specweave 0.3.13 → 0.4.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (168) hide show
  1. package/CLAUDE.md +506 -17
  2. package/README.md +100 -58
  3. package/bin/install-all.sh +9 -2
  4. package/bin/install-hooks.sh +57 -0
  5. package/bin/specweave.js +16 -0
  6. package/dist/adapters/adapter-base.d.ts +21 -0
  7. package/dist/adapters/adapter-base.d.ts.map +1 -1
  8. package/dist/adapters/adapter-base.js +28 -0
  9. package/dist/adapters/adapter-base.js.map +1 -1
  10. package/dist/adapters/adapter-interface.d.ts +41 -0
  11. package/dist/adapters/adapter-interface.d.ts.map +1 -1
  12. package/dist/adapters/claude/adapter.d.ts +36 -0
  13. package/dist/adapters/claude/adapter.d.ts.map +1 -1
  14. package/dist/adapters/claude/adapter.js +135 -0
  15. package/dist/adapters/claude/adapter.js.map +1 -1
  16. package/dist/adapters/copilot/adapter.d.ts +25 -0
  17. package/dist/adapters/copilot/adapter.d.ts.map +1 -1
  18. package/dist/adapters/copilot/adapter.js +112 -0
  19. package/dist/adapters/copilot/adapter.js.map +1 -1
  20. package/dist/adapters/cursor/adapter.d.ts +36 -0
  21. package/dist/adapters/cursor/adapter.d.ts.map +1 -1
  22. package/dist/adapters/cursor/adapter.js +140 -0
  23. package/dist/adapters/cursor/adapter.js.map +1 -1
  24. package/dist/adapters/generic/adapter.d.ts +25 -0
  25. package/dist/adapters/generic/adapter.d.ts.map +1 -1
  26. package/dist/adapters/generic/adapter.js +111 -0
  27. package/dist/adapters/generic/adapter.js.map +1 -1
  28. package/dist/cli/commands/init.d.ts.map +1 -1
  29. package/dist/cli/commands/init.js +103 -1
  30. package/dist/cli/commands/init.js.map +1 -1
  31. package/dist/cli/commands/plugin.d.ts +37 -0
  32. package/dist/cli/commands/plugin.d.ts.map +1 -0
  33. package/dist/cli/commands/plugin.js +296 -0
  34. package/dist/cli/commands/plugin.js.map +1 -0
  35. package/dist/core/agent-model-manager.d.ts +52 -0
  36. package/dist/core/agent-model-manager.d.ts.map +1 -0
  37. package/dist/core/agent-model-manager.js +120 -0
  38. package/dist/core/agent-model-manager.js.map +1 -0
  39. package/dist/core/cost-tracker.d.ts +108 -0
  40. package/dist/core/cost-tracker.d.ts.map +1 -0
  41. package/dist/core/cost-tracker.js +281 -0
  42. package/dist/core/cost-tracker.js.map +1 -0
  43. package/dist/core/model-selector.d.ts +57 -0
  44. package/dist/core/model-selector.d.ts.map +1 -0
  45. package/dist/core/model-selector.js +115 -0
  46. package/dist/core/model-selector.js.map +1 -0
  47. package/dist/core/phase-detector.d.ts +62 -0
  48. package/dist/core/phase-detector.d.ts.map +1 -0
  49. package/dist/core/phase-detector.js +229 -0
  50. package/dist/core/phase-detector.js.map +1 -0
  51. package/dist/core/plugin-detector.d.ts +96 -0
  52. package/dist/core/plugin-detector.d.ts.map +1 -0
  53. package/dist/core/plugin-detector.js +349 -0
  54. package/dist/core/plugin-detector.js.map +1 -0
  55. package/dist/core/plugin-loader.d.ts +111 -0
  56. package/dist/core/plugin-loader.d.ts.map +1 -0
  57. package/dist/core/plugin-loader.js +319 -0
  58. package/dist/core/plugin-loader.js.map +1 -0
  59. package/dist/core/plugin-manager.d.ts +144 -0
  60. package/dist/core/plugin-manager.d.ts.map +1 -0
  61. package/dist/core/plugin-manager.js +393 -0
  62. package/dist/core/plugin-manager.js.map +1 -0
  63. package/dist/core/schemas/plugin-manifest.schema.json +253 -0
  64. package/dist/core/types/plugin.d.ts +252 -0
  65. package/dist/core/types/plugin.d.ts.map +1 -0
  66. package/dist/core/types/plugin.js +48 -0
  67. package/dist/core/types/plugin.js.map +1 -0
  68. package/dist/integrations/jira/jira-mapper.d.ts +2 -2
  69. package/dist/integrations/jira/jira-mapper.js +2 -2
  70. package/dist/types/cost-tracking.d.ts +43 -0
  71. package/dist/types/cost-tracking.d.ts.map +1 -0
  72. package/dist/types/cost-tracking.js +8 -0
  73. package/dist/types/cost-tracking.js.map +1 -0
  74. package/dist/types/model-selection.d.ts +53 -0
  75. package/dist/types/model-selection.d.ts.map +1 -0
  76. package/dist/types/model-selection.js +12 -0
  77. package/dist/types/model-selection.js.map +1 -0
  78. package/dist/utils/cost-reporter.d.ts +58 -0
  79. package/dist/utils/cost-reporter.d.ts.map +1 -0
  80. package/dist/utils/cost-reporter.js +224 -0
  81. package/dist/utils/cost-reporter.js.map +1 -0
  82. package/dist/utils/pricing-constants.d.ts +70 -0
  83. package/dist/utils/pricing-constants.d.ts.map +1 -0
  84. package/dist/utils/pricing-constants.js +71 -0
  85. package/dist/utils/pricing-constants.js.map +1 -0
  86. package/package.json +13 -9
  87. package/src/adapters/adapter-base.ts +33 -0
  88. package/src/adapters/adapter-interface.ts +46 -0
  89. package/src/adapters/claude/adapter.ts +164 -0
  90. package/src/adapters/copilot/adapter.ts +138 -0
  91. package/src/adapters/cursor/adapter.ts +170 -0
  92. package/src/adapters/generic/adapter.ts +137 -0
  93. package/src/agents/architect/AGENT.md +3 -0
  94. package/src/agents/code-reviewer.md +156 -0
  95. package/src/agents/data-scientist/AGENT.md +181 -0
  96. package/src/agents/database-optimizer/AGENT.md +147 -0
  97. package/src/agents/devops/AGENT.md +3 -0
  98. package/src/agents/diagrams-architect/AGENT.md +3 -0
  99. package/src/agents/docs-writer/AGENT.md +3 -0
  100. package/src/agents/kubernetes-architect/AGENT.md +142 -0
  101. package/src/agents/ml-engineer/AGENT.md +150 -0
  102. package/src/agents/mlops-engineer/AGENT.md +201 -0
  103. package/src/agents/network-engineer/AGENT.md +149 -0
  104. package/src/agents/observability-engineer/AGENT.md +213 -0
  105. package/src/agents/payment-integration/AGENT.md +35 -0
  106. package/src/agents/performance/AGENT.md +3 -0
  107. package/src/agents/performance-engineer/AGENT.md +153 -0
  108. package/src/agents/pm/AGENT.md +3 -0
  109. package/src/agents/qa-lead/AGENT.md +3 -0
  110. package/src/agents/security/AGENT.md +3 -0
  111. package/src/agents/sre/AGENT.md +3 -0
  112. package/src/agents/tdd-orchestrator/AGENT.md +169 -0
  113. package/src/agents/tech-lead/AGENT.md +3 -0
  114. package/src/commands/specweave.costs.md +261 -0
  115. package/src/commands/specweave.increment.md +48 -4
  116. package/src/commands/specweave.ml-pipeline.md +292 -0
  117. package/src/commands/specweave.monitor-setup.md +501 -0
  118. package/src/commands/specweave.slo-implement.md +1055 -0
  119. package/src/commands/specweave.sync-github.md +1 -1
  120. package/src/commands/specweave.tdd-cycle.md +199 -0
  121. package/src/commands/specweave.tdd-green.md +842 -0
  122. package/src/commands/specweave.tdd-red.md +135 -0
  123. package/src/commands/specweave.tdd-refactor.md +165 -0
  124. package/src/hooks/post-increment-plugin-detect.sh +142 -0
  125. package/src/hooks/post-task-completion.sh +53 -11
  126. package/src/hooks/pre-task-plugin-detect.sh +96 -0
  127. package/src/skills/SKILLS-INDEX.md +18 -10
  128. package/src/skills/billing-automation/SKILL.md +559 -0
  129. package/src/skills/distributed-tracing/SKILL.md +438 -0
  130. package/src/skills/e2e-playwright/README.md +1 -1
  131. package/src/skills/e2e-playwright/package.json +1 -1
  132. package/src/skills/gitops-workflow/SKILL.md +285 -0
  133. package/src/skills/gitops-workflow/references/argocd-setup.md +134 -0
  134. package/src/skills/gitops-workflow/references/sync-policies.md +131 -0
  135. package/src/skills/grafana-dashboards/SKILL.md +369 -0
  136. package/src/skills/helm-chart-scaffolding/SKILL.md +544 -0
  137. package/src/skills/helm-chart-scaffolding/assets/Chart.yaml.template +42 -0
  138. package/src/skills/helm-chart-scaffolding/assets/values.yaml.template +185 -0
  139. package/src/skills/helm-chart-scaffolding/references/chart-structure.md +500 -0
  140. package/src/skills/helm-chart-scaffolding/scripts/validate-chart.sh +244 -0
  141. package/src/skills/k8s-manifest-generator/SKILL.md +511 -0
  142. package/src/skills/k8s-manifest-generator/assets/configmap-template.yaml +296 -0
  143. package/src/skills/k8s-manifest-generator/assets/deployment-template.yaml +203 -0
  144. package/src/skills/k8s-manifest-generator/assets/service-template.yaml +171 -0
  145. package/src/skills/k8s-manifest-generator/references/deployment-spec.md +753 -0
  146. package/src/skills/k8s-manifest-generator/references/service-spec.md +724 -0
  147. package/src/skills/k8s-security-policies/SKILL.md +334 -0
  148. package/src/skills/k8s-security-policies/assets/network-policy-template.yaml +177 -0
  149. package/src/skills/k8s-security-policies/references/rbac-patterns.md +187 -0
  150. package/src/skills/ml-pipeline-workflow/SKILL.md +245 -0
  151. package/src/skills/paypal-integration/SKILL.md +467 -0
  152. package/src/skills/pci-compliance/SKILL.md +466 -0
  153. package/src/skills/prometheus-configuration/SKILL.md +392 -0
  154. package/src/skills/slo-implementation/SKILL.md +329 -0
  155. package/src/skills/stripe-integration/SKILL.md +442 -0
  156. package/src/skills/tdd-workflow/SKILL.md +378 -0
  157. package/src/templates/README.md.template +1 -1
  158. package/src/skills/bmad-method-expert/SKILL.md +0 -626
  159. package/src/skills/bmad-method-expert/scripts/analyze-project.js +0 -318
  160. package/src/skills/bmad-method-expert/scripts/check-setup.js +0 -208
  161. package/src/skills/bmad-method-expert/scripts/generate-template.js +0 -1149
  162. package/src/skills/bmad-method-expert/scripts/validate-documents.js +0 -340
  163. package/src/skills/context-optimizer/SKILL.md +0 -588
  164. package/src/skills/figma-designer/SKILL.md +0 -149
  165. package/src/skills/figma-implementer/SKILL.md +0 -148
  166. package/src/skills/figma-mcp-connector/SKILL.md +0 -136
  167. package/src/skills/figma-to-code/SKILL.md +0 -128
  168. package/src/skills/spec-kit-expert/SKILL.md +0 -1010
@@ -0,0 +1,261 @@
1
+ ---
2
+ name: specweave.costs
3
+ description: Display AI cost dashboard for current or specified increment with real-time savings tracking
4
+ ---
5
+
6
+ # Cost Dashboard Command
7
+
8
+ You are being invoked via the `/specweave.costs [incrementId]` command.
9
+
10
+ ## Your Task
11
+
12
+ Display a comprehensive cost dashboard showing:
13
+ 1. Token usage breakdown
14
+ 2. Cost by model (Sonnet vs Haiku)
15
+ 3. Cost by agent
16
+ 4. Savings vs baseline (all-Sonnet)
17
+ 5. Recent sessions
18
+
19
+ **Optional**: Export data to JSON/CSV format
20
+
21
+ ## Implementation Steps
22
+
23
+ ### 1. Parse Arguments
24
+
25
+ ```typescript
26
+ // Extract increment ID from command args
27
+ // If not provided, detect current increment from .specweave/increments/
28
+ // Look for increment with status 'in-progress' in metadata.json
29
+ ```
30
+
31
+ ### 2. Load Cost Data
32
+
33
+ ```typescript
34
+ import { CostTracker } from '../core/cost-tracker';
35
+ import { CostReporter } from '../utils/cost-reporter';
36
+ import fs from 'fs-extra';
37
+ import path from 'path';
38
+
39
+ // Initialize cost tracker
40
+ const costTracker = new CostTracker({
41
+ logPath: '.specweave/logs/costs.json',
42
+ autoSave: true,
43
+ });
44
+
45
+ // Load persisted cost data
46
+ await costTracker.loadFromDisk();
47
+
48
+ // Create reporter
49
+ const reporter = new CostReporter(costTracker);
50
+ ```
51
+
52
+ ### 3. Determine Increment ID
53
+
54
+ ```typescript
55
+ // If user provided increment ID
56
+ const userProvidedId = args[0]; // e.g., "0003"
57
+
58
+ // Otherwise, detect current increment
59
+ const currentIncrement = await detectCurrentIncrement();
60
+
61
+ const incrementId = userProvidedId || currentIncrement || 'all';
62
+ ```
63
+
64
+ ### 4. Generate Dashboard
65
+
66
+ ```typescript
67
+ // Generate ASCII dashboard
68
+ const dashboard = reporter.generateDashboard(
69
+ incrementId === 'all' ? undefined : incrementId
70
+ );
71
+
72
+ // Display to user
73
+ console.log(dashboard);
74
+ ```
75
+
76
+ ### 5. Offer Export Options
77
+
78
+ ```typescript
79
+ // Ask user if they want to export
80
+ const wantsExport = await askUser('Would you like to export cost data?', {
81
+ options: ['JSON', 'CSV', 'Both', 'No'],
82
+ });
83
+
84
+ if (wantsExport !== 'No') {
85
+ const outputDir = incrementId === 'all'
86
+ ? '.specweave/logs/reports'
87
+ : `.specweave/increments/${incrementId}/reports`;
88
+
89
+ await fs.ensureDir(outputDir);
90
+
91
+ if (wantsExport === 'JSON' || wantsExport === 'Both') {
92
+ const jsonPath = path.join(outputDir, 'cost-analysis.json');
93
+ await reporter.exportToJSON(incrementId, jsonPath);
94
+ console.log(`✅ Exported to ${jsonPath}`);
95
+ }
96
+
97
+ if (wantsExport === 'CSV' || wantsExport === 'Both') {
98
+ const csvPath = path.join(outputDir, 'cost-history.csv');
99
+ await reporter.exportToCSV(incrementId, csvPath);
100
+ console.log(`✅ Exported to ${csvPath}`);
101
+ }
102
+ }
103
+ ```
104
+
105
+ ## Helper Function: Detect Current Increment
106
+
107
+ ```typescript
108
+ async function detectCurrentIncrement(): Promise<string | null> {
109
+ const incrementsDir = '.specweave/increments';
110
+
111
+ if (!await fs.pathExists(incrementsDir)) {
112
+ return null;
113
+ }
114
+
115
+ const dirs = await fs.readdir(incrementsDir);
116
+
117
+ // Filter out _backlog and other special folders
118
+ const incrementDirs = dirs.filter(d => /^\d{4}-/.test(d));
119
+
120
+ // Check each for in-progress status
121
+ for (const dir of incrementDirs) {
122
+ const metadataPath = path.join(incrementsDir, dir, 'metadata.json');
123
+
124
+ if (await fs.pathExists(metadataPath)) {
125
+ const metadata = await fs.readJson(metadataPath);
126
+ if (metadata.status === 'in-progress') {
127
+ return dir.split('-')[0]; // Extract "0003" from "0003-intelligent-model-selection"
128
+ }
129
+ }
130
+ }
131
+
132
+ // If no in-progress, return most recent
133
+ return incrementDirs.length > 0
134
+ ? incrementDirs[incrementDirs.length - 1].split('-')[0]
135
+ : null;
136
+ }
137
+ ```
138
+
139
+ ## Output Examples
140
+
141
+ ### Increment-Specific Dashboard
142
+
143
+ ```
144
+ ═══════════════════════════════════════════════════════════════
145
+ Cost Report: Increment 0003
146
+ ═══════════════════════════════════════════════════════════════
147
+
148
+ SUMMARY
149
+ ───────────────────────────────────────────────────────────────
150
+ Total Cost: $ 0.1234
151
+ Total Savings: $ 0.3456
152
+ Savings %: 73.7%
153
+ Total Tokens: 125,432
154
+ Sessions: 15
155
+
156
+ COST BY MODEL
157
+ ───────────────────────────────────────────────────────────────
158
+ sonnet $ 0.0734 ( 59.4%)
159
+ haiku $ 0.0500 ( 40.6%)
160
+
161
+ COST BY AGENT
162
+ ───────────────────────────────────────────────────────────────
163
+ pm $ 0.0500 ( 40.5%)
164
+ architect $ 0.0300 ( 24.3%)
165
+ frontend $ 0.0234 ( 19.0%)
166
+ devops $ 0.0150 ( 12.2%)
167
+ qa-lead $ 0.0050 ( 4.0%)
168
+
169
+ RECENT SESSIONS
170
+ ───────────────────────────────────────────────────────────────
171
+ 2025-10-31 14:32:15
172
+ Agent: pm Model: sonnet
173
+ Cost: $ 0.0150 Savings: $ 0.0350
174
+
175
+ 2025-10-31 13:15:42
176
+ Agent: frontend Model: haiku
177
+ Cost: $ 0.0034 Savings: $ 0.0166
178
+
179
+ ═══════════════════════════════════════════════════════════════
180
+ ```
181
+
182
+ ### Overall Dashboard (All Increments)
183
+
184
+ ```
185
+ ═══════════════════════════════════════════════════════════════
186
+ SpecWeave Cost Summary - All Increments
187
+ ═══════════════════════════════════════════════════════════════
188
+
189
+ OVERALL SUMMARY
190
+ ───────────────────────────────────────────────────────────────
191
+ Total Cost: $ 1.2345
192
+ Total Savings: $ 3.4567
193
+ Savings %: 73.7%
194
+ Total Sessions: 42
195
+
196
+ AGENT STATS
197
+ ───────────────────────────────────────────────────────────────
198
+ Most Expensive: pm
199
+ Least Expensive: qa-lead
200
+
201
+ COST BY INCREMENT
202
+ ───────────────────────────────────────────────────────────────
203
+ 0001 $ 0.5000 (12 sessions)
204
+ 0002 $ 0.4111 (15 sessions)
205
+ 0003 $ 0.3234 (15 sessions)
206
+
207
+ ═══════════════════════════════════════════════════════════════
208
+
209
+ 💡 Tip: Use "/specweave.costs 0003" to see detailed report for increment 0003
210
+ ```
211
+
212
+ ## Error Handling
213
+
214
+ ### No Cost Data
215
+
216
+ ```
217
+ No cost data available for increment 0003.
218
+
219
+ This could mean:
220
+ - The increment hasn't been started yet
221
+ - Cost tracking is not enabled
222
+ - The cost log file is missing
223
+
224
+ Run /specweave.do to start executing tasks with cost tracking enabled.
225
+ ```
226
+
227
+ ### Invalid Increment ID
228
+
229
+ ```
230
+ Increment 0099 not found.
231
+
232
+ Available increments:
233
+ - 0001-core-framework
234
+ - 0002-core-enhancements
235
+ - 0003-intelligent-model-selection
236
+
237
+ Use /specweave.costs without arguments to see all increments.
238
+ ```
239
+
240
+ ## Important Notes
241
+
242
+ 1. **Cost Data Persistence**: Costs are persisted to `.specweave/logs/costs.json`
243
+ 2. **Baseline Calculation**: Savings are calculated vs an all-Sonnet baseline
244
+ 3. **Real-Time Updates**: Costs update after each agent invocation
245
+ 4. **Export Formats**: JSON for machine parsing, CSV for spreadsheet import
246
+ 5. **Privacy**: Cost data is local only, never sent to external services
247
+
248
+ ## Related Commands
249
+
250
+ - `/specweave.do` - Execute tasks with cost tracking
251
+ - `/specweave.progress` - View progress with cost summary
252
+ - `/specweave.validate` - Validate increment (includes cost checks)
253
+
254
+ ## Success Criteria
255
+
256
+ After running this command, the user should:
257
+ 1. ✅ See a clear cost breakdown
258
+ 2. ✅ Understand their savings vs baseline
259
+ 3. ✅ Identify most expensive agents/models
260
+ 4. ✅ Have option to export data
261
+ 5. ✅ Feel confident about cost optimization
@@ -117,7 +117,51 @@ You are helping the user create a new SpecWeave increment with automatic closure
117
117
  - "What's the short name?" (e.g., "user-authentication" for increment 003-user-authentication)
118
118
  - "Priority? (P1/P2/P3)" (default: P1)
119
119
 
120
- ### Step 4: Activate Increment Planning Workflow
120
+ ### Step 4: Detect Suggested Plugins (T-019 - Plugin Auto-Detection)
121
+
122
+ **🔌 NEW IN v0.4.0**: Auto-detect plugins based on increment description
123
+
124
+ Before planning, analyze the feature description for plugin keywords and suggest relevant plugins:
125
+
126
+ ```bash
127
+ # Example feature descriptions and their plugin suggestions:
128
+ "Deploy to Kubernetes" → kubernetes plugin
129
+ "Add Stripe payments" → payment-processing plugin
130
+ "Create React dashboard" → frontend-stack plugin
131
+ "Build FastAPI backend" → backend-stack plugin
132
+ "Sync with GitHub issues" → github plugin
133
+ "Integrate with Jira" → jira plugin
134
+ ```
135
+
136
+ **Detection Logic**:
137
+ 1. Extract keywords from feature description
138
+ 2. Match against plugin triggers (from manifest.json)
139
+ 3. Check if plugin already enabled
140
+ 4. Suggest new plugins only
141
+
142
+ **Output Format**:
143
+ ```
144
+ 💡 Plugin Detection
145
+
146
+ Analyzing feature: "Add authentication with NextJS and Stripe"
147
+
148
+ Suggested plugins:
149
+ ✅ frontend-stack (NextJS detected)
150
+ ✅ payment-processing (Stripe detected)
151
+
152
+ Would you like to enable these plugins? (Y/n)
153
+ ```
154
+
155
+ **If user confirms**:
156
+ - Enable plugins via PluginManager
157
+ - Plugins become available for increment planning
158
+ - Skills/agents from plugins can be used immediately
159
+
160
+ **If user declines**:
161
+ - Continue without plugins
162
+ - User can enable later: `specweave plugin enable <name>`
163
+
164
+ ### Step 5: Activate Increment Planning Workflow
121
165
 
122
166
  **🚨 CRITICAL - YOU MUST USE THE SKILL TOOL:**
123
167
 
@@ -149,7 +193,7 @@ The increment-planner skill will:
149
193
  - ✅ Quality gates enforced
150
194
  - ❌ Direct file writing bypasses entire workflow
151
195
 
152
- ### Step 5: Skill Tool Invocation (MANDATORY)
196
+ ### Step 6: Skill Tool Invocation (MANDATORY)
153
197
 
154
198
  **BEFORE PROCEEDING, USE THE SKILL TOOL:**
155
199
 
@@ -158,9 +202,9 @@ You must literally call the Skill tool like this:
158
202
  Skill(command: "increment-planner")
159
203
  ```
160
204
 
161
- Wait for the skill to complete. Do NOT continue to Step 6 until the increment-planner skill returns.
205
+ Wait for the skill to complete. Do NOT continue to Step 7 until the increment-planner skill returns.
162
206
 
163
- ### Step 6: Alternative Approach (ONLY IF SKILL FAILS)
207
+ ### Step 7: Alternative Approach (ONLY IF SKILL FAILS)
164
208
 
165
209
  **Only use this if Skill tool is unavailable or fails:**
166
210
 
@@ -0,0 +1,292 @@
1
+ # Machine Learning Pipeline - Multi-Agent MLOps Orchestration
2
+
3
+ Design and implement a complete ML pipeline for: $ARGUMENTS
4
+
5
+ ## Thinking
6
+
7
+ This workflow orchestrates multiple specialized agents to build a production-ready ML pipeline following modern MLOps best practices. The approach emphasizes:
8
+
9
+ - **Phase-based coordination**: Each phase builds upon previous outputs, with clear handoffs between agents
10
+ - **Modern tooling integration**: MLflow/W&B for experiments, Feast/Tecton for features, KServe/Seldon for serving
11
+ - **Production-first mindset**: Every component designed for scale, monitoring, and reliability
12
+ - **Reproducibility**: Version control for data, models, and infrastructure
13
+ - **Continuous improvement**: Automated retraining, A/B testing, and drift detection
14
+
15
+ The multi-agent approach ensures each aspect is handled by domain experts:
16
+ - Data engineers handle ingestion and quality
17
+ - Data scientists design features and experiments
18
+ - ML engineers implement training pipelines
19
+ - MLOps engineers handle production deployment
20
+ - Observability engineers ensure monitoring
21
+
22
+ ## Phase 1: Data & Requirements Analysis
23
+
24
+ <Task>
25
+ subagent_type: data-engineer
26
+ prompt: |
27
+ Analyze and design data pipeline for ML system with requirements: $ARGUMENTS
28
+
29
+ Deliverables:
30
+ 1. Data source audit and ingestion strategy:
31
+ - Source systems and connection patterns
32
+ - Schema validation using Pydantic/Great Expectations
33
+ - Data versioning with DVC or lakeFS
34
+ - Incremental loading and CDC strategies
35
+
36
+ 2. Data quality framework:
37
+ - Profiling and statistics generation
38
+ - Anomaly detection rules
39
+ - Data lineage tracking
40
+ - Quality gates and SLAs
41
+
42
+ 3. Storage architecture:
43
+ - Raw/processed/feature layers
44
+ - Partitioning strategy
45
+ - Retention policies
46
+ - Cost optimization
47
+
48
+ Provide implementation code for critical components and integration patterns.
49
+ </Task>
50
+
51
+ <Task>
52
+ subagent_type: data-scientist
53
+ prompt: |
54
+ Design feature engineering and model requirements for: $ARGUMENTS
55
+ Using data architecture from: {phase1.data-engineer.output}
56
+
57
+ Deliverables:
58
+ 1. Feature engineering pipeline:
59
+ - Transformation specifications
60
+ - Feature store schema (Feast/Tecton)
61
+ - Statistical validation rules
62
+ - Handling strategies for missing data/outliers
63
+
64
+ 2. Model requirements:
65
+ - Algorithm selection rationale
66
+ - Performance metrics and baselines
67
+ - Training data requirements
68
+ - Evaluation criteria and thresholds
69
+
70
+ 3. Experiment design:
71
+ - Hypothesis and success metrics
72
+ - A/B testing methodology
73
+ - Sample size calculations
74
+ - Bias detection approach
75
+
76
+ Include feature transformation code and statistical validation logic.
77
+ </Task>
78
+
79
+ ## Phase 2: Model Development & Training
80
+
81
+ <Task>
82
+ subagent_type: ml-engineer
83
+ prompt: |
84
+ Implement training pipeline based on requirements: {phase1.data-scientist.output}
85
+ Using data pipeline: {phase1.data-engineer.output}
86
+
87
+ Build comprehensive training system:
88
+ 1. Training pipeline implementation:
89
+ - Modular training code with clear interfaces
90
+ - Hyperparameter optimization (Optuna/Ray Tune)
91
+ - Distributed training support (Horovod/PyTorch DDP)
92
+ - Cross-validation and ensemble strategies
93
+
94
+ 2. Experiment tracking setup:
95
+ - MLflow/Weights & Biases integration
96
+ - Metric logging and visualization
97
+ - Artifact management (models, plots, data samples)
98
+ - Experiment comparison and analysis tools
99
+
100
+ 3. Model registry integration:
101
+ - Version control and tagging strategy
102
+ - Model metadata and lineage
103
+ - Promotion workflows (dev -> staging -> prod)
104
+ - Rollback procedures
105
+
106
+ Provide complete training code with configuration management.
107
+ </Task>
108
+
109
+ <Task>
110
+ subagent_type: python-pro
111
+ prompt: |
112
+ Optimize and productionize ML code from: {phase2.ml-engineer.output}
113
+
114
+ Focus areas:
115
+ 1. Code quality and structure:
116
+ - Refactor for production standards
117
+ - Add comprehensive error handling
118
+ - Implement proper logging with structured formats
119
+ - Create reusable components and utilities
120
+
121
+ 2. Performance optimization:
122
+ - Profile and optimize bottlenecks
123
+ - Implement caching strategies
124
+ - Optimize data loading and preprocessing
125
+ - Memory management for large-scale training
126
+
127
+ 3. Testing framework:
128
+ - Unit tests for data transformations
129
+ - Integration tests for pipeline components
130
+ - Model quality tests (invariance, directional)
131
+ - Performance regression tests
132
+
133
+ Deliver production-ready, maintainable code with full test coverage.
134
+ </Task>
135
+
136
+ ## Phase 3: Production Deployment & Serving
137
+
138
+ <Task>
139
+ subagent_type: mlops-engineer
140
+ prompt: |
141
+ Design production deployment for models from: {phase2.ml-engineer.output}
142
+ With optimized code from: {phase2.python-pro.output}
143
+
144
+ Implementation requirements:
145
+ 1. Model serving infrastructure:
146
+ - REST/gRPC APIs with FastAPI/TorchServe
147
+ - Batch prediction pipelines (Airflow/Kubeflow)
148
+ - Stream processing (Kafka/Kinesis integration)
149
+ - Model serving platforms (KServe/Seldon Core)
150
+
151
+ 2. Deployment strategies:
152
+ - Blue-green deployments for zero downtime
153
+ - Canary releases with traffic splitting
154
+ - Shadow deployments for validation
155
+ - A/B testing infrastructure
156
+
157
+ 3. CI/CD pipeline:
158
+ - GitHub Actions/GitLab CI workflows
159
+ - Automated testing gates
160
+ - Model validation before deployment
161
+ - ArgoCD for GitOps deployment
162
+
163
+ 4. Infrastructure as Code:
164
+ - Terraform modules for cloud resources
165
+ - Helm charts for Kubernetes deployments
166
+ - Docker multi-stage builds for optimization
167
+ - Secret management with Vault/Secrets Manager
168
+
169
+ Provide complete deployment configuration and automation scripts.
170
+ </Task>
171
+
172
+ <Task>
173
+ subagent_type: kubernetes-architect
174
+ prompt: |
175
+ Design Kubernetes infrastructure for ML workloads from: {phase3.mlops-engineer.output}
176
+
177
+ Kubernetes-specific requirements:
178
+ 1. Workload orchestration:
179
+ - Training job scheduling with Kubeflow
180
+ - GPU resource allocation and sharing
181
+ - Spot/preemptible instance integration
182
+ - Priority classes and resource quotas
183
+
184
+ 2. Serving infrastructure:
185
+ - HPA/VPA for autoscaling
186
+ - KEDA for event-driven scaling
187
+ - Istio service mesh for traffic management
188
+ - Model caching and warm-up strategies
189
+
190
+ 3. Storage and data access:
191
+ - PVC strategies for training data
192
+ - Model artifact storage with CSI drivers
193
+ - Distributed storage for feature stores
194
+ - Cache layers for inference optimization
195
+
196
+ Provide Kubernetes manifests and Helm charts for entire ML platform.
197
+ </Task>
198
+
199
+ ## Phase 4: Monitoring & Continuous Improvement
200
+
201
+ <Task>
202
+ subagent_type: observability-engineer
203
+ prompt: |
204
+ Implement comprehensive monitoring for ML system deployed in: {phase3.mlops-engineer.output}
205
+ Using Kubernetes infrastructure: {phase3.kubernetes-architect.output}
206
+
207
+ Monitoring framework:
208
+ 1. Model performance monitoring:
209
+ - Prediction accuracy tracking
210
+ - Latency and throughput metrics
211
+ - Feature importance shifts
212
+ - Business KPI correlation
213
+
214
+ 2. Data and model drift detection:
215
+ - Statistical drift detection (KS test, PSI)
216
+ - Concept drift monitoring
217
+ - Feature distribution tracking
218
+ - Automated drift alerts and reports
219
+
220
+ 3. System observability:
221
+ - Prometheus metrics for all components
222
+ - Grafana dashboards for visualization
223
+ - Distributed tracing with Jaeger/Zipkin
224
+ - Log aggregation with ELK/Loki
225
+
226
+ 4. Alerting and automation:
227
+ - PagerDuty/Opsgenie integration
228
+ - Automated retraining triggers
229
+ - Performance degradation workflows
230
+ - Incident response runbooks
231
+
232
+ 5. Cost tracking:
233
+ - Resource utilization metrics
234
+ - Cost allocation by model/experiment
235
+ - Optimization recommendations
236
+ - Budget alerts and controls
237
+
238
+ Deliver monitoring configuration, dashboards, and alert rules.
239
+ </Task>
240
+
241
+ ## Configuration Options
242
+
243
+ - **experiment_tracking**: mlflow | wandb | neptune | clearml
244
+ - **feature_store**: feast | tecton | databricks | custom
245
+ - **serving_platform**: kserve | seldon | torchserve | triton
246
+ - **orchestration**: kubeflow | airflow | prefect | dagster
247
+ - **cloud_provider**: aws | azure | gcp | multi-cloud
248
+ - **deployment_mode**: realtime | batch | streaming | hybrid
249
+ - **monitoring_stack**: prometheus | datadog | newrelic | custom
250
+
251
+ ## Success Criteria
252
+
253
+ 1. **Data Pipeline Success**:
254
+ - < 0.1% data quality issues in production
255
+ - Automated data validation passing 99.9% of time
256
+ - Complete data lineage tracking
257
+ - Sub-second feature serving latency
258
+
259
+ 2. **Model Performance**:
260
+ - Meeting or exceeding baseline metrics
261
+ - < 5% performance degradation before retraining
262
+ - Successful A/B tests with statistical significance
263
+ - No undetected model drift > 24 hours
264
+
265
+ 3. **Operational Excellence**:
266
+ - 99.9% uptime for model serving
267
+ - < 200ms p99 inference latency
268
+ - Automated rollback within 5 minutes
269
+ - Complete observability with < 1 minute alert time
270
+
271
+ 4. **Development Velocity**:
272
+ - < 1 hour from commit to production
273
+ - Parallel experiment execution
274
+ - Reproducible training runs
275
+ - Self-service model deployment
276
+
277
+ 5. **Cost Efficiency**:
278
+ - < 20% infrastructure waste
279
+ - Optimized resource allocation
280
+ - Automatic scaling based on load
281
+ - Spot instance utilization > 60%
282
+
283
+ ## Final Deliverables
284
+
285
+ Upon completion, the orchestrated pipeline will provide:
286
+ - End-to-end ML pipeline with full automation
287
+ - Comprehensive documentation and runbooks
288
+ - Production-ready infrastructure as code
289
+ - Complete monitoring and alerting system
290
+ - CI/CD pipelines for continuous improvement
291
+ - Cost optimization and scaling strategies
292
+ - Disaster recovery and rollback procedures