tencentcloud-sdk-nodejs 4.1.172 → 4.1.174

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (71) hide show
  1. package/es/common/sdk_version.js +1 -1
  2. package/es/services/ai3d/v20250513/ai3d_client.js +6 -0
  3. package/es/services/ess/v20201111/ess_client.js +3 -0
  4. package/es/services/evt/v20250217/evt_client.js +3 -0
  5. package/es/services/hunyuan/v20230901/hunyuan_client.js +39 -33
  6. package/es/services/lcic/v20220817/lcic_client.js +10 -4
  7. package/es/services/live/v20180801/live_client.js +5 -2
  8. package/es/services/thpc/v20230321/thpc_client.js +3 -0
  9. package/es/services/tione/v20211111/tione_client.js +3 -0
  10. package/es/services/vod/v20180717/vod_client.js +3 -0
  11. package/es/services/vpc/v20170312/vpc_client.js +3 -0
  12. package/es/services/waf/v20180125/waf_client.js +3 -0
  13. package/package.json +1 -1
  14. package/tencentcloud/common/sdk_version.d.ts +1 -1
  15. package/tencentcloud/common/sdk_version.js +1 -1
  16. package/tencentcloud/services/ai3d/v20250513/ai3d_client.d.ts +11 -1
  17. package/tencentcloud/services/ai3d/v20250513/ai3d_client.js +14 -0
  18. package/tencentcloud/services/ai3d/v20250513/ai3d_models.d.ts +113 -11
  19. package/tencentcloud/services/aiart/v20221229/aiart_models.d.ts +6 -13
  20. package/tencentcloud/services/cfs/v20190719/cfs_models.d.ts +39 -0
  21. package/tencentcloud/services/cls/v20201016/cls_models.d.ts +95 -78
  22. package/tencentcloud/services/csip/v20221121/csip_models.d.ts +13 -1
  23. package/tencentcloud/services/dbdc/v20201029/dbdc_models.d.ts +61 -45
  24. package/tencentcloud/services/dlc/v20210125/dlc_models.d.ts +5 -4
  25. package/tencentcloud/services/emr/v20190103/emr_models.d.ts +12 -0
  26. package/tencentcloud/services/ess/v20201111/ess_client.d.ts +5 -1
  27. package/tencentcloud/services/ess/v20201111/ess_client.js +6 -0
  28. package/tencentcloud/services/ess/v20201111/ess_models.d.ts +97 -10
  29. package/tencentcloud/services/evt/v20250217/evt_client.d.ts +5 -1
  30. package/tencentcloud/services/evt/v20250217/evt_client.js +6 -0
  31. package/tencentcloud/services/evt/v20250217/evt_models.d.ts +30 -0
  32. package/tencentcloud/services/gs/v20191118/gs_models.d.ts +6 -0
  33. package/tencentcloud/services/hunyuan/v20230901/hunyuan_client.d.ts +72 -62
  34. package/tencentcloud/services/hunyuan/v20230901/hunyuan_client.js +97 -83
  35. package/tencentcloud/services/hunyuan/v20230901/hunyuan_models.d.ts +99 -0
  36. package/tencentcloud/services/lcic/v20220817/lcic_client.d.ts +13 -5
  37. package/tencentcloud/services/lcic/v20220817/lcic_client.js +18 -6
  38. package/tencentcloud/services/lcic/v20220817/lcic_models.d.ts +119 -87
  39. package/tencentcloud/services/live/v20180801/live_client.d.ts +7 -3
  40. package/tencentcloud/services/live/v20180801/live_client.js +9 -3
  41. package/tencentcloud/services/live/v20180801/live_models.d.ts +61 -19
  42. package/tencentcloud/services/lke/v20231130/lke_client.d.ts +1 -1
  43. package/tencentcloud/services/lke/v20231130/lke_models.d.ts +75 -14
  44. package/tencentcloud/services/monitor/v20180724/monitor_models.d.ts +4 -0
  45. package/tencentcloud/services/mps/v20190612/mps_models.d.ts +51 -6
  46. package/tencentcloud/services/ocr/v20181119/ocr_models.d.ts +6 -40
  47. package/tencentcloud/services/rce/v20201103/rce_models.d.ts +1 -0
  48. package/tencentcloud/services/redis/v20180412/redis_client.d.ts +1 -1
  49. package/tencentcloud/services/redis/v20180412/redis_client.js +1 -1
  50. package/tencentcloud/services/redis/v20180412/redis_models.d.ts +16 -21
  51. package/tencentcloud/services/ssl/v20191205/ssl_models.d.ts +96 -164
  52. package/tencentcloud/services/tdmq/v20200217/tdmq_models.d.ts +17 -4
  53. package/tencentcloud/services/thpc/v20220401/thpc_models.d.ts +63 -73
  54. package/tencentcloud/services/thpc/v20230321/thpc_client.d.ts +5 -1
  55. package/tencentcloud/services/thpc/v20230321/thpc_client.js +6 -0
  56. package/tencentcloud/services/thpc/v20230321/thpc_models.d.ts +90 -78
  57. package/tencentcloud/services/tione/v20211111/tione_client.d.ts +5 -1
  58. package/tencentcloud/services/tione/v20211111/tione_client.js +6 -0
  59. package/tencentcloud/services/tione/v20211111/tione_models.d.ts +40 -0
  60. package/tencentcloud/services/tke/v20180525/tke_models.d.ts +4 -0
  61. package/tencentcloud/services/trtc/v20190722/trtc_models.d.ts +1 -1
  62. package/tencentcloud/services/vclm/v20240523/vclm_models.d.ts +4 -0
  63. package/tencentcloud/services/vod/v20180717/vod_client.d.ts +7 -1
  64. package/tencentcloud/services/vod/v20180717/vod_client.js +8 -0
  65. package/tencentcloud/services/vod/v20180717/vod_models.d.ts +195 -22
  66. package/tencentcloud/services/vpc/v20170312/vpc_client.d.ts +5 -1
  67. package/tencentcloud/services/vpc/v20170312/vpc_client.js +6 -0
  68. package/tencentcloud/services/vpc/v20170312/vpc_models.d.ts +37 -2
  69. package/tencentcloud/services/waf/v20180125/waf_client.d.ts +5 -1
  70. package/tencentcloud/services/waf/v20180125/waf_client.js +6 -0
  71. package/tencentcloud/services/waf/v20180125/waf_models.d.ts +17 -0
@@ -1,6 +1,6 @@
1
1
  import { AbstractClient } from "../../../common/abstract_client";
2
2
  import { ClientConfig } from "../../../common/interface";
3
- import { RunThreadRequest, SubmitHunyuanImageChatJobRequest, QueryHunyuanImageJobRequest, QueryHunyuanImageChatJobRequest, SetPayModeResponse, SubmitHunyuanImageJobResponse, GetThreadResponse, FilesDeletionsRequest, RunThreadResponse, ChatCompletionsResponse, GetThreadMessageListRequest, GetThreadMessageRequest, SubmitHunyuanImageChatJobResponse, ChatTranslationsRequest, GetThreadMessageResponse, GroupChatCompletionsRequest, ImageQuestionResponse, SetPayModeRequest, FilesDeletionsResponse, GetThreadMessageListResponse, CreateThreadRequest, ChatCompletionsRequest, FilesUploadsRequest, GetEmbeddingRequest, GroupChatCompletionsResponse, SubmitHunyuanImageJobRequest, GetTokenCountResponse, TextToImageLiteResponse, TextToImageLiteRequest, QueryHunyuanImageJobResponse, FilesListRequest, GetTokenCountRequest, ActivateServiceRequest, GetThreadRequest, ChatTranslationsResponse, ImageQuestionRequest, QueryHunyuanImageChatJobResponse, GetEmbeddingResponse, CreateThreadResponse, ActivateServiceResponse, FilesUploadsResponse, FilesListResponse } from "./hunyuan_models";
3
+ import { RunThreadRequest, SubmitHunyuanImageChatJobRequest, QueryHunyuanImageJobRequest, QueryHunyuanImageChatJobRequest, SetPayModeResponse, SubmitHunyuanImageJobResponse, GetThreadResponse, FilesDeletionsRequest, RunThreadResponse, ChatCompletionsResponse, GetThreadMessageListRequest, Submit3DSmartTopologyJobRequest, GetThreadMessageRequest, SubmitHunyuanImageChatJobResponse, ChatTranslationsRequest, GetThreadMessageResponse, GroupChatCompletionsRequest, ImageQuestionResponse, SetPayModeRequest, FilesDeletionsResponse, GetThreadMessageListResponse, CreateThreadRequest, Submit3DSmartTopologyJobResponse, Describe3DSmartTopologyJobRequest, ChatCompletionsRequest, FilesUploadsRequest, GetEmbeddingRequest, GroupChatCompletionsResponse, SubmitHunyuanImageJobRequest, GetTokenCountResponse, TextToImageLiteResponse, TextToImageLiteRequest, QueryHunyuanImageJobResponse, Describe3DSmartTopologyJobResponse, FilesListRequest, GetTokenCountRequest, ActivateServiceRequest, GetThreadRequest, ChatTranslationsResponse, ImageQuestionRequest, QueryHunyuanImageChatJobResponse, GetEmbeddingResponse, CreateThreadResponse, ActivateServiceResponse, FilesUploadsResponse, FilesListResponse } from "./hunyuan_models";
4
4
  /**
5
5
  * hunyuan client
6
6
  * @class
@@ -8,24 +8,33 @@ import { RunThreadRequest, SubmitHunyuanImageChatJobRequest, QueryHunyuanImageJo
8
8
  export declare class Client extends AbstractClient {
9
9
  constructor(clientConfig: ClientConfig);
10
10
  /**
11
- * 设置付费模式
12
- */
13
- SetPayMode(req: SetPayModeRequest, cb?: (error: string, rep: SetPayModeResponse) => void): Promise<SetPayModeResponse>;
14
- /**
15
- * 如需使用OpenAI兼容接口, 请参考文档:[OpenAI 兼容接口](https://cloud.tencent.com/document/product/1729/111007)
16
-
17
- 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
11
+ * 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
18
12
 
19
13
  1. 本接口暂不支持返回图片内容。
20
14
  2. 默认该接口下单账号限制并发数为 5 路,如您有提高并发限制的需求请 [购买](https://buy.cloud.tencent.com/hunyuan) 。
21
15
  3. 请使用 SDK 调用本接口,每种开发语言的 SDK Git 仓库 examples/hunyuan/v20230901/ 目录下有提供示例供参考。SDK 链接在文档下方 “**开发者资源 - SDK**” 部分提供。
22
16
  4. 我们推荐您使用 API Explorer,方便快速地在线调试接口和下载各语言的示例代码,[点击打开](https://console.cloud.tencent.com/api/explorer?Product=hunyuan&Version=2023-09-01&Action=ChatCompletions)。
23
17
  */
24
- ImageQuestion(req: ImageQuestionRequest, cb?: (error: string, rep: ImageQuestionResponse) => void): Promise<ImageQuestionResponse>;
18
+ GetThread(req: GetThreadRequest, cb?: (error: string, rep: GetThreadResponse) => void): Promise<GetThreadResponse>;
25
19
  /**
26
- * 文件列表。
20
+ * 混元生图接口基于混元大模型,将根据输入的文本描述,智能生成与之相关的结果图。分为提交任务和查询任务2个接口。
21
+ 提交任务:输入文本等,提交一个混元生图异步任务,获得任务 ID。
22
+ 查询任务:根据任务 ID 查询任务的处理状态、处理结果,任务处理完成后可获得生成图像结果。
23
+ 并发任务数(并发)说明:并发任务数指能同时处理的任务数量。混元生图默认提供1个并发任务数,代表最多能同时处理1个已提交的任务,上一个任务处理完毕后才能开始处理下一个任务。
27
24
  */
28
- FilesList(req: FilesListRequest, cb?: (error: string, rep: FilesListResponse) => void): Promise<FilesListResponse>;
25
+ SubmitHunyuanImageJob(req: SubmitHunyuanImageJobRequest, cb?: (error: string, rep: SubmitHunyuanImageJobResponse) => void): Promise<SubmitHunyuanImageJobResponse>;
26
+ /**
27
+ * 混元生图接口基于混元大模型,将根据输入的文本描述,智能生成与之相关的结果图。分为提交任务和查询任务2个接口。
28
+ 提交任务:输入文本等,提交一个混元生图异步任务,获得任务 ID。
29
+ 查询任务:根据任务 ID 查询任务的处理状态、处理结果,任务处理完成后可获得生成图像结果。
30
+ 并发任务数(并发)说明:并发任务数指能同时处理的任务数量。混元生图默认提供1个并发任务数,代表最多能同时处理1个已提交的任务,上一个任务处理完毕后才能开始处理下一个任务。
31
+ */
32
+ QueryHunyuanImageJob(req: QueryHunyuanImageJobRequest, cb?: (error: string, rep: QueryHunyuanImageJobResponse) => void): Promise<QueryHunyuanImageJobResponse>;
33
+ /**
34
+ * 混元生3D接口,采用 Polygon 1.5模型,输入3D 高模后,可生成布线规整,较低面数的3D 模型。
35
+ 默认提供1个并发,代表最多能同时处理1个已提交的任务,上一个任务处理完毕后,才能开始处理下一个任务。
36
+ */
37
+ Describe3DSmartTopologyJob(req: Describe3DSmartTopologyJobRequest, cb?: (error: string, rep: Describe3DSmartTopologyJobResponse) => void): Promise<Describe3DSmartTopologyJobResponse>;
29
38
  /**
30
39
  * 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
31
40
 
@@ -34,14 +43,7 @@ export declare class Client extends AbstractClient {
34
43
  3. 请使用 SDK 调用本接口,每种开发语言的 SDK Git 仓库 examples/hunyuan/v20230901/ 目录下有提供示例供参考。SDK 链接在文档下方 “**开发者资源 - SDK**” 部分提供。
35
44
  4. 我们推荐您使用 API Explorer,方便快速地在线调试接口和下载各语言的示例代码,[点击打开](https://console.cloud.tencent.com/api/explorer?Product=hunyuan&Version=2023-09-01&Action=ChatCompletions)。
36
45
  */
37
- GetThread(req: GetThreadRequest, cb?: (error: string, rep: GetThreadResponse) => void): Promise<GetThreadResponse>;
38
- /**
39
- * 混元生图(多轮对话)接口基于混元大模型,将根据输入的文本描述生成图像,支持通过多轮对话的方式不断调整图像内容。分为提交任务和查询任务2个接口。
40
- 提交任务:输入文本和前置对话 ID 等,提交一个混元生图多轮对话异步任务,获得任务 ID。
41
- 查询任务:根据任务 ID 查询任务的处理状态、处理结果,任务处理完成后可获得在上一轮对话基础上继续生成的图像结果。
42
- 混元生图(多轮对话)默认提供1个并发任务数,代表最多能同时处理1个已提交的任务,上一个任务处理完毕后才能开始处理下一个任务。
43
- */
44
- SubmitHunyuanImageChatJob(req: SubmitHunyuanImageChatJobRequest, cb?: (error: string, rep: SubmitHunyuanImageChatJobResponse) => void): Promise<SubmitHunyuanImageChatJobResponse>;
46
+ ChatTranslations(req: ChatTranslationsRequest, cb?: (error: string, rep: ChatTranslationsResponse) => void): Promise<ChatTranslationsResponse>;
45
47
  /**
46
48
  * 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
47
49
 
@@ -50,38 +52,22 @@ export declare class Client extends AbstractClient {
50
52
  3. 请使用 SDK 调用本接口,每种开发语言的 SDK Git 仓库 examples/hunyuan/v20230901/ 目录下有提供示例供参考。SDK 链接在文档下方 “**开发者资源 - SDK**” 部分提供。
51
53
  4. 我们推荐您使用 API Explorer,方便快速地在线调试接口和下载各语言的示例代码,[点击打开](https://console.cloud.tencent.com/api/explorer?Product=hunyuan&Version=2023-09-01&Action=ChatCompletions)。
52
54
  */
53
- CreateThread(req?: CreateThreadRequest, cb?: (error: string, rep: CreateThreadResponse) => void): Promise<CreateThreadResponse>;
54
- /**
55
- * 该接口用于计算文本对应Token数、字符数。
56
- */
57
- GetTokenCount(req: GetTokenCountRequest, cb?: (error: string, rep: GetTokenCountResponse) => void): Promise<GetTokenCountResponse>;
58
- /**
59
- * 混元生图接口基于混元大模型,将根据输入的文本描述,智能生成与之相关的结果图。分为提交任务和查询任务2个接口。
60
- 提交任务:输入文本等,提交一个混元生图异步任务,获得任务 ID。
61
- 查询任务:根据任务 ID 查询任务的处理状态、处理结果,任务处理完成后可获得生成图像结果。
62
- 并发任务数(并发)说明:并发任务数指能同时处理的任务数量。混元生图默认提供1个并发任务数,代表最多能同时处理1个已提交的任务,上一个任务处理完毕后才能开始处理下一个任务。
63
- */
64
- QueryHunyuanImageJob(req: QueryHunyuanImageJobRequest, cb?: (error: string, rep: QueryHunyuanImageJobResponse) => void): Promise<QueryHunyuanImageJobResponse>;
65
- /**
66
- * 混元生图接口基于混元大模型,将根据输入的文本描述,智能生成与之相关的结果图。分为提交任务和查询任务2个接口。
67
- 提交任务:输入文本等,提交一个混元生图异步任务,获得任务 ID。
68
- 查询任务:根据任务 ID 查询任务的处理状态、处理结果,任务处理完成后可获得生成图像结果。
69
- 并发任务数(并发)说明:并发任务数指能同时处理的任务数量。混元生图默认提供1个并发任务数,代表最多能同时处理1个已提交的任务,上一个任务处理完毕后才能开始处理下一个任务。
70
- */
71
- SubmitHunyuanImageJob(req: SubmitHunyuanImageJobRequest, cb?: (error: string, rep: SubmitHunyuanImageJobResponse) => void): Promise<SubmitHunyuanImageJobResponse>;
55
+ GetThreadMessageList(req: GetThreadMessageListRequest, cb?: (error: string, rep: GetThreadMessageListResponse) => void): Promise<GetThreadMessageListResponse>;
72
56
  /**
73
- * 删除文件。
57
+ * 腾讯混元 Embedding 接口,可以将文本转化为高质量的向量数据。向量维度为1024维。
74
58
  */
75
- FilesDeletions(req: FilesDeletionsRequest, cb?: (error: string, rep: FilesDeletionsResponse) => void): Promise<FilesDeletionsResponse>;
59
+ GetEmbedding(req: GetEmbeddingRequest, cb?: (error: string, rep: GetEmbeddingResponse) => void): Promise<GetEmbeddingResponse>;
76
60
  /**
77
- * 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
61
+ * 如需使用OpenAI兼容接口, 请参考文档:[OpenAI 兼容接口](https://cloud.tencent.com/document/product/1729/111007)
62
+
63
+ 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
78
64
 
79
65
  1. 本接口暂不支持返回图片内容。
80
66
  2. 默认该接口下单账号限制并发数为 5 路,如您有提高并发限制的需求请 [购买](https://buy.cloud.tencent.com/hunyuan) 。
81
67
  3. 请使用 SDK 调用本接口,每种开发语言的 SDK Git 仓库 examples/hunyuan/v20230901/ 目录下有提供示例供参考。SDK 链接在文档下方 “**开发者资源 - SDK**” 部分提供。
82
68
  4. 我们推荐您使用 API Explorer,方便快速地在线调试接口和下载各语言的示例代码,[点击打开](https://console.cloud.tencent.com/api/explorer?Product=hunyuan&Version=2023-09-01&Action=ChatCompletions)。
83
69
  */
84
- GetThreadMessageList(req: GetThreadMessageListRequest, cb?: (error: string, rep: GetThreadMessageListResponse) => void): Promise<GetThreadMessageListResponse>;
70
+ ImageQuestion(req: ImageQuestionRequest, cb?: (error: string, rep: ImageQuestionResponse) => void): Promise<ImageQuestionResponse>;
85
71
  /**
86
72
  * 如需使用OpenAI兼容接口, 请参考文档:[OpenAI 兼容接口](https://cloud.tencent.com/document/product/1729/111007)
87
73
 
@@ -101,7 +87,18 @@ export declare class Client extends AbstractClient {
101
87
  3. 请使用 SDK 调用本接口,每种开发语言的 SDK Git 仓库 examples/hunyuan/v20230901/ 目录下有提供示例供参考。SDK 链接在文档下方 “**开发者资源 - SDK**” 部分提供。
102
88
  4. 我们推荐您使用 API Explorer,方便快速地在线调试接口和下载各语言的示例代码,[点击打开](https://console.cloud.tencent.com/api/explorer?Product=hunyuan&Version=2023-09-01&Action=ChatCompletions)。
103
89
  */
104
- GetThreadMessage(req: GetThreadMessageRequest, cb?: (error: string, rep: GetThreadMessageResponse) => void): Promise<GetThreadMessageResponse>;
90
+ RunThread(req: RunThreadRequest, cb?: (error: string, rep: RunThreadResponse) => void): Promise<RunThreadResponse>;
91
+ /**
92
+ * 设置付费模式
93
+ */
94
+ SetPayMode(req: SetPayModeRequest, cb?: (error: string, rep: SetPayModeResponse) => void): Promise<SetPayModeResponse>;
95
+ /**
96
+ * 混元生图(多轮对话)接口基于混元大模型,将根据输入的文本描述生成图像,支持通过多轮对话的方式不断调整图像内容。分为提交任务和查询任务2个接口。
97
+ 提交任务:输入文本和前置对话 ID 等,提交一个混元生图多轮对话异步任务,获得任务 ID。
98
+ 查询任务:根据任务 ID 查询任务的处理状态、处理结果,任务处理完成后可获得在上一轮对话基础上继续生成的图像结果。
99
+ 混元生图(多轮对话)默认提供1个并发任务数,代表最多能同时处理1个已提交的任务,上一个任务处理完毕后才能开始处理下一个任务。
100
+ */
101
+ QueryHunyuanImageChatJob(req: QueryHunyuanImageChatJobRequest, cb?: (error: string, rep: QueryHunyuanImageChatJobResponse) => void): Promise<QueryHunyuanImageChatJobResponse>;
105
102
  /**
106
103
  * 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
107
104
 
@@ -110,50 +107,63 @@ export declare class Client extends AbstractClient {
110
107
  3. 请使用 SDK 调用本接口,每种开发语言的 SDK Git 仓库 examples/hunyuan/v20230901/ 目录下有提供示例供参考。SDK 链接在文档下方 “**开发者资源 - SDK**” 部分提供。
111
108
  4. 我们推荐您使用 API Explorer,方便快速地在线调试接口和下载各语言的示例代码,[点击打开](https://console.cloud.tencent.com/api/explorer?Product=hunyuan&Version=2023-09-01&Action=ChatCompletions)。
112
109
  */
113
- RunThread(req: RunThreadRequest, cb?: (error: string, rep: RunThreadResponse) => void): Promise<RunThreadResponse>;
110
+ CreateThread(req?: CreateThreadRequest, cb?: (error: string, rep: CreateThreadResponse) => void): Promise<CreateThreadResponse>;
114
111
  /**
115
- * 如需使用OpenAI兼容接口, 请参考文档:[OpenAI 兼容接口](https://cloud.tencent.com/document/product/1729/111007)
116
-
117
- 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
112
+ * 删除文件。
113
+ */
114
+ FilesDeletions(req: FilesDeletionsRequest, cb?: (error: string, rep: FilesDeletionsResponse) => void): Promise<FilesDeletionsResponse>;
115
+ /**
116
+ * 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
118
117
 
119
118
  1. 本接口暂不支持返回图片内容。
120
119
  2. 默认该接口下单账号限制并发数为 5 路,如您有提高并发限制的需求请 [购买](https://buy.cloud.tencent.com/hunyuan) 。
121
120
  3. 请使用 SDK 调用本接口,每种开发语言的 SDK Git 仓库 examples/hunyuan/v20230901/ 目录下有提供示例供参考。SDK 链接在文档下方 “**开发者资源 - SDK**” 部分提供。
122
121
  4. 我们推荐您使用 API Explorer,方便快速地在线调试接口和下载各语言的示例代码,[点击打开](https://console.cloud.tencent.com/api/explorer?Product=hunyuan&Version=2023-09-01&Action=ChatCompletions)。
123
122
  */
124
- ChatCompletions(req: ChatCompletionsRequest, cb?: (error: string, rep: ChatCompletionsResponse) => void): Promise<ChatCompletionsResponse>;
123
+ GetThreadMessage(req: GetThreadMessageRequest, cb?: (error: string, rep: GetThreadMessageResponse) => void): Promise<GetThreadMessageResponse>;
124
+ /**
125
+ * 上传用于不同用途的文件。
126
+ 当前用途仅支持 hunyuan 等模型的文档理解。
127
+ */
128
+ FilesUploads(req: FilesUploadsRequest, cb?: (error: string, rep: FilesUploadsResponse) => void): Promise<FilesUploadsResponse>;
129
+ /**
130
+ * 开通服务
131
+ */
132
+ ActivateService(req: ActivateServiceRequest, cb?: (error: string, rep: ActivateServiceResponse) => void): Promise<ActivateServiceResponse>;
133
+ /**
134
+ * 文件列表。
135
+ */
136
+ FilesList(req: FilesListRequest, cb?: (error: string, rep: FilesListResponse) => void): Promise<FilesListResponse>;
137
+ /**
138
+ * 混元生3D接口,采用 Polygon 1.5模型,输入3D 高模后,可生成布线规整,较低面数的3D 模型。
139
+ 默认提供1个并发,代表最多能同时处理1个已提交的任务,上一个任务处理完毕后,才能开始处理下一个任务。
140
+ */
141
+ Submit3DSmartTopologyJob(req: Submit3DSmartTopologyJobRequest, cb?: (error: string, rep: Submit3DSmartTopologyJobResponse) => void): Promise<Submit3DSmartTopologyJobResponse>;
125
142
  /**
126
143
  * 混元生图(多轮对话)接口基于混元大模型,将根据输入的文本描述生成图像,支持通过多轮对话的方式不断调整图像内容。分为提交任务和查询任务2个接口。
127
144
  提交任务:输入文本和前置对话 ID 等,提交一个混元生图多轮对话异步任务,获得任务 ID。
128
145
  查询任务:根据任务 ID 查询任务的处理状态、处理结果,任务处理完成后可获得在上一轮对话基础上继续生成的图像结果。
129
146
  混元生图(多轮对话)默认提供1个并发任务数,代表最多能同时处理1个已提交的任务,上一个任务处理完毕后才能开始处理下一个任务。
130
147
  */
131
- QueryHunyuanImageChatJob(req: QueryHunyuanImageChatJobRequest, cb?: (error: string, rep: QueryHunyuanImageChatJobResponse) => void): Promise<QueryHunyuanImageChatJobResponse>;
148
+ SubmitHunyuanImageChatJob(req: SubmitHunyuanImageChatJobRequest, cb?: (error: string, rep: SubmitHunyuanImageChatJobResponse) => void): Promise<SubmitHunyuanImageChatJobResponse>;
132
149
  /**
133
- * 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
150
+ * 如需使用OpenAI兼容接口, 请参考文档:[OpenAI 兼容接口](https://cloud.tencent.com/document/product/1729/111007)
151
+
152
+ 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
134
153
 
135
154
  1. 本接口暂不支持返回图片内容。
136
155
  2. 默认该接口下单账号限制并发数为 5 路,如您有提高并发限制的需求请 [购买](https://buy.cloud.tencent.com/hunyuan) 。
137
156
  3. 请使用 SDK 调用本接口,每种开发语言的 SDK Git 仓库 examples/hunyuan/v20230901/ 目录下有提供示例供参考。SDK 链接在文档下方 “**开发者资源 - SDK**” 部分提供。
138
157
  4. 我们推荐您使用 API Explorer,方便快速地在线调试接口和下载各语言的示例代码,[点击打开](https://console.cloud.tencent.com/api/explorer?Product=hunyuan&Version=2023-09-01&Action=ChatCompletions)。
139
158
  */
140
- ChatTranslations(req: ChatTranslationsRequest, cb?: (error: string, rep: ChatTranslationsResponse) => void): Promise<ChatTranslationsResponse>;
141
- /**
142
- * 腾讯混元 Embedding 接口,可以将文本转化为高质量的向量数据。向量维度为1024维。
143
- */
144
- GetEmbedding(req: GetEmbeddingRequest, cb?: (error: string, rep: GetEmbeddingResponse) => void): Promise<GetEmbeddingResponse>;
159
+ ChatCompletions(req: ChatCompletionsRequest, cb?: (error: string, rep: ChatCompletionsResponse) => void): Promise<ChatCompletionsResponse>;
145
160
  /**
146
- * 上传用于不同用途的文件。
147
- 当前用途仅支持 hunyuan 等模型的文档理解。
161
+ * 该接口用于计算文本对应Token数、字符数。
148
162
  */
149
- FilesUploads(req: FilesUploadsRequest, cb?: (error: string, rep: FilesUploadsResponse) => void): Promise<FilesUploadsResponse>;
163
+ GetTokenCount(req: GetTokenCountRequest, cb?: (error: string, rep: GetTokenCountResponse) => void): Promise<GetTokenCountResponse>;
150
164
  /**
151
165
  * 文生图轻量版接口根据输入的文本描述,智能生成与之相关的结果图。
152
166
  文生图轻量版默认提供3个并发任务数,代表最多能同时处理3个已提交的任务,上一个任务处理完毕后才能开始处理下一个任务。
153
167
  */
154
168
  TextToImageLite(req: TextToImageLiteRequest, cb?: (error: string, rep: TextToImageLiteResponse) => void): Promise<TextToImageLiteResponse>;
155
- /**
156
- * 开通服务
157
- */
158
- ActivateService(req: ActivateServiceRequest, cb?: (error: string, rep: ActivateServiceResponse) => void): Promise<ActivateServiceResponse>;
159
169
  }
@@ -27,31 +27,6 @@ class Client extends abstract_client_1.AbstractClient {
27
27
  constructor(clientConfig) {
28
28
  super("hunyuan.tencentcloudapi.com", "2023-09-01", clientConfig);
29
29
  }
30
- /**
31
- * 设置付费模式
32
- */
33
- async SetPayMode(req, cb) {
34
- return this.request("SetPayMode", req, cb);
35
- }
36
- /**
37
- * 如需使用OpenAI兼容接口, 请参考文档:[OpenAI 兼容接口](https://cloud.tencent.com/document/product/1729/111007)
38
-
39
- 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
40
-
41
- 1. 本接口暂不支持返回图片内容。
42
- 2. 默认该接口下单账号限制并发数为 5 路,如您有提高并发限制的需求请 [购买](https://buy.cloud.tencent.com/hunyuan) 。
43
- 3. 请使用 SDK 调用本接口,每种开发语言的 SDK Git 仓库 examples/hunyuan/v20230901/ 目录下有提供示例供参考。SDK 链接在文档下方 “**开发者资源 - SDK**” 部分提供。
44
- 4. 我们推荐您使用 API Explorer,方便快速地在线调试接口和下载各语言的示例代码,[点击打开](https://console.cloud.tencent.com/api/explorer?Product=hunyuan&Version=2023-09-01&Action=ChatCompletions)。
45
- */
46
- async ImageQuestion(req, cb) {
47
- return this.request("ImageQuestion", req, cb);
48
- }
49
- /**
50
- * 文件列表。
51
- */
52
- async FilesList(req, cb) {
53
- return this.request("FilesList", req, cb);
54
- }
55
30
  /**
56
31
  * 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
57
32
 
@@ -64,30 +39,13 @@ class Client extends abstract_client_1.AbstractClient {
64
39
  return this.request("GetThread", req, cb);
65
40
  }
66
41
  /**
67
- * 混元生图(多轮对话)接口基于混元大模型,将根据输入的文本描述生成图像,支持通过多轮对话的方式不断调整图像内容。分为提交任务和查询任务2个接口。
68
- 提交任务:输入文本和前置对话 ID 等,提交一个混元生图多轮对话异步任务,获得任务 ID
69
- 查询任务:根据任务 ID 查询任务的处理状态、处理结果,任务处理完成后可获得在上一轮对话基础上继续生成的图像结果。
70
- 混元生图(多轮对话)默认提供1个并发任务数,代表最多能同时处理1个已提交的任务,上一个任务处理完毕后才能开始处理下一个任务。
71
- */
72
- async SubmitHunyuanImageChatJob(req, cb) {
73
- return this.request("SubmitHunyuanImageChatJob", req, cb);
74
- }
75
- /**
76
- * 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
77
-
78
- 1. 本接口暂不支持返回图片内容。
79
- 2. 默认该接口下单账号限制并发数为 5 路,如您有提高并发限制的需求请 [购买](https://buy.cloud.tencent.com/hunyuan) 。
80
- 3. 请使用 SDK 调用本接口,每种开发语言的 SDK Git 仓库 examples/hunyuan/v20230901/ 目录下有提供示例供参考。SDK 链接在文档下方 “**开发者资源 - SDK**” 部分提供。
81
- 4. 我们推荐您使用 API Explorer,方便快速地在线调试接口和下载各语言的示例代码,[点击打开](https://console.cloud.tencent.com/api/explorer?Product=hunyuan&Version=2023-09-01&Action=ChatCompletions)。
82
- */
83
- async CreateThread(req, cb) {
84
- return this.request("CreateThread", req, cb);
85
- }
86
- /**
87
- * 该接口用于计算文本对应Token数、字符数。
42
+ * 混元生图接口基于混元大模型,将根据输入的文本描述,智能生成与之相关的结果图。分为提交任务和查询任务2个接口。
43
+ 提交任务:输入文本等,提交一个混元生图异步任务,获得任务 ID。
44
+ 查询任务:根据任务 ID 查询任务的处理状态、处理结果,任务处理完成后可获得生成图像结果。
45
+ 并发任务数(并发)说明:并发任务数指能同时处理的任务数量。混元生图默认提供1个并发任务数,代表最多能同时处理1个已提交的任务,上一个任务处理完毕后才能开始处理下一个任务。
88
46
  */
89
- async GetTokenCount(req, cb) {
90
- return this.request("GetTokenCount", req, cb);
47
+ async SubmitHunyuanImageJob(req, cb) {
48
+ return this.request("SubmitHunyuanImageJob", req, cb);
91
49
  }
92
50
  /**
93
51
  * 混元生图接口基于混元大模型,将根据输入的文本描述,智能生成与之相关的结果图。分为提交任务和查询任务2个接口。
@@ -99,19 +57,22 @@ class Client extends abstract_client_1.AbstractClient {
99
57
  return this.request("QueryHunyuanImageJob", req, cb);
100
58
  }
101
59
  /**
102
- * 混元生图接口基于混元大模型,将根据输入的文本描述,智能生成与之相关的结果图。分为提交任务和查询任务2个接口。
103
- 提交任务:输入文本等,提交一个混元生图异步任务,获得任务 ID。
104
- 查询任务:根据任务 ID 查询任务的处理状态、处理结果,任务处理完成后可获得生成图像结果。
105
- 并发任务数(并发)说明:并发任务数指能同时处理的任务数量。混元生图默认提供1个并发任务数,代表最多能同时处理1个已提交的任务,上一个任务处理完毕后才能开始处理下一个任务。
60
+ * 混元生3D接口,采用 Polygon 1.5模型,输入3D 高模后,可生成布线规整,较低面数的3D 模型。
61
+ 默认提供1个并发,代表最多能同时处理1个已提交的任务,上一个任务处理完毕后,才能开始处理下一个任务。
106
62
  */
107
- async SubmitHunyuanImageJob(req, cb) {
108
- return this.request("SubmitHunyuanImageJob", req, cb);
63
+ async Describe3DSmartTopologyJob(req, cb) {
64
+ return this.request("Describe3DSmartTopologyJob", req, cb);
109
65
  }
110
66
  /**
111
- * 删除文件。
67
+ * 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
68
+
69
+ 1. 本接口暂不支持返回图片内容。
70
+ 2. 默认该接口下单账号限制并发数为 5 路,如您有提高并发限制的需求请 [购买](https://buy.cloud.tencent.com/hunyuan) 。
71
+ 3. 请使用 SDK 调用本接口,每种开发语言的 SDK Git 仓库 examples/hunyuan/v20230901/ 目录下有提供示例供参考。SDK 链接在文档下方 “**开发者资源 - SDK**” 部分提供。
72
+ 4. 我们推荐您使用 API Explorer,方便快速地在线调试接口和下载各语言的示例代码,[点击打开](https://console.cloud.tencent.com/api/explorer?Product=hunyuan&Version=2023-09-01&Action=ChatCompletions)。
112
73
  */
113
- async FilesDeletions(req, cb) {
114
- return this.request("FilesDeletions", req, cb);
74
+ async ChatTranslations(req, cb) {
75
+ return this.request("ChatTranslations", req, cb);
115
76
  }
116
77
  /**
117
78
  * 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
@@ -124,6 +85,12 @@ class Client extends abstract_client_1.AbstractClient {
124
85
  async GetThreadMessageList(req, cb) {
125
86
  return this.request("GetThreadMessageList", req, cb);
126
87
  }
88
+ /**
89
+ * 腾讯混元 Embedding 接口,可以将文本转化为高质量的向量数据。向量维度为1024维。
90
+ */
91
+ async GetEmbedding(req, cb) {
92
+ return this.request("GetEmbedding", req, cb);
93
+ }
127
94
  /**
128
95
  * 如需使用OpenAI兼容接口, 请参考文档:[OpenAI 兼容接口](https://cloud.tencent.com/document/product/1729/111007)
129
96
 
@@ -134,19 +101,21 @@ class Client extends abstract_client_1.AbstractClient {
134
101
  3. 请使用 SDK 调用本接口,每种开发语言的 SDK Git 仓库 examples/hunyuan/v20230901/ 目录下有提供示例供参考。SDK 链接在文档下方 “**开发者资源 - SDK**” 部分提供。
135
102
  4. 我们推荐您使用 API Explorer,方便快速地在线调试接口和下载各语言的示例代码,[点击打开](https://console.cloud.tencent.com/api/explorer?Product=hunyuan&Version=2023-09-01&Action=ChatCompletions)。
136
103
  */
137
- async GroupChatCompletions(req, cb) {
138
- return this.request("GroupChatCompletions", req, cb);
104
+ async ImageQuestion(req, cb) {
105
+ return this.request("ImageQuestion", req, cb);
139
106
  }
140
107
  /**
141
- * 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
108
+ * 如需使用OpenAI兼容接口, 请参考文档:[OpenAI 兼容接口](https://cloud.tencent.com/document/product/1729/111007)
109
+
110
+ 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
142
111
 
143
112
  1. 本接口暂不支持返回图片内容。
144
113
  2. 默认该接口下单账号限制并发数为 5 路,如您有提高并发限制的需求请 [购买](https://buy.cloud.tencent.com/hunyuan) 。
145
114
  3. 请使用 SDK 调用本接口,每种开发语言的 SDK Git 仓库 examples/hunyuan/v20230901/ 目录下有提供示例供参考。SDK 链接在文档下方 “**开发者资源 - SDK**” 部分提供。
146
115
  4. 我们推荐您使用 API Explorer,方便快速地在线调试接口和下载各语言的示例代码,[点击打开](https://console.cloud.tencent.com/api/explorer?Product=hunyuan&Version=2023-09-01&Action=ChatCompletions)。
147
116
  */
148
- async GetThreadMessage(req, cb) {
149
- return this.request("GetThreadMessage", req, cb);
117
+ async GroupChatCompletions(req, cb) {
118
+ return this.request("GroupChatCompletions", req, cb);
150
119
  }
151
120
  /**
152
121
  * 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
@@ -160,17 +129,10 @@ class Client extends abstract_client_1.AbstractClient {
160
129
  return this.request("RunThread", req, cb);
161
130
  }
162
131
  /**
163
- * 如需使用OpenAI兼容接口, 请参考文档:[OpenAI 兼容接口](https://cloud.tencent.com/document/product/1729/111007)
164
-
165
- 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
166
-
167
- 1. 本接口暂不支持返回图片内容。
168
- 2. 默认该接口下单账号限制并发数为 5 路,如您有提高并发限制的需求请 [购买](https://buy.cloud.tencent.com/hunyuan) 。
169
- 3. 请使用 SDK 调用本接口,每种开发语言的 SDK Git 仓库 examples/hunyuan/v20230901/ 目录下有提供示例供参考。SDK 链接在文档下方 “**开发者资源 - SDK**” 部分提供。
170
- 4. 我们推荐您使用 API Explorer,方便快速地在线调试接口和下载各语言的示例代码,[点击打开](https://console.cloud.tencent.com/api/explorer?Product=hunyuan&Version=2023-09-01&Action=ChatCompletions)。
132
+ * 设置付费模式
171
133
  */
172
- async ChatCompletions(req, cb) {
173
- return this.request("ChatCompletions", req, cb);
134
+ async SetPayMode(req, cb) {
135
+ return this.request("SetPayMode", req, cb);
174
136
  }
175
137
  /**
176
138
  * 混元生图(多轮对话)接口基于混元大模型,将根据输入的文本描述生成图像,支持通过多轮对话的方式不断调整图像内容。分为提交任务和查询任务2个接口。
@@ -189,14 +151,25 @@ class Client extends abstract_client_1.AbstractClient {
189
151
  3. 请使用 SDK 调用本接口,每种开发语言的 SDK Git 仓库 examples/hunyuan/v20230901/ 目录下有提供示例供参考。SDK 链接在文档下方 “**开发者资源 - SDK**” 部分提供。
190
152
  4. 我们推荐您使用 API Explorer,方便快速地在线调试接口和下载各语言的示例代码,[点击打开](https://console.cloud.tencent.com/api/explorer?Product=hunyuan&Version=2023-09-01&Action=ChatCompletions)。
191
153
  */
192
- async ChatTranslations(req, cb) {
193
- return this.request("ChatTranslations", req, cb);
154
+ async CreateThread(req, cb) {
155
+ return this.request("CreateThread", req, cb);
194
156
  }
195
157
  /**
196
- * 腾讯混元 Embedding 接口,可以将文本转化为高质量的向量数据。向量维度为1024维。
158
+ * 删除文件。
197
159
  */
198
- async GetEmbedding(req, cb) {
199
- return this.request("GetEmbedding", req, cb);
160
+ async FilesDeletions(req, cb) {
161
+ return this.request("FilesDeletions", req, cb);
162
+ }
163
+ /**
164
+ * 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
165
+
166
+ 1. 本接口暂不支持返回图片内容。
167
+ 2. 默认该接口下单账号限制并发数为 5 路,如您有提高并发限制的需求请 [购买](https://buy.cloud.tencent.com/hunyuan) 。
168
+ 3. 请使用 SDK 调用本接口,每种开发语言的 SDK Git 仓库 examples/hunyuan/v20230901/ 目录下有提供示例供参考。SDK 链接在文档下方 “**开发者资源 - SDK**” 部分提供。
169
+ 4. 我们推荐您使用 API Explorer,方便快速地在线调试接口和下载各语言的示例代码,[点击打开](https://console.cloud.tencent.com/api/explorer?Product=hunyuan&Version=2023-09-01&Action=ChatCompletions)。
170
+ */
171
+ async GetThreadMessage(req, cb) {
172
+ return this.request("GetThreadMessage", req, cb);
200
173
  }
201
174
  /**
202
175
  * 上传用于不同用途的文件。
@@ -205,6 +178,53 @@ class Client extends abstract_client_1.AbstractClient {
205
178
  async FilesUploads(req, cb) {
206
179
  return this.request("FilesUploads", req, cb);
207
180
  }
181
+ /**
182
+ * 开通服务
183
+ */
184
+ async ActivateService(req, cb) {
185
+ return this.request("ActivateService", req, cb);
186
+ }
187
+ /**
188
+ * 文件列表。
189
+ */
190
+ async FilesList(req, cb) {
191
+ return this.request("FilesList", req, cb);
192
+ }
193
+ /**
194
+ * 混元生3D接口,采用 Polygon 1.5模型,输入3D 高模后,可生成布线规整,较低面数的3D 模型。
195
+ 默认提供1个并发,代表最多能同时处理1个已提交的任务,上一个任务处理完毕后,才能开始处理下一个任务。
196
+ */
197
+ async Submit3DSmartTopologyJob(req, cb) {
198
+ return this.request("Submit3DSmartTopologyJob", req, cb);
199
+ }
200
+ /**
201
+ * 混元生图(多轮对话)接口基于混元大模型,将根据输入的文本描述生成图像,支持通过多轮对话的方式不断调整图像内容。分为提交任务和查询任务2个接口。
202
+ 提交任务:输入文本和前置对话 ID 等,提交一个混元生图多轮对话异步任务,获得任务 ID。
203
+ 查询任务:根据任务 ID 查询任务的处理状态、处理结果,任务处理完成后可获得在上一轮对话基础上继续生成的图像结果。
204
+ 混元生图(多轮对话)默认提供1个并发任务数,代表最多能同时处理1个已提交的任务,上一个任务处理完毕后才能开始处理下一个任务。
205
+ */
206
+ async SubmitHunyuanImageChatJob(req, cb) {
207
+ return this.request("SubmitHunyuanImageChatJob", req, cb);
208
+ }
209
+ /**
210
+ * 如需使用OpenAI兼容接口, 请参考文档:[OpenAI 兼容接口](https://cloud.tencent.com/document/product/1729/111007)
211
+
212
+ 腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。
213
+
214
+ 1. 本接口暂不支持返回图片内容。
215
+ 2. 默认该接口下单账号限制并发数为 5 路,如您有提高并发限制的需求请 [购买](https://buy.cloud.tencent.com/hunyuan) 。
216
+ 3. 请使用 SDK 调用本接口,每种开发语言的 SDK Git 仓库 examples/hunyuan/v20230901/ 目录下有提供示例供参考。SDK 链接在文档下方 “**开发者资源 - SDK**” 部分提供。
217
+ 4. 我们推荐您使用 API Explorer,方便快速地在线调试接口和下载各语言的示例代码,[点击打开](https://console.cloud.tencent.com/api/explorer?Product=hunyuan&Version=2023-09-01&Action=ChatCompletions)。
218
+ */
219
+ async ChatCompletions(req, cb) {
220
+ return this.request("ChatCompletions", req, cb);
221
+ }
222
+ /**
223
+ * 该接口用于计算文本对应Token数、字符数。
224
+ */
225
+ async GetTokenCount(req, cb) {
226
+ return this.request("GetTokenCount", req, cb);
227
+ }
208
228
  /**
209
229
  * 文生图轻量版接口根据输入的文本描述,智能生成与之相关的结果图。
210
230
  文生图轻量版默认提供3个并发任务数,代表最多能同时处理3个已提交的任务,上一个任务处理完毕后才能开始处理下一个任务。
@@ -212,11 +232,5 @@ class Client extends abstract_client_1.AbstractClient {
212
232
  async TextToImageLite(req, cb) {
213
233
  return this.request("TextToImageLite", req, cb);
214
234
  }
215
- /**
216
- * 开通服务
217
- */
218
- async ActivateService(req, cb) {
219
- return this.request("ActivateService", req, cb);
220
- }
221
235
  }
222
236
  exports.Client = Client;
@@ -198,6 +198,23 @@ export interface PromptTokensDetails {
198
198
  */
199
199
  CachedTokens?: string;
200
200
  }
201
+ /**
202
+ * 3D文件
203
+ */
204
+ export interface File3D {
205
+ /**
206
+ * 3D文件的格式。取值范围:GIF, OBJ
207
+ */
208
+ Type?: string;
209
+ /**
210
+ * 文件的Url(有效期24小时)
211
+ */
212
+ Url?: string;
213
+ /**
214
+ * 预览图片Url
215
+ */
216
+ PreviewImageUrl?: string;
217
+ }
201
218
  /**
202
219
  * QueryHunyuanImageChatJob请求参数结构体
203
220
  */
@@ -506,6 +523,28 @@ export interface GetThreadMessageListRequest {
506
523
  */
507
524
  Order?: string;
508
525
  }
526
+ /**
527
+ * Submit3DSmartTopologyJob请求参数结构体
528
+ */
529
+ export interface Submit3DSmartTopologyJobRequest {
530
+ /**
531
+ * 源3D文件模型链接,参考值:
532
+ Type:glb,obj格式文件必选其一。
533
+ Url:文件大小不超过200MB。
534
+ 3D模型要求:复杂模型和拓扑过的模型暂无法支持减面操作,建议输入未拓扑过的高模,比如混元3D生成的模型,适用度比较高的类别:硬表面、游戏角色、道具、日常生活用品等。
535
+ */
536
+ File3D: InputFile3D;
537
+ /**
538
+ * 多边形类型,表示模型的表面由几边形网格构成,默认为triangle,参考值:
539
+ triangle:三角形面。
540
+ quadrilateral:四边形面。
541
+ */
542
+ PolygonType?: string;
543
+ /**
544
+ * 减面后面数档位类型,可选值:high,medium, low。
545
+ */
546
+ FaceLevel?: string;
547
+ }
509
548
  /**
510
549
  * GetThreadMessage请求参数结构体
511
550
  */
@@ -901,6 +940,19 @@ export interface ImageMessage {
901
940
  */
902
941
  Contents?: Array<Content>;
903
942
  }
943
+ /**
944
+ * 3D文件
945
+ */
946
+ export interface InputFile3D {
947
+ /**
948
+ * 文件的Url(有效期24小时)
949
+ */
950
+ Url: string;
951
+ /**
952
+ * 文件格式
953
+ */
954
+ Type: string;
955
+ }
904
956
  /**
905
957
  * SetPayMode请求参数结构体
906
958
  */
@@ -1107,6 +1159,19 @@ export interface Replace {
1107
1159
  * CreateThread请求参数结构体
1108
1160
  */
1109
1161
  export type CreateThreadRequest = null;
1162
+ /**
1163
+ * Submit3DSmartTopologyJob返回参数结构体
1164
+ */
1165
+ export interface Submit3DSmartTopologyJobResponse {
1166
+ /**
1167
+ * 任务ID。
1168
+ */
1169
+ JobId?: string;
1170
+ /**
1171
+ * 唯一请求 ID,由服务端生成,每次请求都会返回(若请求因其他原因未能抵达服务端,则该次请求不会获得 RequestId)。定位问题时需要提供该次请求的 RequestId。
1172
+ */
1173
+ RequestId?: string;
1174
+ }
1110
1175
  /**
1111
1176
  * 会话内容
1112
1177
  */
@@ -1157,6 +1222,15 @@ export interface TranslationMessage {
1157
1222
  */
1158
1223
  Content?: string;
1159
1224
  }
1225
+ /**
1226
+ * Describe3DSmartTopologyJob请求参数结构体
1227
+ */
1228
+ export interface Describe3DSmartTopologyJobRequest {
1229
+ /**
1230
+ * 任务ID。
1231
+ */
1232
+ JobId: string;
1233
+ }
1160
1234
  /**
1161
1235
  * ChatCompletions请求参数结构体
1162
1236
  */
@@ -1779,6 +1853,31 @@ export interface History {
1779
1853
  */
1780
1854
  Seed?: number;
1781
1855
  }
1856
+ /**
1857
+ * Describe3DSmartTopologyJob返回参数结构体
1858
+ */
1859
+ export interface Describe3DSmartTopologyJobResponse {
1860
+ /**
1861
+ * 任务状态。WAIT:等待中,RUN:执行中,FAIL:任务失败,DONE:任务成功 示例值:RUN。
1862
+ */
1863
+ Status?: string;
1864
+ /**
1865
+ * 错误码。
1866
+ */
1867
+ ErrorCode?: string;
1868
+ /**
1869
+ * 错误信息。
1870
+ */
1871
+ ErrorMessage?: string;
1872
+ /**
1873
+ * 生成文件的URL地址,有效期1天。
1874
+ */
1875
+ ResultFile3Ds?: Array<File3D>;
1876
+ /**
1877
+ * 唯一请求 ID,由服务端生成,每次请求都会返回(若请求因其他原因未能抵达服务端,则该次请求不会获得 RequestId)。定位问题时需要提供该次请求的 RequestId。
1878
+ */
1879
+ RequestId?: string;
1880
+ }
1782
1881
  /**
1783
1882
  * 用户位置详细信息
1784
1883
  */