taleem-player 0.0.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,269 @@
1
+
2
+ {
3
+
4
+
5
+
6
+ "deck" :[
7
+ {
8
+ "type": "titleAndPara",
9
+ "start": 0,
10
+ "end": 20,
11
+ "data": [
12
+ {
13
+ "name": "title",
14
+ "content": "Theorem 10.1",
15
+ "showAt": 0
16
+ },
17
+ {
18
+ "name": "paragraph",
19
+ "content": "If two angles and non-included side of one triangle are congruent to the corresponding angles and non-included side of another triangle, then two triangles are congruent.",
20
+ "showAt": 1
21
+ }
22
+ ]
23
+ },
24
+ {
25
+ "type": "imageSlide",
26
+ "start": 20,
27
+ "end": 40,
28
+ "data": [
29
+ {
30
+ "name": "image",
31
+ "content": "/images/theorems9old_10.1.1.svg",
32
+ "showAt": 0
33
+ }
34
+ ]
35
+ },
36
+ {
37
+ "type": "titleAndPara",
38
+ "start": 40,
39
+ "end": 60,
40
+ "data": [
41
+ {
42
+ "name": "title",
43
+ "content": "Theorem 10.2",
44
+ "showAt": 0
45
+ },
46
+ {
47
+ "name": "paragraph",
48
+ "content": "If two angles of a triangle are congruent, then the sides opposite to them are also congruent.",
49
+ "showAt": 1
50
+ }
51
+ ]
52
+ },
53
+ {
54
+ "type": "imageSlide",
55
+ "start": 60,
56
+ "end": 80,
57
+ "data": [
58
+ {
59
+ "name": "image",
60
+ "content": "/images/theorems9old_10.1.2.svg",
61
+ "showAt": 0
62
+ }
63
+ ]
64
+ },
65
+ {
66
+ "type": "titleAndPara",
67
+ "start": 80,
68
+ "end": 100,
69
+ "data": [
70
+ {
71
+ "name": "title",
72
+ "content": "Theorem 10.3",
73
+ "showAt": 0
74
+ },
75
+ {
76
+ "name": "paragraph",
77
+ "content": "In the correspondence of two triangles, if three sides of one triangle are congruent to the corresponding three sides of the other, the two triangles are congruent.",
78
+ "showAt": 1
79
+ }
80
+ ]
81
+ },
82
+ {
83
+ "type": "imageSlide",
84
+ "start": 100,
85
+ "end": 120,
86
+ "data": [
87
+ {
88
+ "name": "image",
89
+ "content": "/images/theorems9old_10.1.3.svg",
90
+ "showAt": 0
91
+ }
92
+ ]
93
+ },
94
+ {
95
+ "type": "titleAndPara",
96
+ "start": 120,
97
+ "end": 140,
98
+ "data": [
99
+ {
100
+ "name": "title",
101
+ "content": "Theorem 10.4",
102
+ "showAt": 0
103
+ },
104
+ {
105
+ "name": "paragraph",
106
+ "content": "If in the correspondence of two right-angled triangles, the hypotenuse and one side of one are respectively congruent to the hypotenuse and corresponding side of the other, the triangles are congruent.",
107
+ "showAt": 1
108
+ }
109
+ ]
110
+ },
111
+ {
112
+ "type": "imageSlide",
113
+ "start": 140,
114
+ "end": 160,
115
+ "data": [
116
+ {
117
+ "name": "image",
118
+ "content": "/images/theorems9old_10.1.4.svg",
119
+ "showAt": 0
120
+ }
121
+ ]
122
+ },
123
+ {
124
+ "type": "titleAndPara",
125
+ "start": 160,
126
+ "end": 180,
127
+ "data": [
128
+ {
129
+ "name": "title",
130
+ "content": "Theorem 11.1",
131
+ "showAt": 0
132
+ },
133
+ {
134
+ "name": "paragraph",
135
+ "content": "In a parallelogram: (i) Opposite sides are congruent; (ii) Opposite angles are congruent; (iii) Diagonals bisect each other.",
136
+ "showAt": 1
137
+ }
138
+ ]
139
+ },
140
+ {
141
+ "type": "imageSlide",
142
+ "start": 180,
143
+ "end": 200,
144
+ "data": [
145
+ {
146
+ "name": "image",
147
+ "content": "/images/theorems9old_11.1.1.svg",
148
+ "showAt": 0
149
+ }
150
+ ]
151
+ },
152
+ {
153
+ "type": "titleAndPara",
154
+ "start": 200,
155
+ "end": 220,
156
+ "data": [
157
+ {
158
+ "name": "title",
159
+ "content": "Theorem 11.2",
160
+ "showAt": 0
161
+ },
162
+ {
163
+ "name": "paragraph",
164
+ "content": "If two sides of a quadrilateral are congruent and parallel, it is a parallelogram.",
165
+ "showAt": 1
166
+ }
167
+ ]
168
+ },
169
+ {
170
+ "type": "imageSlide",
171
+ "start": 220,
172
+ "end": 240,
173
+ "data": [
174
+ {
175
+ "name": "image",
176
+ "content": "/images/theorems9old_11.1.2.svg",
177
+ "showAt": 0
178
+ }
179
+ ]
180
+ },
181
+ {
182
+ "type": "titleAndPara",
183
+ "start": 240,
184
+ "end": 260,
185
+ "data": [
186
+ {
187
+ "name": "title",
188
+ "content": "Theorem 11.3",
189
+ "showAt": 0
190
+ },
191
+ {
192
+ "name": "paragraph",
193
+ "content": "The line segment joining the midpoints of two sides of a triangle is parallel to the third side and equal to one half of its length.",
194
+ "showAt": 1
195
+ }
196
+ ]
197
+ },
198
+ {
199
+ "type": "imageSlide",
200
+ "start": 260,
201
+ "end": 280,
202
+ "data": [
203
+ {
204
+ "name": "image",
205
+ "content": "/images/theorems9old_11.1.3.svg",
206
+ "showAt": 0
207
+ }
208
+ ]
209
+ },
210
+ {
211
+ "type": "titleAndPara",
212
+ "start": 280,
213
+ "end": 300,
214
+ "data": [
215
+ {
216
+ "name": "title",
217
+ "content": "Theorem 11.4",
218
+ "showAt": 0
219
+ },
220
+ {
221
+ "name": "paragraph",
222
+ "content": "The medians of a triangle are concurrent and their point of concurrency is the point of trisection of each median.",
223
+ "showAt": 1
224
+ }
225
+ ]
226
+ },
227
+ {
228
+ "type": "imageSlide",
229
+ "start": 300,
230
+ "end": 320,
231
+ "data": [
232
+ {
233
+ "name": "image",
234
+ "content": "/images/theorems9old_11.1.4.svg",
235
+ "showAt": 0
236
+ }
237
+ ]
238
+ },
239
+ {
240
+ "type": "titleAndPara",
241
+ "start": 320,
242
+ "end": 340,
243
+ "data": [
244
+ {
245
+ "name": "title",
246
+ "content": "Theorem 11.5",
247
+ "showAt": 0
248
+ },
249
+ {
250
+ "name": "paragraph",
251
+ "content": "If three or more parallel lines make congruent intercepts on a transversal, the lines are parallel to each other.",
252
+ "showAt": 1
253
+ }
254
+ ]
255
+ },
256
+ {
257
+ "type": "imageSlide",
258
+ "start": 340,
259
+ "end": 360,
260
+ "data": [
261
+ {
262
+ "name": "image",
263
+ "content": "/images/theorems9old_11.1.5.svg",
264
+ "showAt": 0
265
+ }
266
+ ]
267
+ }
268
+ ]
269
+ }
@@ -0,0 +1,382 @@
1
+ {
2
+ "name": "theorem_11_1_1",
3
+ "description": "Slide for Theorem 11.1.1",
4
+ "tags": [
5
+ "theorem",
6
+ "geometry",
7
+ "class9"
8
+ ],
9
+ "status": "draft",
10
+ "version": "deck-v1",
11
+ "background": {
12
+ "backgroundColor": "#F5F5F5",
13
+ "backgroundImage": "/images/taleem.webp",
14
+ "backgroundImageOpacity": 0.1
15
+ },
16
+ "deck": [
17
+ {
18
+ "start": 0,
19
+ "end": 6,
20
+ "type": "imageWithTitle",
21
+ "data": [
22
+ {
23
+ "name": "image",
24
+ "content": "/images/theorems9old_11.1.1.svg",
25
+ "showAt": 0
26
+ },
27
+ {
28
+ "name": "title",
29
+ "content": "Theorem 11.1.1",
30
+ "showAt": 0
31
+ }
32
+ ]
33
+ },
34
+ {
35
+ "start": 5.9,
36
+ "end": 350.78,
37
+ "type": "eq",
38
+ "data": [
39
+ {
40
+ "name": "line",
41
+ "type": "heading",
42
+ "content": "Given: ABCD is a parallelogram",
43
+ "showAt": 6,
44
+ "spItems": [
45
+ {
46
+ "type": "spImage",
47
+ "content": "/images/theorems9old_11.1.1.svg"
48
+ },
49
+ {
50
+ "type": "spImage",
51
+ "content": "/images/theorems9old_11.1.1_b.svg"
52
+ },
53
+ {
54
+ "type": "spImage",
55
+ "content": "/images/theorems9old_11.1.1_c.svg"
56
+ }
57
+ ]
58
+ },
59
+ {
60
+ "name": "line",
61
+ "type": "heading",
62
+ "content": "To Prove: AB = DC and AD = BC",
63
+ "showAt": 55.1,
64
+ "spItems": [
65
+ {
66
+ "type": "spImage",
67
+ "content": "/images/theorems9old_11.1.1.svg"
68
+ },
69
+ {
70
+ "type": "spImage",
71
+ "content": "/images/theorems9old_11.1.1_b.svg"
72
+ },
73
+ {
74
+ "type": "spImage",
75
+ "content": "/images/theorems9old_11.1.1_c.svg"
76
+ }
77
+ ]
78
+ },
79
+ {
80
+ "name": "line",
81
+ "type": "text",
82
+ "content": "It means prove opposite sides are equal",
83
+ "showAt": 75.7,
84
+ "spItems": [
85
+ {
86
+ "type": "spImage",
87
+ "content": "/images/theorems9old_11.1.1.svg"
88
+ },
89
+ {
90
+ "type": "spImage",
91
+ "content": "/images/theorems9old_11.1.1_b.svg"
92
+ },
93
+ {
94
+ "type": "spImage",
95
+ "content": "/images/theorems9old_11.1.1_c.svg"
96
+ }
97
+ ]
98
+ },
99
+ {
100
+ "name": "line",
101
+ "type": "heading",
102
+ "content": "To Prove: ∠ADC = ∠ABC and ∠BAD = ∠BCD",
103
+ "showAt": 80.4,
104
+ "spItems": [
105
+ {
106
+ "type": "spImage",
107
+ "content": "/images/theorems9old_11.1.1.svg"
108
+ },
109
+ {
110
+ "type": "spImage",
111
+ "content": "/images/theorems9old_11.1.1_b.svg"
112
+ },
113
+ {
114
+ "type": "spImage",
115
+ "content": "/images/theorems9old_11.1.1_c.svg"
116
+ }
117
+ ]
118
+ },
119
+ {
120
+ "name": "line",
121
+ "type": "text",
122
+ "content": "It means prove opposite angles are congruent",
123
+ "showAt": 86.3,
124
+ "spItems": [
125
+ {
126
+ "type": "spImage",
127
+ "content": "/images/theorems9old_11.1.1.svg"
128
+ },
129
+ {
130
+ "type": "spImage",
131
+ "content": "/images/theorems9old_11.1.1_b.svg"
132
+ },
133
+ {
134
+ "type": "spImage",
135
+ "content": "/images/theorems9old_11.1.1_c.svg"
136
+ }
137
+ ]
138
+ },
139
+ {
140
+ "name": "line",
141
+ "type": "heading",
142
+ "content": "To Prove: OA = OC and OB = OD",
143
+ "showAt": 91.6,
144
+ "spItems": [
145
+ {
146
+ "type": "spImage",
147
+ "content": "/images/theorems9old_11.1.1.svg"
148
+ },
149
+ {
150
+ "type": "spImage",
151
+ "content": "/images/theorems9old_11.1.1_b.svg"
152
+ },
153
+ {
154
+ "type": "spImage",
155
+ "content": "/images/theorems9old_11.1.1_c.svg"
156
+ }
157
+ ]
158
+ },
159
+ {
160
+ "name": "line",
161
+ "type": "text",
162
+ "content": "It means prove diagonals bisect each other",
163
+ "showAt": 100.2,
164
+ "spItems": [
165
+ {
166
+ "type": "spImage",
167
+ "content": "/images/theorems9old_11.1.1.svg"
168
+ },
169
+ {
170
+ "type": "spImage",
171
+ "content": "/images/theorems9old_11.1.1_b.svg"
172
+ },
173
+ {
174
+ "type": "spImage",
175
+ "content": "/images/theorems9old_11.1.1_c.svg"
176
+ }
177
+ ]
178
+ },
179
+ {
180
+ "name": "line",
181
+ "type": "heading",
182
+ "content": "Major Steps",
183
+ "showAt": 113.7,
184
+ "spItems": [
185
+ {
186
+ "type": "spImage",
187
+ "content": "/images/theorems9old_11.1.1.svg"
188
+ },
189
+ {
190
+ "type": "spImage",
191
+ "content": "/images/theorems9old_11.1.1_b.svg"
192
+ },
193
+ {
194
+ "type": "spImage",
195
+ "content": "/images/theorems9old_11.1.1_c.svg"
196
+ }
197
+ ]
198
+ },
199
+ {
200
+ "name": "line",
201
+ "type": "heading",
202
+ "content": "Step 1: Prove Δ in Image B are congruent",
203
+ "showAt": 122.7,
204
+ "spItems": [
205
+ {
206
+ "type": "spImage",
207
+ "content": "/images/theorems9old_11.1.1.svg"
208
+ },
209
+ {
210
+ "type": "spImage",
211
+ "content": "/images/theorems9old_11.1.1_b.svg"
212
+ },
213
+ {
214
+ "type": "spImage",
215
+ "content": "/images/theorems9old_11.1.1_c.svg"
216
+ }
217
+ ]
218
+ },
219
+ {
220
+ "name": "line",
221
+ "type": "text",
222
+ "content": "Use A·S·A (Angle–Side–Angle)",
223
+ "showAt": 151.4,
224
+ "spItems": [
225
+ {
226
+ "type": "spImage",
227
+ "content": "/images/theorems9old_11.1.1.svg"
228
+ },
229
+ {
230
+ "type": "spImage",
231
+ "content": "/images/theorems9old_11.1.1_b.svg"
232
+ },
233
+ {
234
+ "type": "spImage",
235
+ "content": "/images/theorems9old_11.1.1_c.svg"
236
+ }
237
+ ]
238
+ },
239
+ {
240
+ "name": "line",
241
+ "type": "text",
242
+ "content": "Proves AB = DC and AD = BC",
243
+ "showAt": 187.5,
244
+ "spItems": [
245
+ {
246
+ "type": "spImage",
247
+ "content": "/images/theorems9old_11.1.1.svg"
248
+ },
249
+ {
250
+ "type": "spImage",
251
+ "content": "/images/theorems9old_11.1.1_b.svg"
252
+ },
253
+ {
254
+ "type": "spImage",
255
+ "content": "/images/theorems9old_11.1.1_c.svg"
256
+ }
257
+ ]
258
+ },
259
+ {
260
+ "name": "line",
261
+ "type": "text",
262
+ "content": "Proves ∠A = ∠C (opposite angles)",
263
+ "showAt": 208.3,
264
+ "spItems": [
265
+ {
266
+ "type": "spImage",
267
+ "content": "/images/theorems9old_11.1.1.svg"
268
+ },
269
+ {
270
+ "type": "spImage",
271
+ "content": "/images/theorems9old_11.1.1_b.svg"
272
+ },
273
+ {
274
+ "type": "spImage",
275
+ "content": "/images/theorems9old_11.1.1_c.svg"
276
+ }
277
+ ]
278
+ },
279
+ {
280
+ "name": "line",
281
+ "type": "heading",
282
+ "content": "Step 2: Prove ∠B = ∠D",
283
+ "showAt": 226.9,
284
+ "spItems": [
285
+ {
286
+ "type": "spImage",
287
+ "content": "/images/theorems9old_11.1.1.svg"
288
+ },
289
+ {
290
+ "type": "spImage",
291
+ "content": "/images/theorems9old_11.1.1_b.svg"
292
+ },
293
+ {
294
+ "type": "spImage",
295
+ "content": "/images/theorems9old_11.1.1_c.svg"
296
+ }
297
+ ]
298
+ },
299
+ {
300
+ "name": "line",
301
+ "type": "text",
302
+ "content": "Use angles 1, 2, 3, 4",
303
+ "showAt": 255.5,
304
+ "spItems": [
305
+ {
306
+ "type": "spImage",
307
+ "content": "/images/theorems9old_11.1.1.svg"
308
+ },
309
+ {
310
+ "type": "spImage",
311
+ "content": "/images/theorems9old_11.1.1_b.svg"
312
+ },
313
+ {
314
+ "type": "spImage",
315
+ "content": "/images/theorems9old_11.1.1_c.svg"
316
+ }
317
+ ]
318
+ },
319
+ {
320
+ "name": "line",
321
+ "type": "heading",
322
+ "content": "Step 3: ΔDOA ≅ ΔBOC",
323
+ "showAt": 285.9,
324
+ "spItems": [
325
+ {
326
+ "type": "spImage",
327
+ "content": "/images/theorems9old_11.1.1.svg"
328
+ },
329
+ {
330
+ "type": "spImage",
331
+ "content": "/images/theorems9old_11.1.1_b.svg"
332
+ },
333
+ {
334
+ "type": "spImage",
335
+ "content": "/images/theorems9old_11.1.1_c.svg"
336
+ }
337
+ ]
338
+ },
339
+ {
340
+ "name": "line",
341
+ "type": "text",
342
+ "content": "Use A·A·S (Angle–Angle–Side)",
343
+ "showAt": 311,
344
+ "spItems": [
345
+ {
346
+ "type": "spImage",
347
+ "content": "/images/theorems9old_11.1.1.svg"
348
+ },
349
+ {
350
+ "type": "spImage",
351
+ "content": "/images/theorems9old_11.1.1_b.svg"
352
+ },
353
+ {
354
+ "type": "spImage",
355
+ "content": "/images/theorems9old_11.1.1_c.svg"
356
+ }
357
+ ]
358
+ },
359
+ {
360
+ "name": "line",
361
+ "type": "math",
362
+ "content": "\\boxed{\\text{Hence, proved.}}",
363
+ "showAt": 338.9,
364
+ "spItems": [
365
+ {
366
+ "type": "spImage",
367
+ "content": "/images/theorems9old_11.1.1.svg"
368
+ },
369
+ {
370
+ "type": "spImage",
371
+ "content": "/images/theorems9old_11.1.1_b.svg"
372
+ },
373
+ {
374
+ "type": "spImage",
375
+ "content": "/images/theorems9old_11.1.1_c.svg"
376
+ }
377
+ ]
378
+ }
379
+ ]
380
+ }
381
+ ]
382
+ }