taleem-player 0.0.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +267 -0
- package/decks/angles_and_transversals.json +85 -0
- package/decks/congruent_triangles.json +169 -0
- package/decks/demo_deck.json +22 -0
- package/decks/eq_28aug2025.json +67 -0
- package/decks/goldstandar_eq_28aug25.json +67 -0
- package/decks/parallelogram_properties.json +164 -0
- package/decks/parallelogram_properties_no_sound.json +164 -0
- package/decks/posultate_and_SAS_postulate.json +76 -0
- package/decks/theorem_revision_ch10_11.fixed.json +265 -0
- package/decks/theorem_revision_ch10_11.json +269 -0
- package/decks/theorems9old_11.1.1.json +382 -0
- package/decks/theorems9old_11.1.2.json +162 -0
- package/decks/theorems9old_11.1.3.json +857 -0
- package/favicon.ico +0 -0
- package/package.json +17 -0
- package/src/Player.js +52 -0
- package/src/index.js +1 -0
- package/src/templates/barChart.js +14 -0
- package/src/templates/bulletList.js +10 -0
- package/src/templates/eq.js +26 -0
- package/src/templates/imageSlide.js +10 -0
- package/src/templates/index.js +16 -0
- package/src/templates/titleSlide.js +8 -0
- package/src/templates/twoColumnText.js +11 -0
- package/tests/fixtures/demoDeck.json +22 -0
- package/tests/player.basic.test.js +13 -0
- package/tests/player.eq.test.js +28 -0
|
@@ -0,0 +1,269 @@
|
|
|
1
|
+
|
|
2
|
+
{
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
"deck" :[
|
|
7
|
+
{
|
|
8
|
+
"type": "titleAndPara",
|
|
9
|
+
"start": 0,
|
|
10
|
+
"end": 20,
|
|
11
|
+
"data": [
|
|
12
|
+
{
|
|
13
|
+
"name": "title",
|
|
14
|
+
"content": "Theorem 10.1",
|
|
15
|
+
"showAt": 0
|
|
16
|
+
},
|
|
17
|
+
{
|
|
18
|
+
"name": "paragraph",
|
|
19
|
+
"content": "If two angles and non-included side of one triangle are congruent to the corresponding angles and non-included side of another triangle, then two triangles are congruent.",
|
|
20
|
+
"showAt": 1
|
|
21
|
+
}
|
|
22
|
+
]
|
|
23
|
+
},
|
|
24
|
+
{
|
|
25
|
+
"type": "imageSlide",
|
|
26
|
+
"start": 20,
|
|
27
|
+
"end": 40,
|
|
28
|
+
"data": [
|
|
29
|
+
{
|
|
30
|
+
"name": "image",
|
|
31
|
+
"content": "/images/theorems9old_10.1.1.svg",
|
|
32
|
+
"showAt": 0
|
|
33
|
+
}
|
|
34
|
+
]
|
|
35
|
+
},
|
|
36
|
+
{
|
|
37
|
+
"type": "titleAndPara",
|
|
38
|
+
"start": 40,
|
|
39
|
+
"end": 60,
|
|
40
|
+
"data": [
|
|
41
|
+
{
|
|
42
|
+
"name": "title",
|
|
43
|
+
"content": "Theorem 10.2",
|
|
44
|
+
"showAt": 0
|
|
45
|
+
},
|
|
46
|
+
{
|
|
47
|
+
"name": "paragraph",
|
|
48
|
+
"content": "If two angles of a triangle are congruent, then the sides opposite to them are also congruent.",
|
|
49
|
+
"showAt": 1
|
|
50
|
+
}
|
|
51
|
+
]
|
|
52
|
+
},
|
|
53
|
+
{
|
|
54
|
+
"type": "imageSlide",
|
|
55
|
+
"start": 60,
|
|
56
|
+
"end": 80,
|
|
57
|
+
"data": [
|
|
58
|
+
{
|
|
59
|
+
"name": "image",
|
|
60
|
+
"content": "/images/theorems9old_10.1.2.svg",
|
|
61
|
+
"showAt": 0
|
|
62
|
+
}
|
|
63
|
+
]
|
|
64
|
+
},
|
|
65
|
+
{
|
|
66
|
+
"type": "titleAndPara",
|
|
67
|
+
"start": 80,
|
|
68
|
+
"end": 100,
|
|
69
|
+
"data": [
|
|
70
|
+
{
|
|
71
|
+
"name": "title",
|
|
72
|
+
"content": "Theorem 10.3",
|
|
73
|
+
"showAt": 0
|
|
74
|
+
},
|
|
75
|
+
{
|
|
76
|
+
"name": "paragraph",
|
|
77
|
+
"content": "In the correspondence of two triangles, if three sides of one triangle are congruent to the corresponding three sides of the other, the two triangles are congruent.",
|
|
78
|
+
"showAt": 1
|
|
79
|
+
}
|
|
80
|
+
]
|
|
81
|
+
},
|
|
82
|
+
{
|
|
83
|
+
"type": "imageSlide",
|
|
84
|
+
"start": 100,
|
|
85
|
+
"end": 120,
|
|
86
|
+
"data": [
|
|
87
|
+
{
|
|
88
|
+
"name": "image",
|
|
89
|
+
"content": "/images/theorems9old_10.1.3.svg",
|
|
90
|
+
"showAt": 0
|
|
91
|
+
}
|
|
92
|
+
]
|
|
93
|
+
},
|
|
94
|
+
{
|
|
95
|
+
"type": "titleAndPara",
|
|
96
|
+
"start": 120,
|
|
97
|
+
"end": 140,
|
|
98
|
+
"data": [
|
|
99
|
+
{
|
|
100
|
+
"name": "title",
|
|
101
|
+
"content": "Theorem 10.4",
|
|
102
|
+
"showAt": 0
|
|
103
|
+
},
|
|
104
|
+
{
|
|
105
|
+
"name": "paragraph",
|
|
106
|
+
"content": "If in the correspondence of two right-angled triangles, the hypotenuse and one side of one are respectively congruent to the hypotenuse and corresponding side of the other, the triangles are congruent.",
|
|
107
|
+
"showAt": 1
|
|
108
|
+
}
|
|
109
|
+
]
|
|
110
|
+
},
|
|
111
|
+
{
|
|
112
|
+
"type": "imageSlide",
|
|
113
|
+
"start": 140,
|
|
114
|
+
"end": 160,
|
|
115
|
+
"data": [
|
|
116
|
+
{
|
|
117
|
+
"name": "image",
|
|
118
|
+
"content": "/images/theorems9old_10.1.4.svg",
|
|
119
|
+
"showAt": 0
|
|
120
|
+
}
|
|
121
|
+
]
|
|
122
|
+
},
|
|
123
|
+
{
|
|
124
|
+
"type": "titleAndPara",
|
|
125
|
+
"start": 160,
|
|
126
|
+
"end": 180,
|
|
127
|
+
"data": [
|
|
128
|
+
{
|
|
129
|
+
"name": "title",
|
|
130
|
+
"content": "Theorem 11.1",
|
|
131
|
+
"showAt": 0
|
|
132
|
+
},
|
|
133
|
+
{
|
|
134
|
+
"name": "paragraph",
|
|
135
|
+
"content": "In a parallelogram: (i) Opposite sides are congruent; (ii) Opposite angles are congruent; (iii) Diagonals bisect each other.",
|
|
136
|
+
"showAt": 1
|
|
137
|
+
}
|
|
138
|
+
]
|
|
139
|
+
},
|
|
140
|
+
{
|
|
141
|
+
"type": "imageSlide",
|
|
142
|
+
"start": 180,
|
|
143
|
+
"end": 200,
|
|
144
|
+
"data": [
|
|
145
|
+
{
|
|
146
|
+
"name": "image",
|
|
147
|
+
"content": "/images/theorems9old_11.1.1.svg",
|
|
148
|
+
"showAt": 0
|
|
149
|
+
}
|
|
150
|
+
]
|
|
151
|
+
},
|
|
152
|
+
{
|
|
153
|
+
"type": "titleAndPara",
|
|
154
|
+
"start": 200,
|
|
155
|
+
"end": 220,
|
|
156
|
+
"data": [
|
|
157
|
+
{
|
|
158
|
+
"name": "title",
|
|
159
|
+
"content": "Theorem 11.2",
|
|
160
|
+
"showAt": 0
|
|
161
|
+
},
|
|
162
|
+
{
|
|
163
|
+
"name": "paragraph",
|
|
164
|
+
"content": "If two sides of a quadrilateral are congruent and parallel, it is a parallelogram.",
|
|
165
|
+
"showAt": 1
|
|
166
|
+
}
|
|
167
|
+
]
|
|
168
|
+
},
|
|
169
|
+
{
|
|
170
|
+
"type": "imageSlide",
|
|
171
|
+
"start": 220,
|
|
172
|
+
"end": 240,
|
|
173
|
+
"data": [
|
|
174
|
+
{
|
|
175
|
+
"name": "image",
|
|
176
|
+
"content": "/images/theorems9old_11.1.2.svg",
|
|
177
|
+
"showAt": 0
|
|
178
|
+
}
|
|
179
|
+
]
|
|
180
|
+
},
|
|
181
|
+
{
|
|
182
|
+
"type": "titleAndPara",
|
|
183
|
+
"start": 240,
|
|
184
|
+
"end": 260,
|
|
185
|
+
"data": [
|
|
186
|
+
{
|
|
187
|
+
"name": "title",
|
|
188
|
+
"content": "Theorem 11.3",
|
|
189
|
+
"showAt": 0
|
|
190
|
+
},
|
|
191
|
+
{
|
|
192
|
+
"name": "paragraph",
|
|
193
|
+
"content": "The line segment joining the midpoints of two sides of a triangle is parallel to the third side and equal to one half of its length.",
|
|
194
|
+
"showAt": 1
|
|
195
|
+
}
|
|
196
|
+
]
|
|
197
|
+
},
|
|
198
|
+
{
|
|
199
|
+
"type": "imageSlide",
|
|
200
|
+
"start": 260,
|
|
201
|
+
"end": 280,
|
|
202
|
+
"data": [
|
|
203
|
+
{
|
|
204
|
+
"name": "image",
|
|
205
|
+
"content": "/images/theorems9old_11.1.3.svg",
|
|
206
|
+
"showAt": 0
|
|
207
|
+
}
|
|
208
|
+
]
|
|
209
|
+
},
|
|
210
|
+
{
|
|
211
|
+
"type": "titleAndPara",
|
|
212
|
+
"start": 280,
|
|
213
|
+
"end": 300,
|
|
214
|
+
"data": [
|
|
215
|
+
{
|
|
216
|
+
"name": "title",
|
|
217
|
+
"content": "Theorem 11.4",
|
|
218
|
+
"showAt": 0
|
|
219
|
+
},
|
|
220
|
+
{
|
|
221
|
+
"name": "paragraph",
|
|
222
|
+
"content": "The medians of a triangle are concurrent and their point of concurrency is the point of trisection of each median.",
|
|
223
|
+
"showAt": 1
|
|
224
|
+
}
|
|
225
|
+
]
|
|
226
|
+
},
|
|
227
|
+
{
|
|
228
|
+
"type": "imageSlide",
|
|
229
|
+
"start": 300,
|
|
230
|
+
"end": 320,
|
|
231
|
+
"data": [
|
|
232
|
+
{
|
|
233
|
+
"name": "image",
|
|
234
|
+
"content": "/images/theorems9old_11.1.4.svg",
|
|
235
|
+
"showAt": 0
|
|
236
|
+
}
|
|
237
|
+
]
|
|
238
|
+
},
|
|
239
|
+
{
|
|
240
|
+
"type": "titleAndPara",
|
|
241
|
+
"start": 320,
|
|
242
|
+
"end": 340,
|
|
243
|
+
"data": [
|
|
244
|
+
{
|
|
245
|
+
"name": "title",
|
|
246
|
+
"content": "Theorem 11.5",
|
|
247
|
+
"showAt": 0
|
|
248
|
+
},
|
|
249
|
+
{
|
|
250
|
+
"name": "paragraph",
|
|
251
|
+
"content": "If three or more parallel lines make congruent intercepts on a transversal, the lines are parallel to each other.",
|
|
252
|
+
"showAt": 1
|
|
253
|
+
}
|
|
254
|
+
]
|
|
255
|
+
},
|
|
256
|
+
{
|
|
257
|
+
"type": "imageSlide",
|
|
258
|
+
"start": 340,
|
|
259
|
+
"end": 360,
|
|
260
|
+
"data": [
|
|
261
|
+
{
|
|
262
|
+
"name": "image",
|
|
263
|
+
"content": "/images/theorems9old_11.1.5.svg",
|
|
264
|
+
"showAt": 0
|
|
265
|
+
}
|
|
266
|
+
]
|
|
267
|
+
}
|
|
268
|
+
]
|
|
269
|
+
}
|
|
@@ -0,0 +1,382 @@
|
|
|
1
|
+
{
|
|
2
|
+
"name": "theorem_11_1_1",
|
|
3
|
+
"description": "Slide for Theorem 11.1.1",
|
|
4
|
+
"tags": [
|
|
5
|
+
"theorem",
|
|
6
|
+
"geometry",
|
|
7
|
+
"class9"
|
|
8
|
+
],
|
|
9
|
+
"status": "draft",
|
|
10
|
+
"version": "deck-v1",
|
|
11
|
+
"background": {
|
|
12
|
+
"backgroundColor": "#F5F5F5",
|
|
13
|
+
"backgroundImage": "/images/taleem.webp",
|
|
14
|
+
"backgroundImageOpacity": 0.1
|
|
15
|
+
},
|
|
16
|
+
"deck": [
|
|
17
|
+
{
|
|
18
|
+
"start": 0,
|
|
19
|
+
"end": 6,
|
|
20
|
+
"type": "imageWithTitle",
|
|
21
|
+
"data": [
|
|
22
|
+
{
|
|
23
|
+
"name": "image",
|
|
24
|
+
"content": "/images/theorems9old_11.1.1.svg",
|
|
25
|
+
"showAt": 0
|
|
26
|
+
},
|
|
27
|
+
{
|
|
28
|
+
"name": "title",
|
|
29
|
+
"content": "Theorem 11.1.1",
|
|
30
|
+
"showAt": 0
|
|
31
|
+
}
|
|
32
|
+
]
|
|
33
|
+
},
|
|
34
|
+
{
|
|
35
|
+
"start": 5.9,
|
|
36
|
+
"end": 350.78,
|
|
37
|
+
"type": "eq",
|
|
38
|
+
"data": [
|
|
39
|
+
{
|
|
40
|
+
"name": "line",
|
|
41
|
+
"type": "heading",
|
|
42
|
+
"content": "Given: ABCD is a parallelogram",
|
|
43
|
+
"showAt": 6,
|
|
44
|
+
"spItems": [
|
|
45
|
+
{
|
|
46
|
+
"type": "spImage",
|
|
47
|
+
"content": "/images/theorems9old_11.1.1.svg"
|
|
48
|
+
},
|
|
49
|
+
{
|
|
50
|
+
"type": "spImage",
|
|
51
|
+
"content": "/images/theorems9old_11.1.1_b.svg"
|
|
52
|
+
},
|
|
53
|
+
{
|
|
54
|
+
"type": "spImage",
|
|
55
|
+
"content": "/images/theorems9old_11.1.1_c.svg"
|
|
56
|
+
}
|
|
57
|
+
]
|
|
58
|
+
},
|
|
59
|
+
{
|
|
60
|
+
"name": "line",
|
|
61
|
+
"type": "heading",
|
|
62
|
+
"content": "To Prove: AB = DC and AD = BC",
|
|
63
|
+
"showAt": 55.1,
|
|
64
|
+
"spItems": [
|
|
65
|
+
{
|
|
66
|
+
"type": "spImage",
|
|
67
|
+
"content": "/images/theorems9old_11.1.1.svg"
|
|
68
|
+
},
|
|
69
|
+
{
|
|
70
|
+
"type": "spImage",
|
|
71
|
+
"content": "/images/theorems9old_11.1.1_b.svg"
|
|
72
|
+
},
|
|
73
|
+
{
|
|
74
|
+
"type": "spImage",
|
|
75
|
+
"content": "/images/theorems9old_11.1.1_c.svg"
|
|
76
|
+
}
|
|
77
|
+
]
|
|
78
|
+
},
|
|
79
|
+
{
|
|
80
|
+
"name": "line",
|
|
81
|
+
"type": "text",
|
|
82
|
+
"content": "It means prove opposite sides are equal",
|
|
83
|
+
"showAt": 75.7,
|
|
84
|
+
"spItems": [
|
|
85
|
+
{
|
|
86
|
+
"type": "spImage",
|
|
87
|
+
"content": "/images/theorems9old_11.1.1.svg"
|
|
88
|
+
},
|
|
89
|
+
{
|
|
90
|
+
"type": "spImage",
|
|
91
|
+
"content": "/images/theorems9old_11.1.1_b.svg"
|
|
92
|
+
},
|
|
93
|
+
{
|
|
94
|
+
"type": "spImage",
|
|
95
|
+
"content": "/images/theorems9old_11.1.1_c.svg"
|
|
96
|
+
}
|
|
97
|
+
]
|
|
98
|
+
},
|
|
99
|
+
{
|
|
100
|
+
"name": "line",
|
|
101
|
+
"type": "heading",
|
|
102
|
+
"content": "To Prove: ∠ADC = ∠ABC and ∠BAD = ∠BCD",
|
|
103
|
+
"showAt": 80.4,
|
|
104
|
+
"spItems": [
|
|
105
|
+
{
|
|
106
|
+
"type": "spImage",
|
|
107
|
+
"content": "/images/theorems9old_11.1.1.svg"
|
|
108
|
+
},
|
|
109
|
+
{
|
|
110
|
+
"type": "spImage",
|
|
111
|
+
"content": "/images/theorems9old_11.1.1_b.svg"
|
|
112
|
+
},
|
|
113
|
+
{
|
|
114
|
+
"type": "spImage",
|
|
115
|
+
"content": "/images/theorems9old_11.1.1_c.svg"
|
|
116
|
+
}
|
|
117
|
+
]
|
|
118
|
+
},
|
|
119
|
+
{
|
|
120
|
+
"name": "line",
|
|
121
|
+
"type": "text",
|
|
122
|
+
"content": "It means prove opposite angles are congruent",
|
|
123
|
+
"showAt": 86.3,
|
|
124
|
+
"spItems": [
|
|
125
|
+
{
|
|
126
|
+
"type": "spImage",
|
|
127
|
+
"content": "/images/theorems9old_11.1.1.svg"
|
|
128
|
+
},
|
|
129
|
+
{
|
|
130
|
+
"type": "spImage",
|
|
131
|
+
"content": "/images/theorems9old_11.1.1_b.svg"
|
|
132
|
+
},
|
|
133
|
+
{
|
|
134
|
+
"type": "spImage",
|
|
135
|
+
"content": "/images/theorems9old_11.1.1_c.svg"
|
|
136
|
+
}
|
|
137
|
+
]
|
|
138
|
+
},
|
|
139
|
+
{
|
|
140
|
+
"name": "line",
|
|
141
|
+
"type": "heading",
|
|
142
|
+
"content": "To Prove: OA = OC and OB = OD",
|
|
143
|
+
"showAt": 91.6,
|
|
144
|
+
"spItems": [
|
|
145
|
+
{
|
|
146
|
+
"type": "spImage",
|
|
147
|
+
"content": "/images/theorems9old_11.1.1.svg"
|
|
148
|
+
},
|
|
149
|
+
{
|
|
150
|
+
"type": "spImage",
|
|
151
|
+
"content": "/images/theorems9old_11.1.1_b.svg"
|
|
152
|
+
},
|
|
153
|
+
{
|
|
154
|
+
"type": "spImage",
|
|
155
|
+
"content": "/images/theorems9old_11.1.1_c.svg"
|
|
156
|
+
}
|
|
157
|
+
]
|
|
158
|
+
},
|
|
159
|
+
{
|
|
160
|
+
"name": "line",
|
|
161
|
+
"type": "text",
|
|
162
|
+
"content": "It means prove diagonals bisect each other",
|
|
163
|
+
"showAt": 100.2,
|
|
164
|
+
"spItems": [
|
|
165
|
+
{
|
|
166
|
+
"type": "spImage",
|
|
167
|
+
"content": "/images/theorems9old_11.1.1.svg"
|
|
168
|
+
},
|
|
169
|
+
{
|
|
170
|
+
"type": "spImage",
|
|
171
|
+
"content": "/images/theorems9old_11.1.1_b.svg"
|
|
172
|
+
},
|
|
173
|
+
{
|
|
174
|
+
"type": "spImage",
|
|
175
|
+
"content": "/images/theorems9old_11.1.1_c.svg"
|
|
176
|
+
}
|
|
177
|
+
]
|
|
178
|
+
},
|
|
179
|
+
{
|
|
180
|
+
"name": "line",
|
|
181
|
+
"type": "heading",
|
|
182
|
+
"content": "Major Steps",
|
|
183
|
+
"showAt": 113.7,
|
|
184
|
+
"spItems": [
|
|
185
|
+
{
|
|
186
|
+
"type": "spImage",
|
|
187
|
+
"content": "/images/theorems9old_11.1.1.svg"
|
|
188
|
+
},
|
|
189
|
+
{
|
|
190
|
+
"type": "spImage",
|
|
191
|
+
"content": "/images/theorems9old_11.1.1_b.svg"
|
|
192
|
+
},
|
|
193
|
+
{
|
|
194
|
+
"type": "spImage",
|
|
195
|
+
"content": "/images/theorems9old_11.1.1_c.svg"
|
|
196
|
+
}
|
|
197
|
+
]
|
|
198
|
+
},
|
|
199
|
+
{
|
|
200
|
+
"name": "line",
|
|
201
|
+
"type": "heading",
|
|
202
|
+
"content": "Step 1: Prove Δ in Image B are congruent",
|
|
203
|
+
"showAt": 122.7,
|
|
204
|
+
"spItems": [
|
|
205
|
+
{
|
|
206
|
+
"type": "spImage",
|
|
207
|
+
"content": "/images/theorems9old_11.1.1.svg"
|
|
208
|
+
},
|
|
209
|
+
{
|
|
210
|
+
"type": "spImage",
|
|
211
|
+
"content": "/images/theorems9old_11.1.1_b.svg"
|
|
212
|
+
},
|
|
213
|
+
{
|
|
214
|
+
"type": "spImage",
|
|
215
|
+
"content": "/images/theorems9old_11.1.1_c.svg"
|
|
216
|
+
}
|
|
217
|
+
]
|
|
218
|
+
},
|
|
219
|
+
{
|
|
220
|
+
"name": "line",
|
|
221
|
+
"type": "text",
|
|
222
|
+
"content": "Use A·S·A (Angle–Side–Angle)",
|
|
223
|
+
"showAt": 151.4,
|
|
224
|
+
"spItems": [
|
|
225
|
+
{
|
|
226
|
+
"type": "spImage",
|
|
227
|
+
"content": "/images/theorems9old_11.1.1.svg"
|
|
228
|
+
},
|
|
229
|
+
{
|
|
230
|
+
"type": "spImage",
|
|
231
|
+
"content": "/images/theorems9old_11.1.1_b.svg"
|
|
232
|
+
},
|
|
233
|
+
{
|
|
234
|
+
"type": "spImage",
|
|
235
|
+
"content": "/images/theorems9old_11.1.1_c.svg"
|
|
236
|
+
}
|
|
237
|
+
]
|
|
238
|
+
},
|
|
239
|
+
{
|
|
240
|
+
"name": "line",
|
|
241
|
+
"type": "text",
|
|
242
|
+
"content": "Proves AB = DC and AD = BC",
|
|
243
|
+
"showAt": 187.5,
|
|
244
|
+
"spItems": [
|
|
245
|
+
{
|
|
246
|
+
"type": "spImage",
|
|
247
|
+
"content": "/images/theorems9old_11.1.1.svg"
|
|
248
|
+
},
|
|
249
|
+
{
|
|
250
|
+
"type": "spImage",
|
|
251
|
+
"content": "/images/theorems9old_11.1.1_b.svg"
|
|
252
|
+
},
|
|
253
|
+
{
|
|
254
|
+
"type": "spImage",
|
|
255
|
+
"content": "/images/theorems9old_11.1.1_c.svg"
|
|
256
|
+
}
|
|
257
|
+
]
|
|
258
|
+
},
|
|
259
|
+
{
|
|
260
|
+
"name": "line",
|
|
261
|
+
"type": "text",
|
|
262
|
+
"content": "Proves ∠A = ∠C (opposite angles)",
|
|
263
|
+
"showAt": 208.3,
|
|
264
|
+
"spItems": [
|
|
265
|
+
{
|
|
266
|
+
"type": "spImage",
|
|
267
|
+
"content": "/images/theorems9old_11.1.1.svg"
|
|
268
|
+
},
|
|
269
|
+
{
|
|
270
|
+
"type": "spImage",
|
|
271
|
+
"content": "/images/theorems9old_11.1.1_b.svg"
|
|
272
|
+
},
|
|
273
|
+
{
|
|
274
|
+
"type": "spImage",
|
|
275
|
+
"content": "/images/theorems9old_11.1.1_c.svg"
|
|
276
|
+
}
|
|
277
|
+
]
|
|
278
|
+
},
|
|
279
|
+
{
|
|
280
|
+
"name": "line",
|
|
281
|
+
"type": "heading",
|
|
282
|
+
"content": "Step 2: Prove ∠B = ∠D",
|
|
283
|
+
"showAt": 226.9,
|
|
284
|
+
"spItems": [
|
|
285
|
+
{
|
|
286
|
+
"type": "spImage",
|
|
287
|
+
"content": "/images/theorems9old_11.1.1.svg"
|
|
288
|
+
},
|
|
289
|
+
{
|
|
290
|
+
"type": "spImage",
|
|
291
|
+
"content": "/images/theorems9old_11.1.1_b.svg"
|
|
292
|
+
},
|
|
293
|
+
{
|
|
294
|
+
"type": "spImage",
|
|
295
|
+
"content": "/images/theorems9old_11.1.1_c.svg"
|
|
296
|
+
}
|
|
297
|
+
]
|
|
298
|
+
},
|
|
299
|
+
{
|
|
300
|
+
"name": "line",
|
|
301
|
+
"type": "text",
|
|
302
|
+
"content": "Use angles 1, 2, 3, 4",
|
|
303
|
+
"showAt": 255.5,
|
|
304
|
+
"spItems": [
|
|
305
|
+
{
|
|
306
|
+
"type": "spImage",
|
|
307
|
+
"content": "/images/theorems9old_11.1.1.svg"
|
|
308
|
+
},
|
|
309
|
+
{
|
|
310
|
+
"type": "spImage",
|
|
311
|
+
"content": "/images/theorems9old_11.1.1_b.svg"
|
|
312
|
+
},
|
|
313
|
+
{
|
|
314
|
+
"type": "spImage",
|
|
315
|
+
"content": "/images/theorems9old_11.1.1_c.svg"
|
|
316
|
+
}
|
|
317
|
+
]
|
|
318
|
+
},
|
|
319
|
+
{
|
|
320
|
+
"name": "line",
|
|
321
|
+
"type": "heading",
|
|
322
|
+
"content": "Step 3: ΔDOA ≅ ΔBOC",
|
|
323
|
+
"showAt": 285.9,
|
|
324
|
+
"spItems": [
|
|
325
|
+
{
|
|
326
|
+
"type": "spImage",
|
|
327
|
+
"content": "/images/theorems9old_11.1.1.svg"
|
|
328
|
+
},
|
|
329
|
+
{
|
|
330
|
+
"type": "spImage",
|
|
331
|
+
"content": "/images/theorems9old_11.1.1_b.svg"
|
|
332
|
+
},
|
|
333
|
+
{
|
|
334
|
+
"type": "spImage",
|
|
335
|
+
"content": "/images/theorems9old_11.1.1_c.svg"
|
|
336
|
+
}
|
|
337
|
+
]
|
|
338
|
+
},
|
|
339
|
+
{
|
|
340
|
+
"name": "line",
|
|
341
|
+
"type": "text",
|
|
342
|
+
"content": "Use A·A·S (Angle–Angle–Side)",
|
|
343
|
+
"showAt": 311,
|
|
344
|
+
"spItems": [
|
|
345
|
+
{
|
|
346
|
+
"type": "spImage",
|
|
347
|
+
"content": "/images/theorems9old_11.1.1.svg"
|
|
348
|
+
},
|
|
349
|
+
{
|
|
350
|
+
"type": "spImage",
|
|
351
|
+
"content": "/images/theorems9old_11.1.1_b.svg"
|
|
352
|
+
},
|
|
353
|
+
{
|
|
354
|
+
"type": "spImage",
|
|
355
|
+
"content": "/images/theorems9old_11.1.1_c.svg"
|
|
356
|
+
}
|
|
357
|
+
]
|
|
358
|
+
},
|
|
359
|
+
{
|
|
360
|
+
"name": "line",
|
|
361
|
+
"type": "math",
|
|
362
|
+
"content": "\\boxed{\\text{Hence, proved.}}",
|
|
363
|
+
"showAt": 338.9,
|
|
364
|
+
"spItems": [
|
|
365
|
+
{
|
|
366
|
+
"type": "spImage",
|
|
367
|
+
"content": "/images/theorems9old_11.1.1.svg"
|
|
368
|
+
},
|
|
369
|
+
{
|
|
370
|
+
"type": "spImage",
|
|
371
|
+
"content": "/images/theorems9old_11.1.1_b.svg"
|
|
372
|
+
},
|
|
373
|
+
{
|
|
374
|
+
"type": "spImage",
|
|
375
|
+
"content": "/images/theorems9old_11.1.1_c.svg"
|
|
376
|
+
}
|
|
377
|
+
]
|
|
378
|
+
}
|
|
379
|
+
]
|
|
380
|
+
}
|
|
381
|
+
]
|
|
382
|
+
}
|