AACzB,QAAM,YAAY,UAAU;AAE5B,SAAO;AAAA,IACL;AAAA,IACA,QAAQ;AAAA,IACR,aAAa,WAAW;AAAA,IACxB;AAAA,EACF;AACF;AAKA,eAAsB,WAAW,QAAwC;AACvE,MAAI,OAAO,aAAa,aAAa;AACnC,WAAO,oBAAoB,MAAM;AAAA,EACnC,OAAO;AACL,WAAO,iBAAiB,MAAM;AAAA,EAChC;AACF;AAKA,eAAsB,iBAAiB,QAA0C;AAC/E,QAAM,UAA2B,CAAC;AAElC,WAAS,IAAI,GAAG,IAAI,OAAO,UAAU,KAAK;AACxC,UAAM,SAAS,MAAM,WAAW,MAAM;AACtC,YAAQ,KAAK,MAAM;AAAA,EACrB;AAEA,SAAO;AACT;;;AC9GO,SAAS,cAAc,SAAgC;AAC5D,SAAO,QAAQ;AACjB;AAKO,SAAS,sBAAsB,SAAgC;AACpE,MAAI,QAAQ,aAAa,GAAG;AAC1B,WAAO;AAAA,EACT;AACA,SAAQ,QAAQ,cAAc,QAAQ,YAAa;AACrD;AAKO,SAAS,mBAAmB,SAAwB,aAAqB,IAAY;AAC1F,MAAI,QAAQ,OAAO,SAAS,YAAY;AAEtC,QAAI,QAAQ,OAAO,SAAS,GAAG;AAC7B,aAAO;AAAA,IACT;AACA,UAAM,YAAY,QAAQ,OAAO,QAAQ,OAAO,SAAS,CAAC,IAAI,QAAQ,OAAO,CAAC;AAC9E,WAAO,YAAY,KAAM,QAAQ,OAAO,SAAS,KAAK,YAAa,MAAO;AAAA,EAC5E;AAEA,MAAI,WAAW;AACf,WAAS,IAAI,GAAG,KAAK,QAAQ,OAAO,SAAS,YAAY,KAAK;AAC5D,UAAM,YAAY,QAAQ,OAAO,CAAC;AAClC,UAAM,UAAU,QAAQ,OAAO,IAAI,aAAa,CAAC;AACjD,UAAM,WAAW,UAAU;AAC3B,QAAI,WAAW,GAAG;AAChB,YAAM,SAAU,aAAa,KAAK,WAAY;AAC9C,iBAAW,KAAK,IAAI,UAAU,KAAK;AAAA,IACrC;AAAA,EACF;AAEA,SAAO;AACT;AAKO,SAAS,aAAa,SAAkC;AAC7D,MAAI,QAAQ,OAAO,WAAW,GAAG;AAC/B,WAAO,CAAC;AAAA,EACV;AAEA,QAAM,gBAAgB,QAAQ,OAAO,QAAQ,OAAO,SAAS,CAAC;AAC9D,QAAM,eAAe,KAAK,KAAK,gBAAgB,GAAI;AAEnD,MAAI,gBAAgB,GAAG;AACrB,WAAO,QAAQ,OAAO,SAAS,IAAI,CAAC,QAAQ,OAAO,MAAM,IAAI,CAAC;AAAA,EAChE;AAEA,QAAM,MAAgB,IAAI,MAAM,YAAY,EAAE,KAAK,CAAC;AAGpD,aAAW,aAAa,QAAQ,QAAQ;AACtC,UAAM,cAAc,KAAK,MAAM,YAAY,GAAI;AAC/C,QAAI,cAAc,IAAI,QAAQ;AAC5B,UAAI,WAAW;AAAA,IACjB;AAAA,EACF;AAEA,SAAO;AACT;AAKO,SAAS,iBAAiB,SAA2C;AAC1E,SAAO;AAAA,IACL,MAAM,cAAc,OAAO;AAAA,IAC3B,WAAW,QAAQ;AAAA,IACnB,aAAa,QAAQ;AAAA,IACrB,cAAc,sBAAsB,OAAO;AAAA,IAC3C,WAAW,mBAAmB,OAAO;AAAA,IACrC,KAAK,aAAa,OAAO;AAAA,EAC3B;AACF;AAKA,SAAS,KAAK,QAA0B;AACtC,MAAI,OAAO,WAAW,EAAG,QAAO;AAChC,SAAO,OAAO,OAAO,CAAC,KAAK,MAAM,MAAM,GAAG,CAAC,IAAI,OAAO;AACxD;AAKA,SAAS,kBAAkB,QAA0B;AACnD,MAAI,OAAO,SAAS,EAAG,QAAO;AAC9B,QAAM,MAAM,KAAK,MAAM;AACvB,QAAM,cAAc,OAAO,IAAI,CAAC,MAAM,KAAK,IAAI,IAAI,KAAK,CAAC,CAAC;AAC1D,SAAO,KAAK,KAAK,KAAK,WAAW,CAAC;AACpC;AAKO,SAAS,eAAe,YAA8C;AAC3E,MAAI,WAAW,WAAW,GAAG;AAC3B,UAAM,IAAI,MAAM,iDAAiD;AAAA,EACnE;AAEA,QAAM,aAAa,WAAW;AAG9B,QAAM,QAAQ,WAAW,IAAI,CAAC,MAAM,EAAE,IAAI;AAC1C,QAAM,aAAa,WAAW,IAAI,CAAC,MAAM,EAAE,SAAS;AACpD,QAAM,cAAc,WAAW,IAAI,CAAC,MAAM,EAAE,WAAW;AACvD,QAAM,gBAAgB,WAAW,IAAI,CAAC,MAAM,EAAE,YAAY;AAC1D,QAAM,aAAa,WAAW,IAAI,CAAC,MAAM,EAAE,SAAS;AAGpD,QAAM,eAAe,KAAK,IAAI,GAAG,WAAW,IAAI,CAAC,MAAM,EAAE,IAAI,MAAM,CAAC;AACpE,QAAM,SAAmB,CAAC;AAC1B,WAAS,IAAI,GAAG,IAAI,cAAc,KAAK;AACrC,UAAM,SAAS,WAAW,IAAI,CAAC,MAAM,EAAE,IAAI,CAAC,KAAK,CAAC;AAClD,WAAO,KAAK,KAAK,MAAM,CAAC;AAAA,EAC1B;AAEA,SAAO;AAAA,IACL,MAAM;AAAA,MACJ,MAAM,KAAK,KAAK;AAAA,MAChB,WAAW,KAAK,UAAU;AAAA,MAC1B,aAAa,KAAK,WAAW;AAAA,MAC7B,cAAc,KAAK,aAAa;AAAA,MAChC,WAAW,KAAK,UAAU;AAAA,MAC1B,KAAK;AAAA,IACP;AAAA,IACA,KAAK;AAAA,MACH,MAAM,KAAK,IAAI,GAAG,KAAK;AAAA,MACvB,WAAW,KAAK,IAAI,GAAG,UAAU;AAAA,MACjC,aAAa,KAAK,IAAI,GAAG,WAAW;AAAA,MACpC,cAAc,KAAK,IAAI,GAAG,aAAa;AAAA,MACvC,WAAW,KAAK,IAAI,GAAG,UAAU;AAAA,MACjC,KAAK,CAAC;AAAA,IACR;AAAA,IACA,KAAK;AAAA,MACH,MAAM,KAAK,IAAI,GAAG,KAAK;AAAA,MACvB,WAAW,KAAK,IAAI,GAAG,UAAU;AAAA,MACjC,aAAa,KAAK,IAAI,GAAG,WAAW;AAAA,MACpC,cAAc,KAAK,IAAI,GAAG,aAAa;AAAA,MACvC,WAAW,KAAK,IAAI,GAAG,UAAU;AAAA,MACjC,KAAK,CAAC;AAAA,IACR;AAAA,IACA,QAAQ;AAAA,MACN,MAAM,kBAAkB,KAAK;AAAA,MAC7B,WAAW,kBAAkB,UAAU;AAAA,MACvC,aAAa,kBAAkB,WAAW;AAAA,MAC1C,cAAc,kBAAkB,aAAa;AAAA,MAC7C,WAAW,kBAAkB,UAAU;AAAA,MACvC,KAAK,CAAC;AAAA,IACR;AAAA,IACA;AAAA,EACF;AACF;;;ACnMA,IAAM,aAAa;AACnB,IAAM,cAAc;AACpB,IAAM,eAAe;AAKd,SAAS,iBAAiB,KAAe,UAA2B;AACzE,MAAI,IAAI,WAAW,GAAG;AACpB,WAAO;AAAA,EACT;AAEA,QAAM,YAAY,YAAY,KAAK,IAAI,GAAG,KAAK,CAAC;AAChD,QAAM,SAAS,KAAK,IAAI,WAAW,CAAC;AAEpC,QAAM,QAAkB,CAAC;AACzB,QAAM,KAAK,4CAAmB;AAG9B,QAAM,KAAK,WAAM,SAAI,OAAO,WAAW,IAAI,QAAG;AAE9C,WAAS,MAAM,eAAe,GAAG,OAAO,GAAG,OAAO;AAChD,UAAM,QAAS,OAAO,eAAe,KAAM;AAC3C,UAAM,QAAQ,MAAM,QAAQ,CAAC,EAAE,SAAS,CAAC;AAEzC,QAAI,WAAW,YAAO,QAAQ;AAE9B,aAAS,MAAM,GAAG,MAAM,aAAa,OAAO;AAC1C,YAAM,QAAQ,KAAK,MAAO,MAAM,cAAe,IAAI,MAAM;AACzD,YAAM,WAAW,IAAI,KAAK,KAAK;AAC/B,YAAM,mBAAoB,WAAW,UAAW,eAAe;AAE/D,UAAI,oBAAoB,KAAK;AAC3B,oBAAY;AAAA,MACd,OAAO;AACL,oBAAY;AAAA,MACd;AAAA,IACF;AAEA,gBAAY;AACZ,UAAM,KAAK,QAAQ;AAAA,EACrB;AAGA,QAAM,KAAK,cAAS,IAAI,SAAS,WAAW,IAAI,UAAK;AACrD,QAAM,KAAK,WAAM,SAAI,OAAO,WAAW,IAAI,QAAG;AAG9C,QAAM,UAAU,gBAAgB,IAAI,QAAQ,CAAC;AAC7C,QAAM,KAAK,SAAS,QAAQ,KAAK,GAAG,CAAC;AAErC,SAAO,MAAM,KAAK,IAAI;AACxB;AAKA,SAAS,gBAAgB,YAAoB,WAA6B;AACxE,MAAI,cAAc,GAAG;AACnB,WAAO,CAAC,IAAI;AAAA,EACd;AAEA,QAAM,SAAmB,CAAC;AAC1B,QAAM,OAAO,KAAK,IAAI,GAAG,KAAK,MAAM,aAAa,SAAS,CAAC;AAE3D,WAAS,IAAI,GAAG,IAAI,YAAY,KAAK,MAAM;AACzC,WAAO,KAAK,GAAG,CAAC,GAAG;AAAA,EACrB;AAGA,MAAI,OAAO,OAAO,SAAS,CAAC,MAAM,GAAG,aAAa,CAAC,KAAK;AACtD,WAAO,KAAK,GAAG,aAAa,CAAC,GAAG;AAAA,EAClC;AAEA,SAAO;AACT;AAKO,SAAS,mBAAmB,KAAuB;AACxD,MAAI,IAAI,WAAW,GAAG;AACpB,WAAO;AAAA,EACT;AAEA,QAAM,QAAkB,CAAC;AACzB,QAAM,KAAK,kBAAQ;AAGnB,QAAM,SAAS,KAAK,IAAI,GAAG,KAAK,CAAC;AACjC,QAAM,UAAU;AAChB,QAAM,aAAa,SAAS;AAC5B,QAAM,YAAY,IAAI,MAAM,OAAO,EAAE,KAAK,CAAC;AAE3C,aAAW,KAAK,KAAK;AACnB,UAAM,cAAc,KAAK,IAAI,KAAK,MAAM,IAAI,UAAU,GAAG,UAAU,CAAC;AACpE,cAAU,WAAW;AAAA,EACvB;AAEA,QAAM,WAAW,KAAK,IAAI,GAAG,WAAW,CAAC;AAEzC,WAAS,IAAI,GAAG,IAAI,SAAS,KAAK;AAChC,UAAM,eAAe,IAAI,YAAY,QAAQ,CAAC;AAC9C,UAAM,cAAc,IAAI,KAAK,YAAY,QAAQ,CAAC;AAClD,UAAM,QAAQ,UAAU,CAAC;AACzB,UAAM,YAAY,KAAK,MAAO,QAAQ,WAAY,WAAW;AAC7D,UAAM,MAAM,WAAW,OAAO,SAAS;AAEvC,UAAM,KAAK,GAAG,WAAW,IAAI,SAAS,UAAK,GAAG,IAAI,KAAK,EAAE;AAAA,EAC3D;AAEA,SAAO,MAAM,KAAK,IAAI;AACxB;AAKO,SAAS,iBAAiB,OAA4B;AAC3D,QAAM,QAAkB,CAAC;AACzB,QAAM,KAAK,EAAE;AACb,QAAM,KAAK,iCAAa,MAAM,aAAa,GAAG;AAC9C,QAAM,KAAK,WAAM,SAAI,OAAO,EAAE,IAAI,QAAG;AAGrC,QAAM;AAAA,IACJ,YACE,eAAK,OAAO,EAAE,IACd,aACA,eAAK,SAAS,EAAE,IAChB,aACA,qBAAM,SAAS,EAAE,IACjB,aACA,qBAAM,SAAS,EAAE,IACjB,aACA,qBAAM,SAAS,EAAE,IACjB;AAAA,EACJ;AACA,QAAM,KAAK,WAAM,SAAI,OAAO,EAAE,IAAI,QAAG;AAGrC,QAAM;AAAA,IACJ;AAAA,MACE;AAAA,MACA,MAAM,KAAK;AAAA,MACX,MAAM,IAAI;AAAA,MACV,MAAM,IAAI;AAAA,MACV,MAAM,OAAO;AAAA,MACb;AAAA,IACF;AAAA,EACF;AACA,QAAM,KAAK,WAAM,SAAI,OAAO,EAAE,IAAI,QAAG;AAGrC,QAAM;AAAA,IACJ;AAAA,MACE;AAAA,MACA,MAAM,KAAK;AAAA,MACX,MAAM,IAAI;AAAA,MACV,MAAM,IAAI;AAAA,MACV,MAAM,OAAO;AAAA,MACb;AAAA,IACF;AAAA,EACF;AACA,QAAM,KAAK,WAAM,SAAI,OAAO,EAAE,IAAI,QAAG;AAGrC,QAAM;AAAA,IACJ;AAAA,MACE;AAAA,MACA,MAAM,KAAK;AAAA,MACX,MAAM,IAAI;AAAA,MACV,MAAM,IAAI;AAAA,MACV,MAAM,OAAO;AAAA,MACb;AAAA,IACF;AAAA,EACF;AACA,QAAM,KAAK,WAAM,SAAI,OAAO,EAAE,IAAI,QAAG;AAGrC,QAAM;AAAA,IACJ;AAAA,MACE;AAAA,MACA,MAAM,KAAK;AAAA,MACX,MAAM,IAAI;AAAA,MACV,MAAM,IAAI;AAAA,MACV,MAAM,OAAO;AAAA,MACb;AAAA,IACF;AAAA,EACF;AACA,QAAM,KAAK,WAAM,SAAI,OAAO,EAAE,IAAI,QAAG;AAGrC,QAAM;AAAA,IACJ;AAAA,MACE;AAAA,MACA,MAAM,KAAK;AAAA,MACX,MAAM,IAAI;AAAA,MACV,MAAM,IAAI;AAAA,MACV,MAAM,OAAO;AAAA,MACb;AAAA,IACF;AAAA,EACF;AAEA,QAAM,KAAK,WAAM,SAAI,OAAO,EAAE,IAAI,QAAG;AAErC,SAAO,MAAM,KAAK,IAAI;AACxB;AAKA,SAAS,cACP,OACAA,OACA,KACA,KACA,QACA,QACQ;AACR,QAAM,MAAM,CAAC,MAAe,WAAW,MAAM,EAAE,QAAQ,CAAC,IAAI,EAAE,QAAQ,CAAC;AAEvE,SACE,YACA,MAAM,OAAO,EAAE,IACf,aACA,IAAIA,KAAI,EAAE,SAAS,EAAE,IACrB,aACA,IAAI,GAAG,EAAE,SAAS,EAAE,IACpB,aACA,IAAI,GAAG,EAAE,SAAS,EAAE,IACpB,aACA,IAAI,MAAM,EAAE,SAAS,EAAE,IACvB;AAEJ;AAKA,SAAS,uBAAuB,IAAoB;AAClD,MAAI,OAAO,KAAK,MAAM,EAAE,GAAG;AACzB,WAAO,GAAG,GAAG,QAAQ,CAAC,CAAC;AAAA,EACzB;AACA,SAAO,GAAG,GAAG,QAAQ,CAAC,CAAC;AACzB;AAKO,SAAS,mBAAmB,SAA4B,UAA0B;AACvF,QAAM,QAAkB,CAAC;AACzB,QAAM,KAAK;AAAA,gBAAS,WAAW,CAAC,GAAG;AACnC,QAAM,KAAK,WAAW,uBAAuB,QAAQ,IAAI,CAAC,EAAE;AAC5D,QAAM,KAAK,yBAAU,uBAAuB,QAAQ,SAAS,CAAC,EAAE;AAChE,QAAM,KAAK,0BAAgB,QAAQ,WAAW,EAAE;AAChD,QAAM,KAAK,+BAAW,QAAQ,aAAa,QAAQ,CAAC,CAAC,WAAW;AAChE,QAAM,KAAK,+BAAW,QAAQ,UAAU,QAAQ,CAAC,CAAC,WAAW;AAC7D,SAAO,MAAM,KAAK,IAAI;AACxB;AAKO,SAAS,aAAa,OAA4B;AACvD,QAAM,QAAkB,CAAC;AAEzB,QAAM,KAAK,OAAO,SAAI,OAAO,EAAE,CAAC;AAChC,QAAM,KAAK,4CAAc;AACzB,QAAM,KAAK,SAAI,OAAO,EAAE,CAAC;AAGzB,QAAM,KAAK,iBAAiB,KAAK,CAAC;AAGlC,MAAI,MAAM,KAAK,IAAI,SAAS,GAAG;AAC7B,UAAM,KAAK,OAAO,iBAAiB,MAAM,KAAK,GAAG,CAAC;AAAA,EACpD;AAGA,MAAI,MAAM,KAAK,IAAI,SAAS,GAAG;AAC7B,UAAM,KAAK,OAAO,mBAAmB,MAAM,KAAK,GAAG,CAAC;AAAA,EACtD;AAEA,SAAO,MAAM,KAAK,IAAI;AACxB;;;AJlRA,SAAS,gBAAwB;AAC/B,MAAI;AACF,UAAM,aAAa,QAAQ,cAAc,YAAY,GAAG,CAAC;AACzD,UAAM,cAAc,KAAK,YAAY,MAAM,cAAc;AACzD,UAAM,cAAc,KAAK,MAAM,aAAa,aAAa,OAAO,CAAC;AACjE,WAAO,YAAY,WAAW;AAAA,EAChC,QAAQ;AACN,WAAO;AAAA,EACT;AACF;AAEA,IAAM,UAAU,IAAI,QAAQ;AAE5B,QACG,KAAK,kBAAkB,EACvB,YAAY,+CAA+C,EAC3D,QAAQ,cAAc,CAAC;AAE1B,QACG,OAAO,uBAAuB,sBAAsB,EAAE,EACtD,OAAO,6BAA6B,qCAAqC,WAAW,EACpF,OAAO,mBAAmB,yBAAyB,EACnD,OAAO,uBAAuB,YAAY,EAC1C,OAAO,yBAAyB,yBAAyB,MAAM,EAC/D,OAAO,uBAAuB,uBAAuB,GAAG,EACxD,OAAO,mBAAmB,eAAe,sDAAc,EACvD,MAAM,QAAQ,IAAI;AAErB,IAAM,UAAU,QAAQ,KAAK;AAE7B,eAAe,OAAO;AACpB,MAAI;AAEF,UAAM,SAAS,YAAY;AAAA,MACzB,QAAQ,QAAQ;AAAA,MAChB,UAAU,QAAQ;AAAA,MAClB,KAAK,QAAQ;AAAA,MACb,OAAO,QAAQ;AAAA,MACf,WAAW,SAAS,QAAQ,WAAW,EAAE;AAAA,MACzC,MAAM,SAAS,QAAQ,MAAM,EAAE;AAAA,MAC/B,QAAQ,QAAQ;AAAA,IAClB,CAAC;AAGD,YAAQ,IAAI,MAAM,KAAK,wDAAmB,CAAC;AAC3C,YAAQ,IAAI,MAAM,KAAK,SAAI,OAAO,EAAE,CAAC,CAAC;AACtC,YAAQ,IAAI,MAAM,KAAK,aAAa,MAAM,MAAM,OAAO,QAAQ,CAAC,EAAE,CAAC;AACnE,YAAQ,IAAI,MAAM,KAAK,UAAU,MAAM,MAAM,OAAO,KAAK,CAAC,EAAE,CAAC;AAC7D,YAAQ,IAAI,MAAM,KAAK,eAAe,MAAM,MAAM,OAAO,SAAS,CAAC,EAAE,CAAC;AACtE,YAAQ,IAAI,MAAM,KAAK,SAAS,MAAM,MAAM,OAAO,QAAQ,CAAC,EAAE,CAAC;AAC/D,YAAQ;AAAA,MACN,MAAM;AAAA,QACJ,WAAW,MAAM,MAAM,OAAO,OAAO,UAAU,GAAG,EAAE,CAAC,CAAC,GAAG,OAAO,OAAO,SAAS,KAAK,QAAQ,EAAE;AAAA,MACjG;AAAA,IACF;AACA,YAAQ,IAAI,MAAM,KAAK,SAAI,OAAO,EAAE,CAAC,CAAC;AAGtC,YAAQ,IAAI,MAAM,OAAO,oDAAiB,CAAC;AAE3C,UAAM,UAAU,MAAM,iBAAiB,MAAM;AAG7C,UAAM,aAAa,QAAQ,IAAI,CAAC,MAAM,iBAAiB,CAAC,CAAC;AAGzD,aAAS,IAAI,GAAG,IAAI,WAAW,QAAQ,KAAK;AAC1C,cAAQ,IAAI,MAAM,KAAK,mBAAmB,WAAW,CAAC,GAAG,CAAC,CAAC,CAAC;AAAA,IAC9D;AAGA,UAAM,QAAQ,eAAe,UAAU;AAGvC,YAAQ,IAAI,MAAM,KAAK,OAAO,aAAa,KAAK,CAAC,CAAC;AAElD,YAAQ,IAAI,MAAM,MAAM,sCAAa,CAAC;AAAA,EACxC,SAAS,OAAO;AACd,QAAI,iBAAiB,OAAO;AAC1B,cAAQ,MAAM,MAAM,IAAI;AAAA,uBAAW,MAAM,OAAO;AAAA,CAAI,CAAC;AAAA,IACvD,OAAO;AACL,cAAQ,MAAM,MAAM,IAAI,iDAAc,CAAC;AAAA,IACzC;AACA,YAAQ,KAAK,CAAC;AAAA,EAChB;AACF;AAEA,KAAK,KAAK;","names":["mean"]}
|
|
1
|
+
{"version":3,"sources":["../src/index.ts","../src/config.ts","../src/client.ts","../src/tokenizer.ts","../src/metrics.ts","../src/chart.ts"],"sourcesContent":["#!/usr/bin/env node\nimport { readFileSync } from \"node:fs\";\nimport { dirname, join } from \"node:path\";\nimport { fileURLToPath } from \"node:url\";\nimport { Command } from \"commander\";\nimport chalk from \"chalk\";\nimport type { Provider } from \"./config.js\";\nimport { parseConfig } from \"./config.js\";\nimport { runMultipleTests } from \"./client.js\";\nimport { calculateMetrics, calculateStats } from \"./metrics.js\";\nimport { renderReport, renderSingleResult } from \"./chart.js\";\n\nfunction getCliVersion(): string {\n try {\n const currentDir = dirname(fileURLToPath(import.meta.url));\n const packagePath = join(currentDir, \"..\", \"package.json\");\n const packageJson = JSON.parse(readFileSync(packagePath, \"utf-8\")) as { version?: string };\n return packageJson.version ?? \"unknown\";\n } catch {\n return \"unknown\";\n }\n}\n\nconst program = new Command();\n\nprogram\n .name(\"token-speed-test\")\n .description(\"A CLI tool to test LLM API token output speed\")\n .version(getCliVersion());\n\nprogram\n .option(\"-k, --api-key <key>\", \"API Key (required)\", \"\")\n .option(\"-p, --provider <provider>\", \"API provider: anthropic or openai\", \"anthropic\")\n .option(\"-u, --url <url>\", \"Custom API endpoint URL\")\n .option(\"-m, --model <model>\", \"Model name\")\n .option(\"--max-tokens <number>\", \"Maximum output tokens\", \"1024\")\n .option(\"-r, --runs <number>\", \"Number of test runs\", \"3\")\n .option(\"--prompt <text>\", \"Test prompt\", \"写一篇关于 AI 的短文\")\n .parse(process.argv);\n\nconst options = program.opts();\n\nasync function main() {\n try {\n // 解析配置\n const config = parseConfig({\n apiKey: options.apiKey,\n provider: options.provider as Provider,\n url: options.url,\n model: options.model,\n maxTokens: parseInt(options.maxTokens, 10),\n runs: parseInt(options.runs, 10),\n prompt: options.prompt,\n });\n\n // 显示配置信息\n console.log(chalk.cyan(\"\\n🚀 Token 速度测试工具\"));\n console.log(chalk.gray(\"─\".repeat(50)));\n console.log(chalk.gray(`Provider: ${chalk.white(config.provider)}`));\n console.log(chalk.gray(`Model: ${chalk.white(config.model)}`));\n console.log(chalk.gray(`Max Tokens: ${chalk.white(config.maxTokens)}`));\n console.log(chalk.gray(`Runs: ${chalk.white(config.runCount)}`));\n console.log(\n chalk.gray(\n `Prompt: ${chalk.white(config.prompt.substring(0, 50))}${config.prompt.length > 50 ? \"...\" : \"\"}`\n )\n );\n console.log(chalk.gray(\"─\".repeat(50)));\n\n // 执行测试\n console.log(chalk.yellow(\"\\n⏳ 正在运行测试...\\n\"));\n console.log(chalk.gray(\"模型输出 (流式):\\n\"));\n\n const results = await runMultipleTests(config);\n\n // 计算指标\n const allMetrics = results.map((r) => calculateMetrics(r));\n\n // 显示每次运行的结果\n for (let i = 0; i < allMetrics.length; i++) {\n console.log(chalk.gray(renderSingleResult(allMetrics[i], i)));\n }\n\n // 计算统计\n const stats = calculateStats(allMetrics);\n\n // 显示报告\n console.log(chalk.cyan(\"\\n\" + renderReport(stats)));\n\n console.log(chalk.green(\"\\n✅ 测试完成!\\n\"));\n } catch (error) {\n if (error instanceof Error) {\n console.error(chalk.red(`\\n❌ 错误: ${error.message}\\n`));\n } else {\n console.error(chalk.red(\"\\n❌ 发生未知错误\\n\"));\n }\n process.exit(1);\n }\n}\n\nvoid main();\n","export type Provider = \"anthropic\" | \"openai\";\n\nexport interface Config {\n provider: Provider;\n apiKey: string;\n baseURL?: string;\n model: string;\n maxTokens: number;\n runCount: number;\n prompt: string;\n}\n\nexport interface ParsedArgs {\n apiKey: string;\n provider?: Provider;\n url?: string;\n model?: string;\n maxTokens?: number;\n runs?: number;\n prompt?: string;\n}\n\nconst DEFAULT_MODELS: Record<Provider, string> = {\n anthropic: \"claude-opus-4-5-20251101\",\n openai: \"gpt-5.2\",\n};\n\nconst DEFAULT_MAX_TOKENS = 1024;\nconst DEFAULT_RUNS = 3;\nconst DEFAULT_PROMPT = \"写一篇关于 AI 的短文\";\n\n/**\n * 解析命令行参数并生成配置\n */\nexport function parseConfig(args: ParsedArgs): Config {\n const {\n apiKey,\n provider = \"anthropic\",\n url,\n model,\n maxTokens = DEFAULT_MAX_TOKENS,\n runs = DEFAULT_RUNS,\n prompt = DEFAULT_PROMPT,\n } = args;\n\n // 验证必填参数\n if (!apiKey || apiKey.trim() === \"\") {\n throw new Error(\"API Key is required. Use --api-key or -k to provide it.\");\n }\n\n // 验证 provider\n if (provider !== \"anthropic\" && provider !== \"openai\") {\n throw new Error(`Invalid provider: ${provider}. Must be 'anthropic' or 'openai'.`);\n }\n\n // 验证数值参数\n if (!Number.isFinite(maxTokens) || !Number.isInteger(maxTokens) || maxTokens <= 0) {\n throw new Error(`Invalid max-tokens: ${maxTokens}. Must be a positive integer.`);\n }\n\n if (!Number.isFinite(runs) || !Number.isInteger(runs) || runs <= 0) {\n throw new Error(`Invalid runs: ${runs}. Must be a positive integer.`);\n }\n\n // 使用默认模型或用户指定的模型\n const finalModel = model || DEFAULT_MODELS[provider];\n\n return {\n provider,\n apiKey: apiKey.trim(),\n baseURL: url?.trim(),\n model: finalModel,\n maxTokens,\n runCount: runs,\n prompt: prompt.trim(),\n };\n}\n\n/**\n * 获取默认模型名称\n */\nexport function getDefaultModel(provider: Provider): string {\n return DEFAULT_MODELS[provider];\n}\n\n/**\n * 验证配置有效性\n */\nexport function validateConfig(config: Config): { valid: boolean; error?: string } {\n if (!config.apiKey) {\n return { valid: false, error: \"API Key is required\" };\n }\n\n if (config.provider !== \"anthropic\" && config.provider !== \"openai\") {\n return { valid: false, error: `Invalid provider: ${config.provider}` };\n }\n\n if (\n !Number.isFinite(config.maxTokens) ||\n !Number.isInteger(config.maxTokens) ||\n config.maxTokens <= 0\n ) {\n return { valid: false, error: \"maxTokens must be a positive integer\" };\n }\n\n if (\n !Number.isFinite(config.runCount) ||\n !Number.isInteger(config.runCount) ||\n config.runCount <= 0\n ) {\n return { valid: false, error: \"runCount must be a positive integer\" };\n }\n\n if (!config.prompt || config.prompt.trim() === \"\") {\n return { valid: false, error: \"prompt cannot be empty\" };\n }\n\n return { valid: true };\n}\n// test\n","import { performance } from \"node:perf_hooks\";\nimport Anthropic from \"@anthropic-ai/sdk\";\nimport OpenAI from \"openai\";\nimport type { Config } from \"./config.js\";\nimport type { StreamMetrics } from \"./metrics.js\";\nimport { createTokenizer } from \"./tokenizer.js\";\n\n/**\n * 执行 Anthropic API 流式测试\n */\nexport async function anthropicStreamTest(config: Config): Promise<StreamMetrics> {\n const startTime = performance.now();\n const tokenTimes: number[] = [];\n let ttft = 0;\n let firstTokenRecorded = false;\n let tokenCount = 0;\n let wroteOutput = false;\n\n const encoding = createTokenizer(config.model);\n const client = new Anthropic({\n apiKey: config.apiKey,\n baseURL: config.baseURL,\n });\n\n try {\n const stream = await client.messages.create({\n model: config.model,\n max_tokens: config.maxTokens,\n messages: [{ role: \"user\", content: config.prompt }],\n stream: true,\n });\n\n for await (const event of stream) {\n const currentTime = performance.now();\n\n if (event.type === \"content_block_delta\" && event.delta.type === \"text_delta\") {\n const text = event.delta.text;\n\n if (text && text.length > 0) {\n process.stdout.write(text);\n wroteOutput = true;\n const encoded = encoding.encode(text);\n const newTokens = encoded.length;\n\n if (newTokens > 0) {\n if (!firstTokenRecorded) {\n ttft = currentTime - startTime;\n firstTokenRecorded = true;\n }\n\n // 为当前批次的新增 token 记录到达时间\n for (let i = 0; i < newTokens; i++) {\n tokenTimes.push(currentTime - startTime);\n }\n\n tokenCount += newTokens;\n }\n }\n }\n }\n } catch (error) {\n if (error instanceof Error) {\n throw new Error(`Anthropic API error: ${error.message}`);\n }\n throw error;\n } finally {\n if (wroteOutput) {\n process.stdout.write(\"\\n\");\n }\n encoding.free();\n }\n\n const endTime = performance.now();\n const totalTime = endTime - startTime;\n\n return {\n ttft,\n tokens: tokenTimes,\n totalTokens: tokenCount,\n totalTime,\n };\n}\n\n/**\n * 执行 OpenAI API 流式测试\n */\nexport async function openaiStreamTest(config: Config): Promise<StreamMetrics> {\n const startTime = performance.now();\n const tokenTimes: number[] = [];\n let ttft = 0;\n let firstTokenRecorded = false;\n let tokenCount = 0;\n let wroteOutput = false;\n\n const encoding = createTokenizer(config.model);\n const client = new OpenAI({\n apiKey: config.apiKey,\n baseURL: config.baseURL,\n });\n\n try {\n const stream = await client.chat.completions.create({\n model: config.model,\n max_tokens: config.maxTokens,\n messages: [{ role: \"user\", content: config.prompt }],\n stream: true,\n });\n\n for await (const chunk of stream) {\n const currentTime = performance.now();\n\n const delta = chunk.choices[0]?.delta;\n\n if (delta?.content) {\n const content = delta.content;\n\n if (content.length > 0) {\n process.stdout.write(content);\n wroteOutput = true;\n const encoded = encoding.encode(content);\n const newTokens = encoded.length;\n\n if (newTokens > 0) {\n if (!firstTokenRecorded) {\n ttft = currentTime - startTime;\n firstTokenRecorded = true;\n }\n\n // 为当前批次的新增 token 记录到达时间\n for (let i = 0; i < newTokens; i++) {\n tokenTimes.push(currentTime - startTime);\n }\n\n tokenCount += newTokens;\n }\n }\n }\n }\n } catch (error) {\n if (error instanceof Error) {\n throw new Error(`OpenAI API error: ${error.message}`);\n }\n throw error;\n } finally {\n if (wroteOutput) {\n process.stdout.write(\"\\n\");\n }\n encoding.free();\n }\n\n const endTime = performance.now();\n const totalTime = endTime - startTime;\n\n return {\n ttft,\n tokens: tokenTimes,\n totalTokens: tokenCount,\n totalTime,\n };\n}\n\n/**\n * 根据配置执行流式测试\n */\nexport async function streamTest(config: Config): Promise<StreamMetrics> {\n if (config.provider === \"anthropic\") {\n return anthropicStreamTest(config);\n } else {\n return openaiStreamTest(config);\n }\n}\n\n/**\n * 执行多次测试\n */\nexport async function runMultipleTests(config: Config): Promise<StreamMetrics[]> {\n const results: StreamMetrics[] = [];\n\n for (let i = 0; i < config.runCount; i++) {\n if (config.runCount > 1) {\n const label = `\\n[运行 ${i + 1}/${config.runCount}]`;\n console.log(label);\n console.log(\"-\".repeat(label.length - 1));\n }\n const result = await streamTest(config);\n results.push(result);\n }\n\n return results;\n}\n","import { encoding_for_model, get_encoding } from \"tiktoken\";\nimport type { TiktokenModel } from \"tiktoken\";\n\nconst FALLBACK_ENCODING = \"cl100k_base\";\n\nexport function createTokenizer(model: string) {\n try {\n const normalized = model.trim();\n if (!normalized) {\n return get_encoding(FALLBACK_ENCODING);\n }\n return encoding_for_model(normalized as TiktokenModel);\n } catch {\n return get_encoding(FALLBACK_ENCODING);\n }\n}\n","/**\n * 单次流式测试的原始计时数据\n */\nexport interface StreamMetrics {\n ttft: number; // Time to First Token (ms)\n tokens: number[]; // 每个 token 的到达时间(相对开始时间,单位:ms)\n totalTokens: number;\n totalTime: number;\n}\n\n/**\n * 计算后的统计指标\n */\nexport interface CalculatedMetrics {\n ttft: number; // Time to First Token (ms)\n totalTime: number; // 总耗时 (ms)\n totalTokens: number; // 总 token 数\n averageSpeed: number; // 平均速度 (tokens/s)\n peakSpeed: number; // 峰值速度 (tokens/s)\n peakTps: number; // 峰值 TPS (tokens/s)\n tps: number[]; // 每秒 token 数 (TPS curve)\n}\n\n/**\n * 多次测试的统计结果\n */\nexport interface StatsResult {\n mean: CalculatedMetrics;\n min: CalculatedMetrics;\n max: CalculatedMetrics;\n stdDev: CalculatedMetrics;\n sampleSize: number;\n}\n\n/**\n * 计算 TTFT (Time to First Token)\n */\nexport function calculateTTFT(metrics: StreamMetrics): number {\n return metrics.ttft;\n}\n\n/**\n * 计算平均速度 (tokens/s)\n */\nexport function calculateAverageSpeed(metrics: StreamMetrics): number {\n if (metrics.totalTime <= 0) {\n return 0;\n }\n return (metrics.totalTokens / metrics.totalTime) * 1000;\n}\n\n/**\n * 计算峰值速度 - 最快连续 N 个 token 的平均速度\n */\nconst MIN_PEAK_WINDOW_MS = 50;\n\nexport function calculatePeakSpeed(metrics: StreamMetrics, windowSize: number = 10): number {\n if (metrics.tokens.length < windowSize) {\n // 如果 token 数少于窗口大小,使用全部 token 计算\n if (metrics.tokens.length < 2) {\n return 0;\n }\n const totalTime = metrics.tokens[metrics.tokens.length - 1] - metrics.tokens[0];\n const durationMs = Math.max(totalTime, MIN_PEAK_WINDOW_MS);\n return ((metrics.tokens.length - 1) / durationMs) * 1000;\n }\n\n let maxSpeed = 0;\n for (let i = 0; i <= metrics.tokens.length - windowSize; i++) {\n const startTime = metrics.tokens[i];\n const endTime = metrics.tokens[i + windowSize - 1];\n const duration = endTime - startTime;\n const durationMs = Math.max(duration, MIN_PEAK_WINDOW_MS);\n const speed = ((windowSize - 1) / durationMs) * 1000;\n maxSpeed = Math.max(maxSpeed, speed);\n }\n\n return maxSpeed;\n}\n\n/**\n * 计算 TPS (Tokens Per Second) 曲线\n */\nexport function calculateTPS(metrics: StreamMetrics): number[] {\n if (metrics.tokens.length === 0) {\n return [];\n }\n\n const totalDuration = metrics.tokens[metrics.tokens.length - 1];\n const totalSeconds = Math.ceil(totalDuration / 1000);\n\n if (totalSeconds <= 0) {\n return metrics.tokens.length > 0 ? [metrics.tokens.length] : [];\n }\n\n const tps: number[] = new Array(totalSeconds).fill(0);\n\n // 计算每秒内的 token 数\n for (const tokenTime of metrics.tokens) {\n const secondIndex = Math.floor(tokenTime / 1000);\n if (secondIndex < tps.length) {\n tps[secondIndex]++;\n }\n }\n\n return tps;\n}\n\n/**\n * 从 StreamMetrics 计算完整的指标\n */\nexport function calculateMetrics(metrics: StreamMetrics): CalculatedMetrics {\n const tps = calculateTPS(metrics);\n return {\n ttft: calculateTTFT(metrics),\n totalTime: metrics.totalTime,\n totalTokens: metrics.totalTokens,\n averageSpeed: calculateAverageSpeed(metrics),\n peakSpeed: calculatePeakSpeed(metrics),\n peakTps: tps.length > 0 ? Math.max(...tps) : 0,\n tps,\n };\n}\n\n/**\n * 计算一组数值的平均值\n */\nfunction mean(values: number[]): number {\n if (values.length === 0) return 0;\n return values.reduce((sum, v) => sum + v, 0) / values.length;\n}\n\n/**\n * 计算一组数值的标准差\n */\nfunction standardDeviation(values: number[]): number {\n if (values.length < 2) return 0;\n const avg = mean(values);\n const squareDiffs = values.map((v) => Math.pow(v - avg, 2));\n return Math.sqrt(mean(squareDiffs));\n}\n\n/**\n * 从多个 CalculatedMetrics 计算统计结果\n */\nexport function calculateStats(allMetrics: CalculatedMetrics[]): StatsResult {\n if (allMetrics.length === 0) {\n throw new Error(\"Cannot calculate stats from empty metrics array\");\n }\n\n const sampleSize = allMetrics.length;\n\n // 提取各项指标的数组\n const ttfts = allMetrics.map((m) => m.ttft);\n const totalTimes = allMetrics.map((m) => m.totalTime);\n const totalTokens = allMetrics.map((m) => m.totalTokens);\n const averageSpeeds = allMetrics.map((m) => m.averageSpeed);\n const peakSpeeds = allMetrics.map((m) => m.peakSpeed);\n const peakTpsValues = allMetrics.map((m) => m.peakTps);\n\n // 找到最长的 TPS 数组\n const maxTpsLength = Math.max(...allMetrics.map((m) => m.tps.length));\n const avgTps: number[] = [];\n for (let i = 0; i < maxTpsLength; i++) {\n const values = allMetrics.map((m) => m.tps[i] ?? 0);\n avgTps.push(mean(values));\n }\n\n return {\n mean: {\n ttft: mean(ttfts),\n totalTime: mean(totalTimes),\n totalTokens: mean(totalTokens),\n averageSpeed: mean(averageSpeeds),\n peakSpeed: mean(peakSpeeds),\n peakTps: mean(peakTpsValues),\n tps: avgTps,\n },\n min: {\n ttft: Math.min(...ttfts),\n totalTime: Math.min(...totalTimes),\n totalTokens: Math.min(...totalTokens),\n averageSpeed: Math.min(...averageSpeeds),\n peakSpeed: Math.min(...peakSpeeds),\n peakTps: Math.min(...peakTpsValues),\n tps: [],\n },\n max: {\n ttft: Math.max(...ttfts),\n totalTime: Math.max(...totalTimes),\n totalTokens: Math.max(...totalTokens),\n averageSpeed: Math.max(...averageSpeeds),\n peakSpeed: Math.max(...peakSpeeds),\n peakTps: Math.max(...peakTpsValues),\n tps: [],\n },\n stdDev: {\n ttft: standardDeviation(ttfts),\n totalTime: standardDeviation(totalTimes),\n totalTokens: standardDeviation(totalTokens),\n averageSpeed: standardDeviation(averageSpeeds),\n peakSpeed: standardDeviation(peakSpeeds),\n peakTps: standardDeviation(peakTpsValues),\n tps: [],\n },\n sampleSize,\n };\n}\n\n/**\n * 格式化速度显示\n */\nexport function formatSpeed(tokensPerSecond: number): string {\n return tokensPerSecond.toFixed(2);\n}\n\n/**\n * 格式化时间显示\n */\nexport function formatTime(ms: number): string {\n if (ms < 1000) {\n return `${ms.toFixed(0)}ms`;\n }\n return `${(ms / 1000).toFixed(2)}s`;\n}\n","import stringWidth from \"string-width\";\nimport type { CalculatedMetrics, StatsResult } from \"./metrics.js\";\n\nconst BLOCK_CHAR = \"█\";\nconst CHART_WIDTH = 50;\nconst CHART_HEIGHT = 10;\nconst STAT_LABEL_WIDTH = 15;\nconst STAT_VALUE_WIDTH = 10;\nconst Y_LABEL_WIDTH = 4;\n\nfunction padEndWidth(text: string, width: number): string {\n const currentWidth = stringWidth(text);\n if (currentWidth >= width) {\n return text;\n }\n return text + \" \".repeat(width - currentWidth);\n}\n\nfunction padStartWidth(text: string, width: number): string {\n const currentWidth = stringWidth(text);\n if (currentWidth >= width) {\n return text;\n }\n return \" \".repeat(width - currentWidth) + text;\n}\n\n/**\n * 渲染速度趋势图\n */\nexport function renderSpeedChart(tps: number[], maxSpeed?: number): string {\n if (tps.length === 0) {\n return \"No data available for chart\";\n }\n\n const actualMax = maxSpeed ?? Math.max(...tps, 1);\n const maxVal = Math.max(actualMax, 1);\n\n const buildRow = (label: string, bars: string) =>\n `│ ${padStartWidth(label, Y_LABEL_WIDTH)} ┤${bars} │`;\n const emptyRow = buildRow(\"0\", \" \".repeat(CHART_WIDTH));\n const chartWidth = stringWidth(emptyRow) - 2;\n const axisPrefix = `│ ${padStartWidth(\"\", Y_LABEL_WIDTH)} ┼`;\n\n const lines: string[] = [];\n lines.push(\"Token 速度趋势图 (TPS)\");\n\n // Y 轴标签和边框\n lines.push(\"┌\" + \"─\".repeat(chartWidth) + \"┐\");\n\n for (let row = CHART_HEIGHT - 1; row >= 0; row--) {\n const value = (row / (CHART_HEIGHT - 1)) * maxVal;\n const label = value.toFixed(0);\n\n let bars = \"\";\n for (let col = 0; col < CHART_WIDTH; col++) {\n const index = Math.floor((col / CHART_WIDTH) * tps.length);\n const tpsValue = tps[index] ?? 0;\n const normalizedHeight = (tpsValue / maxVal) * (CHART_HEIGHT - 1);\n bars += normalizedHeight >= row ? BLOCK_CHAR : \" \";\n }\n\n lines.push(buildRow(label, bars));\n }\n\n // X 轴\n lines.push(`${axisPrefix}${\"─\".repeat(CHART_WIDTH)} │`);\n lines.push(\"└\" + \"─\".repeat(chartWidth) + \"┘\");\n\n // X 轴标签 (时间标记)\n const xLabels = generateXLabels(tps.length, 6);\n const labelLine = new Array(CHART_WIDTH).fill(\" \");\n const maxIndex = Math.max(tps.length - 1, 1);\n for (const label of xLabels) {\n const seconds = parseInt(label.replace(\"s\", \"\"), 10);\n const position = Math.min(\n CHART_WIDTH - 1,\n Math.round((seconds / maxIndex) * (CHART_WIDTH - 1))\n );\n for (let i = 0; i < label.length && position + i < CHART_WIDTH; i++) {\n labelLine[position + i] = label[i];\n }\n }\n lines.push(\" \".repeat(stringWidth(axisPrefix)) + labelLine.join(\"\"));\n\n return lines.join(\"\\n\");\n}\n\n/**\n * 生成 X 轴时间标签\n */\nfunction generateXLabels(dataPoints: number, maxLabels: number): string[] {\n if (dataPoints <= 1) {\n return [\"0s\"];\n }\n\n const labels: string[] = [];\n const step = Math.max(1, Math.floor(dataPoints / maxLabels));\n\n for (let i = 0; i < dataPoints; i += step) {\n labels.push(`${i}s`);\n }\n\n // 确保最后一个标签是结束时间\n if (labels[labels.length - 1] !== `${dataPoints - 1}s`) {\n labels.push(`${dataPoints - 1}s`);\n }\n\n return labels;\n}\n\n/**\n * 渲染 TPS 直方图\n */\nexport function renderTPSHistogram(tps: number[]): string {\n if (tps.length === 0) {\n return \"No TPS data available\";\n }\n\n const lines: string[] = [];\n lines.push(\"TPS 分布\");\n\n // 计算分布区间\n const maxTps = Math.max(...tps, 1);\n const buckets = 10;\n const bucketSize = maxTps / buckets;\n const histogram = new Array(buckets).fill(0);\n\n for (const t of tps) {\n const bucketIndex = Math.min(Math.floor(t / bucketSize), buckets - 1);\n histogram[bucketIndex]++;\n }\n\n const maxCount = Math.max(...histogram, 1);\n\n const labels = histogram.map((_, i) => {\n const bucketStart = (i * bucketSize).toFixed(1);\n const bucketEnd = ((i + 1) * bucketSize).toFixed(1);\n return `${bucketStart}-${bucketEnd}`;\n });\n const labelWidth = Math.max(...labels.map((l) => stringWidth(l)));\n\n for (let i = 0; i < buckets; i++) {\n const label = padEndWidth(labels[i], labelWidth);\n const count = histogram[i];\n const barLength = Math.round((count / maxCount) * CHART_WIDTH);\n const bar = BLOCK_CHAR.repeat(barLength);\n\n const countSuffix = count > 0 ? ` ${count}` : \"\";\n lines.push(`${label} │${bar}${countSuffix}`);\n }\n\n return lines.join(\"\\n\");\n}\n\n/**\n * 渲染统计汇总表\n */\nexport function renderStatsTable(stats: StatsResult): string {\n const lines: string[] = [];\n lines.push(\"\");\n lines.push(\"统计汇总 (N=\" + stats.sampleSize + \")\");\n\n // 表头\n const headerRow =\n \"│ \" +\n padEndWidth(\"指标\", STAT_LABEL_WIDTH) +\n \" │ \" +\n padStartWidth(\"均值\", STAT_VALUE_WIDTH) +\n \" │ \" +\n padStartWidth(\"最小值\", STAT_VALUE_WIDTH) +\n \" │ \" +\n padStartWidth(\"最大值\", STAT_VALUE_WIDTH) +\n \" │ \" +\n padStartWidth(\"标准差\", STAT_VALUE_WIDTH) +\n \" │\";\n\n const tableWidth = stringWidth(headerRow) - 2;\n lines.push(\"┌\" + \"─\".repeat(tableWidth) + \"┐\");\n lines.push(headerRow);\n lines.push(\"├\" + \"─\".repeat(tableWidth) + \"┤\");\n\n // TTFT\n lines.push(\n formatStatRow(\n \"TTFT (ms)\",\n stats.mean.ttft,\n stats.min.ttft,\n stats.max.ttft,\n stats.stdDev.ttft,\n \"f\"\n )\n );\n lines.push(\"├\" + \"─\".repeat(tableWidth) + \"┤\");\n\n // 总耗时\n lines.push(\n formatStatRow(\n \"总耗时 (ms)\",\n stats.mean.totalTime,\n stats.min.totalTime,\n stats.max.totalTime,\n stats.stdDev.totalTime,\n \"f\"\n )\n );\n lines.push(\"├\" + \"─\".repeat(tableWidth) + \"┤\");\n\n // 总 token 数\n lines.push(\n formatStatRow(\n \"总 Token 数\",\n stats.mean.totalTokens,\n stats.min.totalTokens,\n stats.max.totalTokens,\n stats.stdDev.totalTokens,\n \"f\"\n )\n );\n lines.push(\"├\" + \"─\".repeat(tableWidth) + \"┤\");\n\n // 平均速度\n lines.push(\n formatStatRow(\n \"平均速度\",\n stats.mean.averageSpeed,\n stats.min.averageSpeed,\n stats.max.averageSpeed,\n stats.stdDev.averageSpeed,\n \"f\"\n )\n );\n lines.push(\"├\" + \"─\".repeat(tableWidth) + \"┤\");\n\n // 峰值速度\n lines.push(\n formatStatRow(\n \"峰值速度\",\n stats.mean.peakSpeed,\n stats.min.peakSpeed,\n stats.max.peakSpeed,\n stats.stdDev.peakSpeed,\n \"f\"\n )\n );\n\n lines.push(\"├\" + \"─\".repeat(tableWidth) + \"┤\");\n\n // 峰值 TPS\n lines.push(\n formatStatRow(\n \"峰值 TPS\",\n stats.mean.peakTps,\n stats.min.peakTps,\n stats.max.peakTps,\n stats.stdDev.peakTps,\n \"f\"\n )\n );\n\n lines.push(\"└\" + \"─\".repeat(tableWidth) + \"┘\");\n\n return lines.join(\"\\n\");\n}\n\n/**\n * 格式化统计表格的一行\n */\nfunction formatStatRow(\n label: string,\n mean: number,\n min: number,\n max: number,\n stdDev: number,\n format: \"f\" | \"d\"\n): string {\n const fmt = (n: number) => (format === \"f\" ? n.toFixed(2) : n.toFixed(0));\n\n return (\n \"│ \" +\n padEndWidth(label, STAT_LABEL_WIDTH) +\n \" │ \" +\n padStartWidth(fmt(mean), STAT_VALUE_WIDTH) +\n \" │ \" +\n padStartWidth(fmt(min), STAT_VALUE_WIDTH) +\n \" │ \" +\n padStartWidth(fmt(max), STAT_VALUE_WIDTH) +\n \" │ \" +\n padStartWidth(fmt(stdDev), STAT_VALUE_WIDTH) +\n \" │\"\n );\n}\n\n/**\n * 格式化时间显示(带小数)\n */\nfunction formatTimeWithDecimals(ms: number): string {\n if (ms === Math.floor(ms)) {\n return `${ms.toFixed(0)}ms`;\n }\n return `${ms.toFixed(2)}ms`;\n}\n\n/**\n * 渲染单次测试结果\n */\nexport function renderSingleResult(metrics: CalculatedMetrics, runIndex: number): string {\n const lines: string[] = [];\n lines.push(`\\n[运行 ${runIndex + 1}]`);\n lines.push(` TTFT: ${formatTimeWithDecimals(metrics.ttft)}`);\n lines.push(` 总耗时: ${formatTimeWithDecimals(metrics.totalTime)}`);\n lines.push(` 总 Token 数: ${metrics.totalTokens}`);\n lines.push(` 平均速度: ${metrics.averageSpeed.toFixed(2)} tokens/s`);\n lines.push(` 峰值速度: ${metrics.peakSpeed.toFixed(2)} tokens/s`);\n lines.push(` 峰值 TPS: ${metrics.peakTps.toFixed(2)} tokens/s`);\n return lines.join(\"\\n\");\n}\n\n/**\n * 渲染完整的测试报告\n */\nexport function renderReport(stats: StatsResult): string {\n const lines: string[] = [];\n\n lines.push(\"\\n\" + \"═\".repeat(72));\n lines.push(\"Token 速度测试报告\");\n lines.push(\"═\".repeat(72));\n\n // 汇总统计\n lines.push(renderStatsTable(stats));\n\n // 速度趋势图\n if (stats.mean.tps.length > 0) {\n lines.push(\"\\n\" + renderSpeedChart(stats.mean.tps));\n }\n\n // TPS 直方图\n if (stats.mean.tps.length > 0) {\n lines.push(\"\\n\" + renderTPSHistogram(stats.mean.tps));\n }\n\n return lines.join(\"\\n\");\n}\n"],"mappings":";;;AACA,SAAS,oBAAoB;AAC7B,SAAS,SAAS,YAAY;AAC9B,SAAS,qBAAqB;AAC9B,SAAS,eAAe;AACxB,OAAO,WAAW;;;ACiBlB,IAAM,iBAA2C;AAAA,EAC/C,WAAW;AAAA,EACX,QAAQ;AACV;AAEA,IAAM,qBAAqB;AAC3B,IAAM,eAAe;AACrB,IAAM,iBAAiB;AAKhB,SAAS,YAAY,MAA0B;AACpD,QAAM;AAAA,IACJ;AAAA,IACA,WAAW;AAAA,IACX;AAAA,IACA;AAAA,IACA,YAAY;AAAA,IACZ,OAAO;AAAA,IACP,SAAS;AAAA,EACX,IAAI;AAGJ,MAAI,CAAC,UAAU,OAAO,KAAK,MAAM,IAAI;AACnC,UAAM,IAAI,MAAM,yDAAyD;AAAA,EAC3E;AAGA,MAAI,aAAa,eAAe,aAAa,UAAU;AACrD,UAAM,IAAI,MAAM,qBAAqB,QAAQ,oCAAoC;AAAA,EACnF;AAGA,MAAI,CAAC,OAAO,SAAS,SAAS,KAAK,CAAC,OAAO,UAAU,SAAS,KAAK,aAAa,GAAG;AACjF,UAAM,IAAI,MAAM,uBAAuB,SAAS,+BAA+B;AAAA,EACjF;AAEA,MAAI,CAAC,OAAO,SAAS,IAAI,KAAK,CAAC,OAAO,UAAU,IAAI,KAAK,QAAQ,GAAG;AAClE,UAAM,IAAI,MAAM,iBAAiB,IAAI,+BAA+B;AAAA,EACtE;AAGA,QAAM,aAAa,SAAS,eAAe,QAAQ;AAEnD,SAAO;AAAA,IACL;AAAA,IACA,QAAQ,OAAO,KAAK;AAAA,IACpB,SAAS,KAAK,KAAK;AAAA,IACnB,OAAO;AAAA,IACP;AAAA,IACA,UAAU;AAAA,IACV,QAAQ,OAAO,KAAK;AAAA,EACtB;AACF;;;AC5EA,SAAS,mBAAmB;AAC5B,OAAO,eAAe;AACtB,OAAO,YAAY;;;ACFnB,SAAS,oBAAoB,oBAAoB;AAGjD,IAAM,oBAAoB;AAEnB,SAAS,gBAAgB,OAAe;AAC7C,MAAI;AACF,UAAM,aAAa,MAAM,KAAK;AAC9B,QAAI,CAAC,YAAY;AACf,aAAO,aAAa,iBAAiB;AAAA,IACvC;AACA,WAAO,mBAAmB,UAA2B;AAAA,EACvD,QAAQ;AACN,WAAO,aAAa,iBAAiB;AAAA,EACvC;AACF;;;ADLA,eAAsB,oBAAoB,QAAwC;AAChF,QAAM,YAAY,YAAY,IAAI;AAClC,QAAM,aAAuB,CAAC;AAC9B,MAAI,OAAO;AACX,MAAI,qBAAqB;AACzB,MAAI,aAAa;AACjB,MAAI,cAAc;AAElB,QAAM,WAAW,gBAAgB,OAAO,KAAK;AAC7C,QAAM,SAAS,IAAI,UAAU;AAAA,IAC3B,QAAQ,OAAO;AAAA,IACf,SAAS,OAAO;AAAA,EAClB,CAAC;AAED,MAAI;AACF,UAAM,SAAS,MAAM,OAAO,SAAS,OAAO;AAAA,MAC1C,OAAO,OAAO;AAAA,MACd,YAAY,OAAO;AAAA,MACnB,UAAU,CAAC,EAAE,MAAM,QAAQ,SAAS,OAAO,OAAO,CAAC;AAAA,MACnD,QAAQ;AAAA,IACV,CAAC;AAED,qBAAiB,SAAS,QAAQ;AAChC,YAAM,cAAc,YAAY,IAAI;AAEpC,UAAI,MAAM,SAAS,yBAAyB,MAAM,MAAM,SAAS,cAAc;AAC7E,cAAM,OAAO,MAAM,MAAM;AAEzB,YAAI,QAAQ,KAAK,SAAS,GAAG;AAC3B,kBAAQ,OAAO,MAAM,IAAI;AACzB,wBAAc;AACd,gBAAM,UAAU,SAAS,OAAO,IAAI;AACpC,gBAAM,YAAY,QAAQ;AAE1B,cAAI,YAAY,GAAG;AACjB,gBAAI,CAAC,oBAAoB;AACvB,qBAAO,cAAc;AACrB,mCAAqB;AAAA,YACvB;AAGA,qBAAS,IAAI,GAAG,IAAI,WAAW,KAAK;AAClC,yBAAW,KAAK,cAAc,SAAS;AAAA,YACzC;AAEA,0BAAc;AAAA,UAChB;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF,SAAS,OAAO;AACd,QAAI,iBAAiB,OAAO;AAC1B,YAAM,IAAI,MAAM,wBAAwB,MAAM,OAAO,EAAE;AAAA,IACzD;AACA,UAAM;AAAA,EACR,UAAE;AACA,QAAI,aAAa;AACf,cAAQ,OAAO,MAAM,IAAI;AAAA,IAC3B;AACA,aAAS,KAAK;AAAA,EAChB;AAEA,QAAM,UAAU,YAAY,IAAI;AAChC,QAAM,YAAY,UAAU;AAE5B,SAAO;AAAA,IACL;AAAA,IACA,QAAQ;AAAA,IACR,aAAa;AAAA,IACb;AAAA,EACF;AACF;AAKA,eAAsB,iBAAiB,QAAwC;AAC7E,QAAM,YAAY,YAAY,IAAI;AAClC,QAAM,aAAuB,CAAC;AAC9B,MAAI,OAAO;AACX,MAAI,qBAAqB;AACzB,MAAI,aAAa;AACjB,MAAI,cAAc;AAElB,QAAM,WAAW,gBAAgB,OAAO,KAAK;AAC7C,QAAM,SAAS,IAAI,OAAO;AAAA,IACxB,QAAQ,OAAO;AAAA,IACf,SAAS,OAAO;AAAA,EAClB,CAAC;AAED,MAAI;AACF,UAAM,SAAS,MAAM,OAAO,KAAK,YAAY,OAAO;AAAA,MAClD,OAAO,OAAO;AAAA,MACd,YAAY,OAAO;AAAA,MACnB,UAAU,CAAC,EAAE,MAAM,QAAQ,SAAS,OAAO,OAAO,CAAC;AAAA,MACnD,QAAQ;AAAA,IACV,CAAC;AAED,qBAAiB,SAAS,QAAQ;AAChC,YAAM,cAAc,YAAY,IAAI;AAEpC,YAAM,QAAQ,MAAM,QAAQ,CAAC,GAAG;AAEhC,UAAI,OAAO,SAAS;AAClB,cAAM,UAAU,MAAM;AAEtB,YAAI,QAAQ,SAAS,GAAG;AACtB,kBAAQ,OAAO,MAAM,OAAO;AAC5B,wBAAc;AACd,gBAAM,UAAU,SAAS,OAAO,OAAO;AACvC,gBAAM,YAAY,QAAQ;AAE1B,cAAI,YAAY,GAAG;AACjB,gBAAI,CAAC,oBAAoB;AACvB,qBAAO,cAAc;AACrB,mCAAqB;AAAA,YACvB;AAGA,qBAAS,IAAI,GAAG,IAAI,WAAW,KAAK;AAClC,yBAAW,KAAK,cAAc,SAAS;AAAA,YACzC;AAEA,0BAAc;AAAA,UAChB;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF,SAAS,OAAO;AACd,QAAI,iBAAiB,OAAO;AAC1B,YAAM,IAAI,MAAM,qBAAqB,MAAM,OAAO,EAAE;AAAA,IACtD;AACA,UAAM;AAAA,EACR,UAAE;AACA,QAAI,aAAa;AACf,cAAQ,OAAO,MAAM,IAAI;AAAA,IAC3B;AACA,aAAS,KAAK;AAAA,EAChB;AAEA,QAAM,UAAU,YAAY,IAAI;AAChC,QAAM,YAAY,UAAU;AAE5B,SAAO;AAAA,IACL;AAAA,IACA,QAAQ;AAAA,IACR,aAAa;AAAA,IACb;AAAA,EACF;AACF;AAKA,eAAsB,WAAW,QAAwC;AACvE,MAAI,OAAO,aAAa,aAAa;AACnC,WAAO,oBAAoB,MAAM;AAAA,EACnC,OAAO;AACL,WAAO,iBAAiB,MAAM;AAAA,EAChC;AACF;AAKA,eAAsB,iBAAiB,QAA0C;AAC/E,QAAM,UAA2B,CAAC;AAElC,WAAS,IAAI,GAAG,IAAI,OAAO,UAAU,KAAK;AACxC,QAAI,OAAO,WAAW,GAAG;AACvB,YAAM,QAAQ;AAAA,gBAAS,IAAI,CAAC,IAAI,OAAO,QAAQ;AAC/C,cAAQ,IAAI,KAAK;AACjB,cAAQ,IAAI,IAAI,OAAO,MAAM,SAAS,CAAC,CAAC;AAAA,IAC1C;AACA,UAAM,SAAS,MAAM,WAAW,MAAM;AACtC,YAAQ,KAAK,MAAM;AAAA,EACrB;AAEA,SAAO;AACT;;;AExJO,SAAS,cAAc,SAAgC;AAC5D,SAAO,QAAQ;AACjB;AAKO,SAAS,sBAAsB,SAAgC;AACpE,MAAI,QAAQ,aAAa,GAAG;AAC1B,WAAO;AAAA,EACT;AACA,SAAQ,QAAQ,cAAc,QAAQ,YAAa;AACrD;AAKA,IAAM,qBAAqB;AAEpB,SAAS,mBAAmB,SAAwB,aAAqB,IAAY;AAC1F,MAAI,QAAQ,OAAO,SAAS,YAAY;AAEtC,QAAI,QAAQ,OAAO,SAAS,GAAG;AAC7B,aAAO;AAAA,IACT;AACA,UAAM,YAAY,QAAQ,OAAO,QAAQ,OAAO,SAAS,CAAC,IAAI,QAAQ,OAAO,CAAC;AAC9E,UAAM,aAAa,KAAK,IAAI,WAAW,kBAAkB;AACzD,YAAS,QAAQ,OAAO,SAAS,KAAK,aAAc;AAAA,EACtD;AAEA,MAAI,WAAW;AACf,WAAS,IAAI,GAAG,KAAK,QAAQ,OAAO,SAAS,YAAY,KAAK;AAC5D,UAAM,YAAY,QAAQ,OAAO,CAAC;AAClC,UAAM,UAAU,QAAQ,OAAO,IAAI,aAAa,CAAC;AACjD,UAAM,WAAW,UAAU;AAC3B,UAAM,aAAa,KAAK,IAAI,UAAU,kBAAkB;AACxD,UAAM,SAAU,aAAa,KAAK,aAAc;AAChD,eAAW,KAAK,IAAI,UAAU,KAAK;AAAA,EACrC;AAEA,SAAO;AACT;AAKO,SAAS,aAAa,SAAkC;AAC7D,MAAI,QAAQ,OAAO,WAAW,GAAG;AAC/B,WAAO,CAAC;AAAA,EACV;AAEA,QAAM,gBAAgB,QAAQ,OAAO,QAAQ,OAAO,SAAS,CAAC;AAC9D,QAAM,eAAe,KAAK,KAAK,gBAAgB,GAAI;AAEnD,MAAI,gBAAgB,GAAG;AACrB,WAAO,QAAQ,OAAO,SAAS,IAAI,CAAC,QAAQ,OAAO,MAAM,IAAI,CAAC;AAAA,EAChE;AAEA,QAAM,MAAgB,IAAI,MAAM,YAAY,EAAE,KAAK,CAAC;AAGpD,aAAW,aAAa,QAAQ,QAAQ;AACtC,UAAM,cAAc,KAAK,MAAM,YAAY,GAAI;AAC/C,QAAI,cAAc,IAAI,QAAQ;AAC5B,UAAI,WAAW;AAAA,IACjB;AAAA,EACF;AAEA,SAAO;AACT;AAKO,SAAS,iBAAiB,SAA2C;AAC1E,QAAM,MAAM,aAAa,OAAO;AAChC,SAAO;AAAA,IACL,MAAM,cAAc,OAAO;AAAA,IAC3B,WAAW,QAAQ;AAAA,IACnB,aAAa,QAAQ;AAAA,IACrB,cAAc,sBAAsB,OAAO;AAAA,IAC3C,WAAW,mBAAmB,OAAO;AAAA,IACrC,SAAS,IAAI,SAAS,IAAI,KAAK,IAAI,GAAG,GAAG,IAAI;AAAA,IAC7C;AAAA,EACF;AACF;AAKA,SAAS,KAAK,QAA0B;AACtC,MAAI,OAAO,WAAW,EAAG,QAAO;AAChC,SAAO,OAAO,OAAO,CAAC,KAAK,MAAM,MAAM,GAAG,CAAC,IAAI,OAAO;AACxD;AAKA,SAAS,kBAAkB,QAA0B;AACnD,MAAI,OAAO,SAAS,EAAG,QAAO;AAC9B,QAAM,MAAM,KAAK,MAAM;AACvB,QAAM,cAAc,OAAO,IAAI,CAAC,MAAM,KAAK,IAAI,IAAI,KAAK,CAAC,CAAC;AAC1D,SAAO,KAAK,KAAK,KAAK,WAAW,CAAC;AACpC;AAKO,SAAS,eAAe,YAA8C;AAC3E,MAAI,WAAW,WAAW,GAAG;AAC3B,UAAM,IAAI,MAAM,iDAAiD;AAAA,EACnE;AAEA,QAAM,aAAa,WAAW;AAG9B,QAAM,QAAQ,WAAW,IAAI,CAAC,MAAM,EAAE,IAAI;AAC1C,QAAM,aAAa,WAAW,IAAI,CAAC,MAAM,EAAE,SAAS;AACpD,QAAM,cAAc,WAAW,IAAI,CAAC,MAAM,EAAE,WAAW;AACvD,QAAM,gBAAgB,WAAW,IAAI,CAAC,MAAM,EAAE,YAAY;AAC1D,QAAM,aAAa,WAAW,IAAI,CAAC,MAAM,EAAE,SAAS;AACpD,QAAM,gBAAgB,WAAW,IAAI,CAAC,MAAM,EAAE,OAAO;AAGrD,QAAM,eAAe,KAAK,IAAI,GAAG,WAAW,IAAI,CAAC,MAAM,EAAE,IAAI,MAAM,CAAC;AACpE,QAAM,SAAmB,CAAC;AAC1B,WAAS,IAAI,GAAG,IAAI,cAAc,KAAK;AACrC,UAAM,SAAS,WAAW,IAAI,CAAC,MAAM,EAAE,IAAI,CAAC,KAAK,CAAC;AAClD,WAAO,KAAK,KAAK,MAAM,CAAC;AAAA,EAC1B;AAEA,SAAO;AAAA,IACL,MAAM;AAAA,MACJ,MAAM,KAAK,KAAK;AAAA,MAChB,WAAW,KAAK,UAAU;AAAA,MAC1B,aAAa,KAAK,WAAW;AAAA,MAC7B,cAAc,KAAK,aAAa;AAAA,MAChC,WAAW,KAAK,UAAU;AAAA,MAC1B,SAAS,KAAK,aAAa;AAAA,MAC3B,KAAK;AAAA,IACP;AAAA,IACA,KAAK;AAAA,MACH,MAAM,KAAK,IAAI,GAAG,KAAK;AAAA,MACvB,WAAW,KAAK,IAAI,GAAG,UAAU;AAAA,MACjC,aAAa,KAAK,IAAI,GAAG,WAAW;AAAA,MACpC,cAAc,KAAK,IAAI,GAAG,aAAa;AAAA,MACvC,WAAW,KAAK,IAAI,GAAG,UAAU;AAAA,MACjC,SAAS,KAAK,IAAI,GAAG,aAAa;AAAA,MAClC,KAAK,CAAC;AAAA,IACR;AAAA,IACA,KAAK;AAAA,MACH,MAAM,KAAK,IAAI,GAAG,KAAK;AAAA,MACvB,WAAW,KAAK,IAAI,GAAG,UAAU;AAAA,MACjC,aAAa,KAAK,IAAI,GAAG,WAAW;AAAA,MACpC,cAAc,KAAK,IAAI,GAAG,aAAa;AAAA,MACvC,WAAW,KAAK,IAAI,GAAG,UAAU;AAAA,MACjC,SAAS,KAAK,IAAI,GAAG,aAAa;AAAA,MAClC,KAAK,CAAC;AAAA,IACR;AAAA,IACA,QAAQ;AAAA,MACN,MAAM,kBAAkB,KAAK;AAAA,MAC7B,WAAW,kBAAkB,UAAU;AAAA,MACvC,aAAa,kBAAkB,WAAW;AAAA,MAC1C,cAAc,kBAAkB,aAAa;AAAA,MAC7C,WAAW,kBAAkB,UAAU;AAAA,MACvC,SAAS,kBAAkB,aAAa;AAAA,MACxC,KAAK,CAAC;AAAA,IACR;AAAA,IACA;AAAA,EACF;AACF;;;AC/MA,OAAO,iBAAiB;AAGxB,IAAM,aAAa;AACnB,IAAM,cAAc;AACpB,IAAM,eAAe;AACrB,IAAM,mBAAmB;AACzB,IAAM,mBAAmB;AACzB,IAAM,gBAAgB;AAEtB,SAAS,YAAY,MAAc,OAAuB;AACxD,QAAM,eAAe,YAAY,IAAI;AACrC,MAAI,gBAAgB,OAAO;AACzB,WAAO;AAAA,EACT;AACA,SAAO,OAAO,IAAI,OAAO,QAAQ,YAAY;AAC/C;AAEA,SAAS,cAAc,MAAc,OAAuB;AAC1D,QAAM,eAAe,YAAY,IAAI;AACrC,MAAI,gBAAgB,OAAO;AACzB,WAAO;AAAA,EACT;AACA,SAAO,IAAI,OAAO,QAAQ,YAAY,IAAI;AAC5C;AAKO,SAAS,iBAAiB,KAAe,UAA2B;AACzE,MAAI,IAAI,WAAW,GAAG;AACpB,WAAO;AAAA,EACT;AAEA,QAAM,YAAY,YAAY,KAAK,IAAI,GAAG,KAAK,CAAC;AAChD,QAAM,SAAS,KAAK,IAAI,WAAW,CAAC;AAEpC,QAAM,WAAW,CAAC,OAAe,SAC/B,UAAK,cAAc,OAAO,aAAa,CAAC,UAAK,IAAI;AACnD,QAAM,WAAW,SAAS,KAAK,IAAI,OAAO,WAAW,CAAC;AACtD,QAAM,aAAa,YAAY,QAAQ,IAAI;AAC3C,QAAM,aAAa,UAAK,cAAc,IAAI,aAAa,CAAC;AAExD,QAAM,QAAkB,CAAC;AACzB,QAAM,KAAK,4CAAmB;AAG9B,QAAM,KAAK,WAAM,SAAI,OAAO,UAAU,IAAI,QAAG;AAE7C,WAAS,MAAM,eAAe,GAAG,OAAO,GAAG,OAAO;AAChD,UAAM,QAAS,OAAO,eAAe,KAAM;AAC3C,UAAM,QAAQ,MAAM,QAAQ,CAAC;AAE7B,QAAI,OAAO;AACX,aAAS,MAAM,GAAG,MAAM,aAAa,OAAO;AAC1C,YAAM,QAAQ,KAAK,MAAO,MAAM,cAAe,IAAI,MAAM;AACzD,YAAM,WAAW,IAAI,KAAK,KAAK;AAC/B,YAAM,mBAAoB,WAAW,UAAW,eAAe;AAC/D,cAAQ,oBAAoB,MAAM,aAAa;AAAA,IACjD;AAEA,UAAM,KAAK,SAAS,OAAO,IAAI,CAAC;AAAA,EAClC;AAGA,QAAM,KAAK,GAAG,UAAU,GAAG,SAAI,OAAO,WAAW,CAAC,SAAI;AACtD,QAAM,KAAK,WAAM,SAAI,OAAO,UAAU,IAAI,QAAG;AAG7C,QAAM,UAAU,gBAAgB,IAAI,QAAQ,CAAC;AAC7C,QAAM,YAAY,IAAI,MAAM,WAAW,EAAE,KAAK,GAAG;AACjD,QAAM,WAAW,KAAK,IAAI,IAAI,SAAS,GAAG,CAAC;AAC3C,aAAW,SAAS,SAAS;AAC3B,UAAM,UAAU,SAAS,MAAM,QAAQ,KAAK,EAAE,GAAG,EAAE;AACnD,UAAM,WAAW,KAAK;AAAA,MACpB,cAAc;AAAA,MACd,KAAK,MAAO,UAAU,YAAa,cAAc,EAAE;AAAA,IACrD;AACA,aAAS,IAAI,GAAG,IAAI,MAAM,UAAU,WAAW,IAAI,aAAa,KAAK;AACnE,gBAAU,WAAW,CAAC,IAAI,MAAM,CAAC;AAAA,IACnC;AAAA,EACF;AACA,QAAM,KAAK,IAAI,OAAO,YAAY,UAAU,CAAC,IAAI,UAAU,KAAK,EAAE,CAAC;AAEnE,SAAO,MAAM,KAAK,IAAI;AACxB;AAKA,SAAS,gBAAgB,YAAoB,WAA6B;AACxE,MAAI,cAAc,GAAG;AACnB,WAAO,CAAC,IAAI;AAAA,EACd;AAEA,QAAM,SAAmB,CAAC;AAC1B,QAAM,OAAO,KAAK,IAAI,GAAG,KAAK,MAAM,aAAa,SAAS,CAAC;AAE3D,WAAS,IAAI,GAAG,IAAI,YAAY,KAAK,MAAM;AACzC,WAAO,KAAK,GAAG,CAAC,GAAG;AAAA,EACrB;AAGA,MAAI,OAAO,OAAO,SAAS,CAAC,MAAM,GAAG,aAAa,CAAC,KAAK;AACtD,WAAO,KAAK,GAAG,aAAa,CAAC,GAAG;AAAA,EAClC;AAEA,SAAO;AACT;AAKO,SAAS,mBAAmB,KAAuB;AACxD,MAAI,IAAI,WAAW,GAAG;AACpB,WAAO;AAAA,EACT;AAEA,QAAM,QAAkB,CAAC;AACzB,QAAM,KAAK,kBAAQ;AAGnB,QAAM,SAAS,KAAK,IAAI,GAAG,KAAK,CAAC;AACjC,QAAM,UAAU;AAChB,QAAM,aAAa,SAAS;AAC5B,QAAM,YAAY,IAAI,MAAM,OAAO,EAAE,KAAK,CAAC;AAE3C,aAAW,KAAK,KAAK;AACnB,UAAM,cAAc,KAAK,IAAI,KAAK,MAAM,IAAI,UAAU,GAAG,UAAU,CAAC;AACpE,cAAU,WAAW;AAAA,EACvB;AAEA,QAAM,WAAW,KAAK,IAAI,GAAG,WAAW,CAAC;AAEzC,QAAM,SAAS,UAAU,IAAI,CAAC,GAAG,MAAM;AACrC,UAAM,eAAe,IAAI,YAAY,QAAQ,CAAC;AAC9C,UAAM,cAAc,IAAI,KAAK,YAAY,QAAQ,CAAC;AAClD,WAAO,GAAG,WAAW,IAAI,SAAS;AAAA,EACpC,CAAC;AACD,QAAM,aAAa,KAAK,IAAI,GAAG,OAAO,IAAI,CAAC,MAAM,YAAY,CAAC,CAAC,CAAC;AAEhE,WAAS,IAAI,GAAG,IAAI,SAAS,KAAK;AAChC,UAAM,QAAQ,YAAY,OAAO,CAAC,GAAG,UAAU;AAC/C,UAAM,QAAQ,UAAU,CAAC;AACzB,UAAM,YAAY,KAAK,MAAO,QAAQ,WAAY,WAAW;AAC7D,UAAM,MAAM,WAAW,OAAO,SAAS;AAEvC,UAAM,cAAc,QAAQ,IAAI,IAAI,KAAK,KAAK;AAC9C,UAAM,KAAK,GAAG,KAAK,UAAK,GAAG,GAAG,WAAW,EAAE;AAAA,EAC7C;AAEA,SAAO,MAAM,KAAK,IAAI;AACxB;AAKO,SAAS,iBAAiB,OAA4B;AAC3D,QAAM,QAAkB,CAAC;AACzB,QAAM,KAAK,EAAE;AACb,QAAM,KAAK,iCAAa,MAAM,aAAa,GAAG;AAG9C,QAAM,YACJ,YACA,YAAY,gBAAM,gBAAgB,IAClC,aACA,cAAc,gBAAM,gBAAgB,IACpC,aACA,cAAc,sBAAO,gBAAgB,IACrC,aACA,cAAc,sBAAO,gBAAgB,IACrC,aACA,cAAc,sBAAO,gBAAgB,IACrC;AAEF,QAAM,aAAa,YAAY,SAAS,IAAI;AAC5C,QAAM,KAAK,WAAM,SAAI,OAAO,UAAU,IAAI,QAAG;AAC7C,QAAM,KAAK,SAAS;AACpB,QAAM,KAAK,WAAM,SAAI,OAAO,UAAU,IAAI,QAAG;AAG7C,QAAM;AAAA,IACJ;AAAA,MACE;AAAA,MACA,MAAM,KAAK;AAAA,MACX,MAAM,IAAI;AAAA,MACV,MAAM,IAAI;AAAA,MACV,MAAM,OAAO;AAAA,MACb;AAAA,IACF;AAAA,EACF;AACA,QAAM,KAAK,WAAM,SAAI,OAAO,UAAU,IAAI,QAAG;AAG7C,QAAM;AAAA,IACJ;AAAA,MACE;AAAA,MACA,MAAM,KAAK;AAAA,MACX,MAAM,IAAI;AAAA,MACV,MAAM,IAAI;AAAA,MACV,MAAM,OAAO;AAAA,MACb;AAAA,IACF;AAAA,EACF;AACA,QAAM,KAAK,WAAM,SAAI,OAAO,UAAU,IAAI,QAAG;AAG7C,QAAM;AAAA,IACJ;AAAA,MACE;AAAA,MACA,MAAM,KAAK;AAAA,MACX,MAAM,IAAI;AAAA,MACV,MAAM,IAAI;AAAA,MACV,MAAM,OAAO;AAAA,MACb;AAAA,IACF;AAAA,EACF;AACA,QAAM,KAAK,WAAM,SAAI,OAAO,UAAU,IAAI,QAAG;AAG7C,QAAM;AAAA,IACJ;AAAA,MACE;AAAA,MACA,MAAM,KAAK;AAAA,MACX,MAAM,IAAI;AAAA,MACV,MAAM,IAAI;AAAA,MACV,MAAM,OAAO;AAAA,MACb;AAAA,IACF;AAAA,EACF;AACA,QAAM,KAAK,WAAM,SAAI,OAAO,UAAU,IAAI,QAAG;AAG7C,QAAM;AAAA,IACJ;AAAA,MACE;AAAA,MACA,MAAM,KAAK;AAAA,MACX,MAAM,IAAI;AAAA,MACV,MAAM,IAAI;AAAA,MACV,MAAM,OAAO;AAAA,MACb;AAAA,IACF;AAAA,EACF;AAEA,QAAM,KAAK,WAAM,SAAI,OAAO,UAAU,IAAI,QAAG;AAG7C,QAAM;AAAA,IACJ;AAAA,MACE;AAAA,MACA,MAAM,KAAK;AAAA,MACX,MAAM,IAAI;AAAA,MACV,MAAM,IAAI;AAAA,MACV,MAAM,OAAO;AAAA,MACb;AAAA,IACF;AAAA,EACF;AAEA,QAAM,KAAK,WAAM,SAAI,OAAO,UAAU,IAAI,QAAG;AAE7C,SAAO,MAAM,KAAK,IAAI;AACxB;AAKA,SAAS,cACP,OACAA,OACA,KACA,KACA,QACA,QACQ;AACR,QAAM,MAAM,CAAC,MAAe,WAAW,MAAM,EAAE,QAAQ,CAAC,IAAI,EAAE,QAAQ,CAAC;AAEvE,SACE,YACA,YAAY,OAAO,gBAAgB,IACnC,aACA,cAAc,IAAIA,KAAI,GAAG,gBAAgB,IACzC,aACA,cAAc,IAAI,GAAG,GAAG,gBAAgB,IACxC,aACA,cAAc,IAAI,GAAG,GAAG,gBAAgB,IACxC,aACA,cAAc,IAAI,MAAM,GAAG,gBAAgB,IAC3C;AAEJ;AAKA,SAAS,uBAAuB,IAAoB;AAClD,MAAI,OAAO,KAAK,MAAM,EAAE,GAAG;AACzB,WAAO,GAAG,GAAG,QAAQ,CAAC,CAAC;AAAA,EACzB;AACA,SAAO,GAAG,GAAG,QAAQ,CAAC,CAAC;AACzB;AAKO,SAAS,mBAAmB,SAA4B,UAA0B;AACvF,QAAM,QAAkB,CAAC;AACzB,QAAM,KAAK;AAAA,gBAAS,WAAW,CAAC,GAAG;AACnC,QAAM,KAAK,WAAW,uBAAuB,QAAQ,IAAI,CAAC,EAAE;AAC5D,QAAM,KAAK,yBAAU,uBAAuB,QAAQ,SAAS,CAAC,EAAE;AAChE,QAAM,KAAK,0BAAgB,QAAQ,WAAW,EAAE;AAChD,QAAM,KAAK,+BAAW,QAAQ,aAAa,QAAQ,CAAC,CAAC,WAAW;AAChE,QAAM,KAAK,+BAAW,QAAQ,UAAU,QAAQ,CAAC,CAAC,WAAW;AAC7D,QAAM,KAAK,uBAAa,QAAQ,QAAQ,QAAQ,CAAC,CAAC,WAAW;AAC7D,SAAO,MAAM,KAAK,IAAI;AACxB;AAKO,SAAS,aAAa,OAA4B;AACvD,QAAM,QAAkB,CAAC;AAEzB,QAAM,KAAK,OAAO,SAAI,OAAO,EAAE,CAAC;AAChC,QAAM,KAAK,4CAAc;AACzB,QAAM,KAAK,SAAI,OAAO,EAAE,CAAC;AAGzB,QAAM,KAAK,iBAAiB,KAAK,CAAC;AAGlC,MAAI,MAAM,KAAK,IAAI,SAAS,GAAG;AAC7B,UAAM,KAAK,OAAO,iBAAiB,MAAM,KAAK,GAAG,CAAC;AAAA,EACpD;AAGA,MAAI,MAAM,KAAK,IAAI,SAAS,GAAG;AAC7B,UAAM,KAAK,OAAO,mBAAmB,MAAM,KAAK,GAAG,CAAC;AAAA,EACtD;AAEA,SAAO,MAAM,KAAK,IAAI;AACxB;;;ALzUA,SAAS,gBAAwB;AAC/B,MAAI;AACF,UAAM,aAAa,QAAQ,cAAc,YAAY,GAAG,CAAC;AACzD,UAAM,cAAc,KAAK,YAAY,MAAM,cAAc;AACzD,UAAM,cAAc,KAAK,MAAM,aAAa,aAAa,OAAO,CAAC;AACjE,WAAO,YAAY,WAAW;AAAA,EAChC,QAAQ;AACN,WAAO;AAAA,EACT;AACF;AAEA,IAAM,UAAU,IAAI,QAAQ;AAE5B,QACG,KAAK,kBAAkB,EACvB,YAAY,+CAA+C,EAC3D,QAAQ,cAAc,CAAC;AAE1B,QACG,OAAO,uBAAuB,sBAAsB,EAAE,EACtD,OAAO,6BAA6B,qCAAqC,WAAW,EACpF,OAAO,mBAAmB,yBAAyB,EACnD,OAAO,uBAAuB,YAAY,EAC1C,OAAO,yBAAyB,yBAAyB,MAAM,EAC/D,OAAO,uBAAuB,uBAAuB,GAAG,EACxD,OAAO,mBAAmB,eAAe,sDAAc,EACvD,MAAM,QAAQ,IAAI;AAErB,IAAM,UAAU,QAAQ,KAAK;AAE7B,eAAe,OAAO;AACpB,MAAI;AAEF,UAAM,SAAS,YAAY;AAAA,MACzB,QAAQ,QAAQ;AAAA,MAChB,UAAU,QAAQ;AAAA,MAClB,KAAK,QAAQ;AAAA,MACb,OAAO,QAAQ;AAAA,MACf,WAAW,SAAS,QAAQ,WAAW,EAAE;AAAA,MACzC,MAAM,SAAS,QAAQ,MAAM,EAAE;AAAA,MAC/B,QAAQ,QAAQ;AAAA,IAClB,CAAC;AAGD,YAAQ,IAAI,MAAM,KAAK,wDAAmB,CAAC;AAC3C,YAAQ,IAAI,MAAM,KAAK,SAAI,OAAO,EAAE,CAAC,CAAC;AACtC,YAAQ,IAAI,MAAM,KAAK,aAAa,MAAM,MAAM,OAAO,QAAQ,CAAC,EAAE,CAAC;AACnE,YAAQ,IAAI,MAAM,KAAK,UAAU,MAAM,MAAM,OAAO,KAAK,CAAC,EAAE,CAAC;AAC7D,YAAQ,IAAI,MAAM,KAAK,eAAe,MAAM,MAAM,OAAO,SAAS,CAAC,EAAE,CAAC;AACtE,YAAQ,IAAI,MAAM,KAAK,SAAS,MAAM,MAAM,OAAO,QAAQ,CAAC,EAAE,CAAC;AAC/D,YAAQ;AAAA,MACN,MAAM;AAAA,QACJ,WAAW,MAAM,MAAM,OAAO,OAAO,UAAU,GAAG,EAAE,CAAC,CAAC,GAAG,OAAO,OAAO,SAAS,KAAK,QAAQ,EAAE;AAAA,MACjG;AAAA,IACF;AACA,YAAQ,IAAI,MAAM,KAAK,SAAI,OAAO,EAAE,CAAC,CAAC;AAGtC,YAAQ,IAAI,MAAM,OAAO,oDAAiB,CAAC;AAC3C,YAAQ,IAAI,MAAM,KAAK,4CAAc,CAAC;AAEtC,UAAM,UAAU,MAAM,iBAAiB,MAAM;AAG7C,UAAM,aAAa,QAAQ,IAAI,CAAC,MAAM,iBAAiB,CAAC,CAAC;AAGzD,aAAS,IAAI,GAAG,IAAI,WAAW,QAAQ,KAAK;AAC1C,cAAQ,IAAI,MAAM,KAAK,mBAAmB,WAAW,CAAC,GAAG,CAAC,CAAC,CAAC;AAAA,IAC9D;AAGA,UAAM,QAAQ,eAAe,UAAU;AAGvC,YAAQ,IAAI,MAAM,KAAK,OAAO,aAAa,KAAK,CAAC,CAAC;AAElD,YAAQ,IAAI,MAAM,MAAM,sCAAa,CAAC;AAAA,EACxC,SAAS,OAAO;AACd,QAAI,iBAAiB,OAAO;AAC1B,cAAQ,MAAM,MAAM,IAAI;AAAA,uBAAW,MAAM,OAAO;AAAA,CAAI,CAAC;AAAA,IACvD,OAAO;AACL,cAAQ,MAAM,MAAM,IAAI,iDAAc,CAAC;AAAA,IACzC;AACA,YAAQ,KAAK,CAAC;AAAA,EAChB;AACF;AAEA,KAAK,KAAK;","names":["mean"]}
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "token-speed-tester",
|
|
3
|
-
"version": "1.
|
|
3
|
+
"version": "1.5.0",
|
|
4
4
|
"description": "A CLI tool to test LLM API token output speed",
|
|
5
5
|
"type": "module",
|
|
6
6
|
"main": "dist/index.js",
|
|
@@ -52,7 +52,9 @@
|
|
|
52
52
|
"chalk": "^5.4.1",
|
|
53
53
|
"cli-table3": "^0.6.5",
|
|
54
54
|
"commander": "^12.1.0",
|
|
55
|
-
"openai": "^4.77.3"
|
|
55
|
+
"openai": "^4.77.3",
|
|
56
|
+
"string-width": "^7.2.0",
|
|
57
|
+
"tiktoken": "^1.0.22"
|
|
56
58
|
},
|
|
57
59
|
"devDependencies": {
|
|
58
60
|
"@eslint/js": "^9.39.2",
|