sophontalk-services 0.0.2 → 0.0.4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
|
@@ -1 +1,324 @@
|
|
|
1
|
-
"use strict";Object.defineProperty(exports,Symbol.toStringTag,{value:"Module"});const
|
|
1
|
+
"use strict";Object.defineProperty(exports,Symbol.toStringTag,{value:"Module"});const w=16e3,g=25,_=10,y=80,E=4,M=.97,R=1e-10,b=20,F=!0,L=!0,d=25,I=1e3/d,k=a=>{if(a===128)return 4;if(a===96)return 3;throw new Error(`Unsupported crop size: ${a}. Only nano (96) and tiny (128) are supported.`)},v=(a,n,e)=>{if(n<=1)return{nextIndex:0,nextDirection:1};let t=a+e,r=e;return t>=n?(t=n-2,r=-1):t<0&&(t=1,r=1),{nextIndex:t,nextDirection:r}};async function U(a={}){const{jsonUrl:n="/complete_dataset.json",zipUrl:e="/processed_images.zip"}=a,[t,r]=await Promise.all([fetch(n),fetch(e)]);if(!t.ok)throw new Error(`无法加载 ${n}`);if(!r.ok)throw new Error(`无法加载 ${e}`);const o=await t.json(),c=await r.arrayBuffer();return{dataset:o,zipBuffer:c}}const h=`import x from "fft.js";
|
|
2
|
+
import { create as O, ConverterType as H } from "@alexanderolsen/libsamplerate-js";
|
|
3
|
+
const y = 16e3, U = 25, D = 10, u = 80, S = 4, W = 0.97, L = 1e-10, b = 20, h = Math.round(U * y / 1e3), C = Math.round(D * y / 1e3), k = (e) => {
|
|
4
|
+
if (e <= 0) return 1;
|
|
5
|
+
let t = 1;
|
|
6
|
+
for (; t < e; ) t *= 2;
|
|
7
|
+
return t;
|
|
8
|
+
}, P = k(h), N = new x(P), v = new Float32Array(h), G = () => {
|
|
9
|
+
if (h <= 1) return;
|
|
10
|
+
const e = 2 * Math.PI / (h - 1);
|
|
11
|
+
for (let t = 0; t < h; t++)
|
|
12
|
+
v[t] = 0.5 - 0.5 * Math.cos(t * e);
|
|
13
|
+
};
|
|
14
|
+
G();
|
|
15
|
+
function Q(e, t, o, a = 20, s) {
|
|
16
|
+
s = s || o / 2;
|
|
17
|
+
const i = (n) => 700 * (Math.exp(n / 1127) - 1), r = (n) => 1127 * Math.log(1 + n / 700), l = r(a), A = r(s), w = new Float32Array(e + 2);
|
|
18
|
+
for (let n = 0; n < e + 2; n++)
|
|
19
|
+
w[n] = l + (A - l) * n / (e + 1);
|
|
20
|
+
const _ = w.map(i).map((n) => n * t / o), f = Math.floor(t / 2) + 1, m = [];
|
|
21
|
+
for (let n = 1; n <= e; n++) {
|
|
22
|
+
const c = _[n - 1], F = _[n], M = _[n + 1], I = Math.ceil(c), T = Math.floor(M), E = Math.max(0, I), p = Math.min(f - 1, T), B = p - E + 1;
|
|
23
|
+
if (B <= 0) {
|
|
24
|
+
m.push({ startBin: 0, values: new Float32Array(0) });
|
|
25
|
+
continue;
|
|
26
|
+
}
|
|
27
|
+
const R = new Float32Array(B);
|
|
28
|
+
for (let d = E; d <= p; d++) {
|
|
29
|
+
let g = 0;
|
|
30
|
+
d <= F ? g = (d - c) / (F - c) : g = (M - d) / (M - F), R[d - E] = g;
|
|
31
|
+
}
|
|
32
|
+
m.push({ startBin: E, values: R });
|
|
33
|
+
}
|
|
34
|
+
return m;
|
|
35
|
+
}
|
|
36
|
+
const q = Q(
|
|
37
|
+
u,
|
|
38
|
+
P,
|
|
39
|
+
y,
|
|
40
|
+
b
|
|
41
|
+
);
|
|
42
|
+
function K(e) {
|
|
43
|
+
for (let t = 0; t < e.length; t++)
|
|
44
|
+
e[t] *= v[t];
|
|
45
|
+
}
|
|
46
|
+
function Y(e, t) {
|
|
47
|
+
for (let o = e.length - 1; o > 0; o--)
|
|
48
|
+
e[o] -= t * e[o - 1];
|
|
49
|
+
e[0] -= t * e[0];
|
|
50
|
+
}
|
|
51
|
+
function V(e) {
|
|
52
|
+
const t = e.length;
|
|
53
|
+
if (t === 0) return;
|
|
54
|
+
let o = 0;
|
|
55
|
+
for (let s = 0; s < t; s++) o += e[s];
|
|
56
|
+
const a = o / t;
|
|
57
|
+
for (let s = 0; s < t; s++) e[s] -= a;
|
|
58
|
+
}
|
|
59
|
+
function Z(e, t) {
|
|
60
|
+
const o = e.length;
|
|
61
|
+
for (let a = 0; a < o; a++) {
|
|
62
|
+
const s = t[a * 2], i = t[a * 2 + 1];
|
|
63
|
+
e[a] = s * s + i * i;
|
|
64
|
+
}
|
|
65
|
+
}
|
|
66
|
+
function j(e) {
|
|
67
|
+
const t = e.length;
|
|
68
|
+
if (t < 2) return;
|
|
69
|
+
let o = 0;
|
|
70
|
+
for (let r = 0; r < t; r++) o += e[r];
|
|
71
|
+
const a = o / t;
|
|
72
|
+
let s = 0;
|
|
73
|
+
for (let r = 0; r < t; r++) {
|
|
74
|
+
const l = e[r] - a;
|
|
75
|
+
s += l * l;
|
|
76
|
+
}
|
|
77
|
+
const i = Math.sqrt(s / (t - 1));
|
|
78
|
+
if (i > 1e-8) {
|
|
79
|
+
const r = 1 / i;
|
|
80
|
+
for (let l = 0; l < t; l++)
|
|
81
|
+
e[l] = (e[l] - a) * r;
|
|
82
|
+
} else
|
|
83
|
+
for (let r = 0; r < t; r++)
|
|
84
|
+
e[r] -= a;
|
|
85
|
+
}
|
|
86
|
+
async function z(e) {
|
|
87
|
+
let t = e.leftChannel;
|
|
88
|
+
if (e.rightChannel) {
|
|
89
|
+
const f = e.rightChannel, m = new Float32Array(t.length);
|
|
90
|
+
for (let n = 0; n < t.length; n++)
|
|
91
|
+
m[n] = (t[n] + f[n]) * 0.5;
|
|
92
|
+
t = m;
|
|
93
|
+
}
|
|
94
|
+
if (e.sampleRate !== y) {
|
|
95
|
+
const f = await O(1, e.sampleRate, y, {
|
|
96
|
+
converterType: H.SRC_SINC_MEDIUM_QUALITY
|
|
97
|
+
});
|
|
98
|
+
t = f.simple(t), f.destroy();
|
|
99
|
+
}
|
|
100
|
+
const o = Math.floor((t.length - h) / C) + 1;
|
|
101
|
+
if (o <= 0)
|
|
102
|
+
throw new Error("特征提取失败:音频时长过短。");
|
|
103
|
+
const a = Math.ceil(o / S) * S, s = a * u, i = new Float32Array(s), r = new Float32Array(h), l = N.createComplexArray(), A = N.createComplexArray(), w = new Float32Array(Math.floor(P / 2) + 1);
|
|
104
|
+
for (let f = 0; f < o; f++) {
|
|
105
|
+
const m = f * C;
|
|
106
|
+
r.set(t.subarray(m, m + h)), V(r), Y(r, W), K(r), l.fill(0);
|
|
107
|
+
for (let c = 0; c < h; c++)
|
|
108
|
+
l[c * 2] = r[c];
|
|
109
|
+
N.transform(A, l), Z(w, A);
|
|
110
|
+
const n = f * u;
|
|
111
|
+
for (let c = 0; c < u; c++) {
|
|
112
|
+
const F = q[c];
|
|
113
|
+
let M = 0;
|
|
114
|
+
const I = F.values, T = F.startBin, E = I.length;
|
|
115
|
+
for (let p = 0; p < E; p++)
|
|
116
|
+
M += w[T + p] * I[p];
|
|
117
|
+
M = M < L ? L : M, i[n + c] = Math.log(M);
|
|
118
|
+
}
|
|
119
|
+
}
|
|
120
|
+
if (a > o) {
|
|
121
|
+
const f = (o - 1) * u, m = f + u, n = i.subarray(f, m);
|
|
122
|
+
for (let c = o; c < a; c++)
|
|
123
|
+
i.set(n, c * u);
|
|
124
|
+
}
|
|
125
|
+
j(i);
|
|
126
|
+
const _ = a / S;
|
|
127
|
+
return {
|
|
128
|
+
features: i,
|
|
129
|
+
dimensions: [_, S, u]
|
|
130
|
+
};
|
|
131
|
+
}
|
|
132
|
+
self.addEventListener(
|
|
133
|
+
"message",
|
|
134
|
+
async (e) => {
|
|
135
|
+
try {
|
|
136
|
+
const t = e.data, o = await z(t);
|
|
137
|
+
self.postMessage(
|
|
138
|
+
{ status: "success", payload: o },
|
|
139
|
+
{ transfer: [o.features.buffer] }
|
|
140
|
+
);
|
|
141
|
+
} catch (t) {
|
|
142
|
+
self.postMessage({ status: "error", error: t.message });
|
|
143
|
+
}
|
|
144
|
+
}
|
|
145
|
+
);
|
|
146
|
+
`,u=typeof self<"u"&&self.Blob&&new Blob(["URL.revokeObjectURL(import.meta.url);",h],{type:"text/javascript;charset=utf-8"});function C(a){let n;try{if(n=u&&(self.URL||self.webkitURL).createObjectURL(u),!n)throw"";const e=new Worker(n,{type:"module",name:a?.name});return e.addEventListener("error",()=>{(self.URL||self.webkitURL).revokeObjectURL(n)}),e}catch{return new Worker("data:text/javascript;charset=utf-8,"+encodeURIComponent(h),{type:"module",name:a?.name})}}class x{worker=new C;async process(n){const e=n.getChannelData(0),t=n.numberOfChannels>1?n.getChannelData(1):void 0,r={leftChannel:e,rightChannel:t,sampleRate:n.sampleRate},o=[e.buffer];return t&&o.push(t.buffer),new Promise((c,f)=>{const l=s=>{s.data?.status==="success"?(this.worker.removeEventListener("message",l),this.worker.removeEventListener("error",i),c(s.data.payload)):s.data?.status==="error"&&(this.worker.removeEventListener("message",l),this.worker.removeEventListener("error",i),f(new Error(s.data.error||"特征提取失败")))},i=s=>{this.worker.removeEventListener("message",l),this.worker.removeEventListener("error",i),f(s)};this.worker.addEventListener("message",l),this.worker.addEventListener("error",i),this.worker.postMessage(r,o)})}dispose(){this.worker.terminate()}}const p=`import { env as k, InferenceSession as $, Tensor as W } from "onnxruntime-web";
|
|
147
|
+
import q from "jszip";
|
|
148
|
+
const V = 80, G = 4, H = 25, j = 1e3 / H, J = (t) => {
|
|
149
|
+
if (t === 128) return 4;
|
|
150
|
+
if (t === 96) return 3;
|
|
151
|
+
throw new Error(\`Unsupported crop size: \${t}. Only nano (96) and tiny (128) are supported.\`);
|
|
152
|
+
}, Q = (t, e, n) => {
|
|
153
|
+
if (e <= 1) return { nextIndex: 0, nextDirection: 1 };
|
|
154
|
+
let a = t + n, s = n;
|
|
155
|
+
return a >= e ? (a = e - 2, s = -1) : a < 0 && (a = 1, s = 1), { nextIndex: a, nextDirection: s };
|
|
156
|
+
};
|
|
157
|
+
k.wasm.numThreads = 1;
|
|
158
|
+
const Z = () => typeof navigator < "u" && !!navigator.gpu, F = 32;
|
|
159
|
+
let _ = null, R = null, x = null, L = null;
|
|
160
|
+
const w = {
|
|
161
|
+
tensors: /* @__PURE__ */ new Map(),
|
|
162
|
+
faceImages: /* @__PURE__ */ new Map(),
|
|
163
|
+
fullImages: /* @__PURE__ */ new Map()
|
|
164
|
+
};
|
|
165
|
+
let S = 3, b = 96, O = 0, z = 0, C = null, A = null, y = null, E = null, g = null, I = null, D = null, M = null, P = !1, v = "", p = null;
|
|
166
|
+
const T = (t) => {
|
|
167
|
+
self.postMessage({ type: "error", payload: t });
|
|
168
|
+
}, K = (t) => {
|
|
169
|
+
const e = w.tensors.get(t);
|
|
170
|
+
if (!e) throw new Error(\`Cache miss: \${t}\`);
|
|
171
|
+
const n = b - 2 * S;
|
|
172
|
+
return new W("float32", e, [1, 6, n, n]);
|
|
173
|
+
}, X = (t) => {
|
|
174
|
+
const e = w.faceImages.get(t);
|
|
175
|
+
if (!e) throw new Error(\`Cache miss: \${t}\`);
|
|
176
|
+
return e;
|
|
177
|
+
}, Y = async (t) => {
|
|
178
|
+
const e = w.fullImages.get(t);
|
|
179
|
+
if (!e) throw new Error(\`Cache miss: \${t}\`);
|
|
180
|
+
return await createImageBitmap(e);
|
|
181
|
+
}, ee = (t) => {
|
|
182
|
+
const [e, n, a, s] = t.dims, u = t.data;
|
|
183
|
+
(!y || y.width !== s || y.height !== a) && (C.width = s, C.height = a, y = A.createImageData(s, a));
|
|
184
|
+
const d = a * s, l = new Uint32Array(y.data.buffer), o = d, i = d * 2, c = n === 3;
|
|
185
|
+
for (let r = 0; r < d; r++) {
|
|
186
|
+
let m = (c ? u[r + i] : u[r]) * 255, f = (c ? u[r + o] : u[r]) * 255, h = u[r] * 255;
|
|
187
|
+
m = m < 0 ? 0 : m > 255 ? 255 : m, f = f < 0 ? 0 : f > 255 ? 255 : f, h = h < 0 ? 0 : h > 255 ? 255 : h, l[r] = 255 << 24 | (h & 255) << 16 | (f & 255) << 8 | m & 255;
|
|
188
|
+
}
|
|
189
|
+
A.putImageData(y, 0, 0);
|
|
190
|
+
}, te = async (t, e, n) => {
|
|
191
|
+
ee(t);
|
|
192
|
+
const a = X(e.face_image);
|
|
193
|
+
g.globalCompositeOperation = "source-over", g.drawImage(a, 0, 0), g.drawImage(C, S, S), g.globalCompositeOperation = "destination-in", g.drawImage(L, 0, 0, b, b), g.globalCompositeOperation = "destination-over", g.drawImage(a, 0, 0), g.globalCompositeOperation = "source-over", D.drawImage(n, 0, 0);
|
|
194
|
+
const s = e.crop_info.ymax - e.crop_info.ymin;
|
|
195
|
+
return D.drawImage(
|
|
196
|
+
E,
|
|
197
|
+
e.crop_info.xmin,
|
|
198
|
+
e.crop_info.ymin,
|
|
199
|
+
e.crop_info.width,
|
|
200
|
+
s
|
|
201
|
+
), await createImageBitmap(I);
|
|
202
|
+
}, ae = (t, e, n) => {
|
|
203
|
+
const [a, s, u] = e, d = s * u, l = F * d;
|
|
204
|
+
(!M || M.length !== l) && (M = new Float32Array(l));
|
|
205
|
+
for (let o = 0; o < F; o++) {
|
|
206
|
+
const c = Math.min(
|
|
207
|
+
Math.max(n - F / 2 + o, 0),
|
|
208
|
+
a - 1
|
|
209
|
+
) * d, r = o * d;
|
|
210
|
+
M.set(
|
|
211
|
+
t.subarray(c, c + d),
|
|
212
|
+
r
|
|
213
|
+
);
|
|
214
|
+
}
|
|
215
|
+
return M;
|
|
216
|
+
}, ne = (t, e, n) => {
|
|
217
|
+
C || (C = new OffscreenCanvas(1, 1), A = C.getContext("2d", {
|
|
218
|
+
willReadFrequently: !0
|
|
219
|
+
})), (!E || E.width !== n) && (E = new OffscreenCanvas(n, n), g = E.getContext("2d", {
|
|
220
|
+
willReadFrequently: !0
|
|
221
|
+
})), (!I || I.width !== t || I.height !== e) && (I = new OffscreenCanvas(t, e), D = I.getContext("2d", {
|
|
222
|
+
willReadFrequently: !0
|
|
223
|
+
}));
|
|
224
|
+
}, se = async (t) => {
|
|
225
|
+
try {
|
|
226
|
+
if (t.wasmPaths && (k.wasm.wasmPaths = t.wasmPaths), !t.dataset) throw new Error("Missing dataset");
|
|
227
|
+
const e = t.dataset;
|
|
228
|
+
R = e, b = e.dataset_info.config.crop_size, S = J(b), O = e.dataset_info.source_image_dimensions?.width || 0, z = e.dataset_info.source_image_dimensions?.height || 0, ne(O, z, b), x = await q.loadAsync(t.zipBuffer), t.zipBuffer = null, L = t.blendingMask;
|
|
229
|
+
const n = e.images.map(async (l) => {
|
|
230
|
+
if (!w.tensors.has(l.tensor_file)) {
|
|
231
|
+
const o = x.file(l.tensor_file);
|
|
232
|
+
if (o) {
|
|
233
|
+
const i = await o.async("arraybuffer");
|
|
234
|
+
w.tensors.set(l.tensor_file, new Float32Array(i));
|
|
235
|
+
}
|
|
236
|
+
}
|
|
237
|
+
if (!w.faceImages.has(l.face_image)) {
|
|
238
|
+
const o = x.file(l.face_image);
|
|
239
|
+
if (o) {
|
|
240
|
+
const i = await o.async("blob"), c = await createImageBitmap(i);
|
|
241
|
+
w.faceImages.set(l.face_image, c);
|
|
242
|
+
}
|
|
243
|
+
}
|
|
244
|
+
if (!w.fullImages.has(l.full_image)) {
|
|
245
|
+
const o = x.file(l.full_image);
|
|
246
|
+
if (o) {
|
|
247
|
+
const i = await o.async("blob");
|
|
248
|
+
w.fullImages.set(l.full_image, i);
|
|
249
|
+
}
|
|
250
|
+
}
|
|
251
|
+
});
|
|
252
|
+
await Promise.all(n), x = null;
|
|
253
|
+
const a = [];
|
|
254
|
+
Z() && a.push("webgpu"), a.push("wasm");
|
|
255
|
+
const s = new URL(t.modelPath, self.location.href).toString(), u = new URL(s).pathname.split("/").pop() || "model.onnx", d = new URL(\`\${u}.data\`, s).toString();
|
|
256
|
+
_ = await $.create(s, {
|
|
257
|
+
executionProviders: a,
|
|
258
|
+
graphOptimizationLevel: "all",
|
|
259
|
+
enableMemPattern: !0,
|
|
260
|
+
enableCpuMemArena: !0,
|
|
261
|
+
externalData: [{ data: d, path: \`\${u}.data\` }]
|
|
262
|
+
}), self.postMessage({ type: "ready" });
|
|
263
|
+
} catch (e) {
|
|
264
|
+
T(e?.message || "Init Error");
|
|
265
|
+
}
|
|
266
|
+
}, oe = async (t) => {
|
|
267
|
+
if (!_ || !R) {
|
|
268
|
+
T("Not initialized");
|
|
269
|
+
return;
|
|
270
|
+
}
|
|
271
|
+
P = !1;
|
|
272
|
+
const e = t.audioDimensions[0];
|
|
273
|
+
self.postMessage({
|
|
274
|
+
type: "start",
|
|
275
|
+
payload: { totalFrames: e, frameInterval: j }
|
|
276
|
+
});
|
|
277
|
+
let n = 0, a = 1;
|
|
278
|
+
const s = {}, u = _.inputNames[0], d = _.inputNames[1], l = _.outputNames[0];
|
|
279
|
+
v = "", p && (p.close(), p = null);
|
|
280
|
+
for (let o = 0; o < e && !P; o++) {
|
|
281
|
+
let i = null, c = null, r = null, m = null;
|
|
282
|
+
try {
|
|
283
|
+
const f = R.images[n];
|
|
284
|
+
i = K(f.tensor_file), f.full_image !== v && (p && p.close(), p = await Y(f.full_image), v = f.full_image);
|
|
285
|
+
const h = ae(
|
|
286
|
+
t.audioFeatures,
|
|
287
|
+
t.audioDimensions,
|
|
288
|
+
o
|
|
289
|
+
);
|
|
290
|
+
c = new W("float32", h, [
|
|
291
|
+
1,
|
|
292
|
+
F,
|
|
293
|
+
G,
|
|
294
|
+
V
|
|
295
|
+
]), s[u] = i, s[d] = c, r = await _.run(s);
|
|
296
|
+
const N = r[l];
|
|
297
|
+
if (!N)
|
|
298
|
+
throw new Error("Missing inference output tensor");
|
|
299
|
+
m = N;
|
|
300
|
+
const B = await te(N, f, p);
|
|
301
|
+
self.postMessage(
|
|
302
|
+
{ type: "frame", payload: { frame: B, index: o } },
|
|
303
|
+
[B]
|
|
304
|
+
);
|
|
305
|
+
const U = Q(
|
|
306
|
+
n,
|
|
307
|
+
R.images.length,
|
|
308
|
+
a
|
|
309
|
+
);
|
|
310
|
+
n = U.nextIndex, a = U.nextDirection;
|
|
311
|
+
} catch (f) {
|
|
312
|
+
T(f?.message || "Run Error");
|
|
313
|
+
break;
|
|
314
|
+
} finally {
|
|
315
|
+
i && i.dispose(), c && c.dispose(), m && m.dispose(), i = null, c = null, m = null, r = null;
|
|
316
|
+
}
|
|
317
|
+
}
|
|
318
|
+
p && (p.close(), p = null), v = "", self.postMessage({ type: "done" });
|
|
319
|
+
};
|
|
320
|
+
self.onmessage = (t) => {
|
|
321
|
+
const e = t.data;
|
|
322
|
+
e.type === "init" ? se(e) : e.type === "run" ? oe(e) : e.type === "stop" && (P = !0);
|
|
323
|
+
};
|
|
324
|
+
`,m=typeof self<"u"&&self.Blob&&new Blob(["URL.revokeObjectURL(import.meta.url);",p],{type:"text/javascript;charset=utf-8"});function O(a){let n;try{if(n=m&&(self.URL||self.webkitURL).createObjectURL(m),!n)throw"";const e=new Worker(n,{type:"module",name:a?.name});return e.addEventListener("error",()=>{(self.URL||self.webkitURL).revokeObjectURL(n)}),e}catch{return new Worker("data:text/javascript;charset=utf-8,"+encodeURIComponent(p),{type:"module",name:a?.name})}}class A{worker;handlers={};constructor(n={}){this.handlers=n,this.worker=new O,this.worker.onmessage=this.handleMessage.bind(this)}handleMessage(n){const{type:e,payload:t}=n.data;switch(e){case"ready":this.handlers.onReady?.();break;case"start":this.handlers.onStart?.(t.totalFrames);break;case"frame":this.handlers.onFrame?.(t.frame,t.index);break;case"done":this.handlers.onDone?.();break;case"error":this.handlers.onError?.(t);break}}init(n){this.worker.postMessage({type:"init",modelPath:n.modelPath,dataset:n.dataset,zipBuffer:n.zipBuffer,blendingMask:n.blendingMask,wasmPaths:n.wasmPaths},[n.zipBuffer,n.blendingMask])}run(n){this.worker.postMessage({type:"run",audioFeatures:n.audioFeatures,audioDimensions:n.audioDimensions},[n.audioFeatures.buffer])}stop(){this.worker.postMessage({type:"stop"})}terminate(){this.worker.terminate()}}exports.DEFAULT_LOW_FREQ=b;exports.ENERGY_FLOOR=R;exports.FRAME_INTERVAL_MS=I;exports.FRAME_LENGTH_MS=g;exports.FRAME_SHIFT_MS=_;exports.FeatureExtractor=x;exports.InferenceEngine=A;exports.NUM_MEL_BINS=y;exports.NUM_SEQUENCE_FRAMES=E;exports.PREEMPH_COEFF=M;exports.REMOVE_DC_OFFSET=F;exports.ROUND_TO_POWER_OF_TWO=L;exports.SAMPLE_RATE=w;exports.TARGET_FPS=d;exports.calculatePingPongState=v;exports.getBorder=k;exports.loadDataset=U;
|
|
@@ -1,111 +1,460 @@
|
|
|
1
|
-
const
|
|
2
|
-
if (
|
|
3
|
-
if (
|
|
4
|
-
throw new Error(`Unsupported crop size: ${
|
|
5
|
-
},
|
|
6
|
-
if (
|
|
7
|
-
let
|
|
8
|
-
return
|
|
1
|
+
const g = 16e3, y = 25, _ = 10, M = 80, E = 4, b = 0.97, R = 1e-10, k = 20, I = !0, v = !0, L = 25, x = 40, F = (a) => {
|
|
2
|
+
if (a === 128) return 4;
|
|
3
|
+
if (a === 96) return 3;
|
|
4
|
+
throw new Error(`Unsupported crop size: ${a}. Only nano (96) and tiny (128) are supported.`);
|
|
5
|
+
}, C = (a, n, e) => {
|
|
6
|
+
if (n <= 1) return { nextIndex: 0, nextDirection: 1 };
|
|
7
|
+
let t = a + e, r = e;
|
|
8
|
+
return t >= n ? (t = n - 2, r = -1) : t < 0 && (t = 1, r = 1), { nextIndex: t, nextDirection: r };
|
|
9
9
|
};
|
|
10
|
-
async function
|
|
10
|
+
async function U(a = {}) {
|
|
11
11
|
const {
|
|
12
|
-
jsonUrl:
|
|
13
|
-
zipUrl:
|
|
14
|
-
} =
|
|
15
|
-
fetch(
|
|
16
|
-
fetch(
|
|
12
|
+
jsonUrl: n = "/complete_dataset.json",
|
|
13
|
+
zipUrl: e = "/processed_images.zip"
|
|
14
|
+
} = a, [t, r] = await Promise.all([
|
|
15
|
+
fetch(n),
|
|
16
|
+
fetch(e)
|
|
17
17
|
]);
|
|
18
|
+
if (!t.ok) throw new Error(`无法加载 ${n}`);
|
|
18
19
|
if (!r.ok) throw new Error(`无法加载 ${e}`);
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
return { dataset: o, zipBuffer: h };
|
|
20
|
+
const o = await t.json(), c = await r.arrayBuffer();
|
|
21
|
+
return { dataset: o, zipBuffer: c };
|
|
22
22
|
}
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
23
|
+
const h = `import x from "fft.js";
|
|
24
|
+
import { create as O, ConverterType as H } from "@alexanderolsen/libsamplerate-js";
|
|
25
|
+
const y = 16e3, U = 25, D = 10, u = 80, S = 4, W = 0.97, L = 1e-10, b = 20, h = Math.round(U * y / 1e3), C = Math.round(D * y / 1e3), k = (e) => {
|
|
26
|
+
if (e <= 0) return 1;
|
|
27
|
+
let t = 1;
|
|
28
|
+
for (; t < e; ) t *= 2;
|
|
29
|
+
return t;
|
|
30
|
+
}, P = k(h), N = new x(P), v = new Float32Array(h), G = () => {
|
|
31
|
+
if (h <= 1) return;
|
|
32
|
+
const e = 2 * Math.PI / (h - 1);
|
|
33
|
+
for (let t = 0; t < h; t++)
|
|
34
|
+
v[t] = 0.5 - 0.5 * Math.cos(t * e);
|
|
35
|
+
};
|
|
36
|
+
G();
|
|
37
|
+
function Q(e, t, o, a = 20, s) {
|
|
38
|
+
s = s || o / 2;
|
|
39
|
+
const i = (n) => 700 * (Math.exp(n / 1127) - 1), r = (n) => 1127 * Math.log(1 + n / 700), l = r(a), A = r(s), w = new Float32Array(e + 2);
|
|
40
|
+
for (let n = 0; n < e + 2; n++)
|
|
41
|
+
w[n] = l + (A - l) * n / (e + 1);
|
|
42
|
+
const _ = w.map(i).map((n) => n * t / o), f = Math.floor(t / 2) + 1, m = [];
|
|
43
|
+
for (let n = 1; n <= e; n++) {
|
|
44
|
+
const c = _[n - 1], F = _[n], M = _[n + 1], I = Math.ceil(c), T = Math.floor(M), E = Math.max(0, I), p = Math.min(f - 1, T), B = p - E + 1;
|
|
45
|
+
if (B <= 0) {
|
|
46
|
+
m.push({ startBin: 0, values: new Float32Array(0) });
|
|
47
|
+
continue;
|
|
48
|
+
}
|
|
49
|
+
const R = new Float32Array(B);
|
|
50
|
+
for (let d = E; d <= p; d++) {
|
|
51
|
+
let g = 0;
|
|
52
|
+
d <= F ? g = (d - c) / (F - c) : g = (M - d) / (M - F), R[d - E] = g;
|
|
29
53
|
}
|
|
30
|
-
|
|
54
|
+
m.push({ startBin: E, values: R });
|
|
55
|
+
}
|
|
56
|
+
return m;
|
|
31
57
|
}
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
58
|
+
const q = Q(
|
|
59
|
+
u,
|
|
60
|
+
P,
|
|
61
|
+
y,
|
|
62
|
+
b
|
|
63
|
+
);
|
|
64
|
+
function K(e) {
|
|
65
|
+
for (let t = 0; t < e.length; t++)
|
|
66
|
+
e[t] *= v[t];
|
|
67
|
+
}
|
|
68
|
+
function Y(e, t) {
|
|
69
|
+
for (let o = e.length - 1; o > 0; o--)
|
|
70
|
+
e[o] -= t * e[o - 1];
|
|
71
|
+
e[0] -= t * e[0];
|
|
72
|
+
}
|
|
73
|
+
function V(e) {
|
|
74
|
+
const t = e.length;
|
|
75
|
+
if (t === 0) return;
|
|
76
|
+
let o = 0;
|
|
77
|
+
for (let s = 0; s < t; s++) o += e[s];
|
|
78
|
+
const a = o / t;
|
|
79
|
+
for (let s = 0; s < t; s++) e[s] -= a;
|
|
80
|
+
}
|
|
81
|
+
function Z(e, t) {
|
|
82
|
+
const o = e.length;
|
|
83
|
+
for (let a = 0; a < o; a++) {
|
|
84
|
+
const s = t[a * 2], i = t[a * 2 + 1];
|
|
85
|
+
e[a] = s * s + i * i;
|
|
86
|
+
}
|
|
87
|
+
}
|
|
88
|
+
function j(e) {
|
|
89
|
+
const t = e.length;
|
|
90
|
+
if (t < 2) return;
|
|
91
|
+
let o = 0;
|
|
92
|
+
for (let r = 0; r < t; r++) o += e[r];
|
|
93
|
+
const a = o / t;
|
|
94
|
+
let s = 0;
|
|
95
|
+
for (let r = 0; r < t; r++) {
|
|
96
|
+
const l = e[r] - a;
|
|
97
|
+
s += l * l;
|
|
98
|
+
}
|
|
99
|
+
const i = Math.sqrt(s / (t - 1));
|
|
100
|
+
if (i > 1e-8) {
|
|
101
|
+
const r = 1 / i;
|
|
102
|
+
for (let l = 0; l < t; l++)
|
|
103
|
+
e[l] = (e[l] - a) * r;
|
|
104
|
+
} else
|
|
105
|
+
for (let r = 0; r < t; r++)
|
|
106
|
+
e[r] -= a;
|
|
107
|
+
}
|
|
108
|
+
async function z(e) {
|
|
109
|
+
let t = e.leftChannel;
|
|
110
|
+
if (e.rightChannel) {
|
|
111
|
+
const f = e.rightChannel, m = new Float32Array(t.length);
|
|
112
|
+
for (let n = 0; n < t.length; n++)
|
|
113
|
+
m[n] = (t[n] + f[n]) * 0.5;
|
|
114
|
+
t = m;
|
|
115
|
+
}
|
|
116
|
+
if (e.sampleRate !== y) {
|
|
117
|
+
const f = await O(1, e.sampleRate, y, {
|
|
118
|
+
converterType: H.SRC_SINC_MEDIUM_QUALITY
|
|
119
|
+
});
|
|
120
|
+
t = f.simple(t), f.destroy();
|
|
121
|
+
}
|
|
122
|
+
const o = Math.floor((t.length - h) / C) + 1;
|
|
123
|
+
if (o <= 0)
|
|
124
|
+
throw new Error("特征提取失败:音频时长过短。");
|
|
125
|
+
const a = Math.ceil(o / S) * S, s = a * u, i = new Float32Array(s), r = new Float32Array(h), l = N.createComplexArray(), A = N.createComplexArray(), w = new Float32Array(Math.floor(P / 2) + 1);
|
|
126
|
+
for (let f = 0; f < o; f++) {
|
|
127
|
+
const m = f * C;
|
|
128
|
+
r.set(t.subarray(m, m + h)), V(r), Y(r, W), K(r), l.fill(0);
|
|
129
|
+
for (let c = 0; c < h; c++)
|
|
130
|
+
l[c * 2] = r[c];
|
|
131
|
+
N.transform(A, l), Z(w, A);
|
|
132
|
+
const n = f * u;
|
|
133
|
+
for (let c = 0; c < u; c++) {
|
|
134
|
+
const F = q[c];
|
|
135
|
+
let M = 0;
|
|
136
|
+
const I = F.values, T = F.startBin, E = I.length;
|
|
137
|
+
for (let p = 0; p < E; p++)
|
|
138
|
+
M += w[T + p] * I[p];
|
|
139
|
+
M = M < L ? L : M, i[n + c] = Math.log(M);
|
|
140
|
+
}
|
|
141
|
+
}
|
|
142
|
+
if (a > o) {
|
|
143
|
+
const f = (o - 1) * u, m = f + u, n = i.subarray(f, m);
|
|
144
|
+
for (let c = o; c < a; c++)
|
|
145
|
+
i.set(n, c * u);
|
|
146
|
+
}
|
|
147
|
+
j(i);
|
|
148
|
+
const _ = a / S;
|
|
149
|
+
return {
|
|
150
|
+
features: i,
|
|
151
|
+
dimensions: [_, S, u]
|
|
152
|
+
};
|
|
153
|
+
}
|
|
154
|
+
self.addEventListener(
|
|
155
|
+
"message",
|
|
156
|
+
async (e) => {
|
|
157
|
+
try {
|
|
158
|
+
const t = e.data, o = await z(t);
|
|
159
|
+
self.postMessage(
|
|
160
|
+
{ status: "success", payload: o },
|
|
161
|
+
{ transfer: [o.features.buffer] }
|
|
162
|
+
);
|
|
163
|
+
} catch (t) {
|
|
164
|
+
self.postMessage({ status: "error", error: t.message });
|
|
165
|
+
}
|
|
166
|
+
}
|
|
167
|
+
);
|
|
168
|
+
`, u = typeof self < "u" && self.Blob && new Blob(["URL.revokeObjectURL(import.meta.url);", h], { type: "text/javascript;charset=utf-8" });
|
|
169
|
+
function p(a) {
|
|
170
|
+
let n;
|
|
171
|
+
try {
|
|
172
|
+
if (n = u && (self.URL || self.webkitURL).createObjectURL(u), !n) throw "";
|
|
173
|
+
const e = new Worker(n, {
|
|
174
|
+
type: "module",
|
|
175
|
+
name: a?.name
|
|
176
|
+
});
|
|
177
|
+
return e.addEventListener("error", () => {
|
|
178
|
+
(self.URL || self.webkitURL).revokeObjectURL(n);
|
|
179
|
+
}), e;
|
|
180
|
+
} catch {
|
|
181
|
+
return new Worker(
|
|
182
|
+
"data:text/javascript;charset=utf-8," + encodeURIComponent(h),
|
|
183
|
+
{
|
|
184
|
+
type: "module",
|
|
185
|
+
name: a?.name
|
|
186
|
+
}
|
|
187
|
+
);
|
|
188
|
+
}
|
|
189
|
+
}
|
|
190
|
+
class A {
|
|
191
|
+
worker = new p();
|
|
192
|
+
async process(n) {
|
|
193
|
+
const e = n.getChannelData(0), t = n.numberOfChannels > 1 ? n.getChannelData(1) : void 0, r = {
|
|
194
|
+
leftChannel: e,
|
|
195
|
+
rightChannel: t,
|
|
196
|
+
sampleRate: n.sampleRate
|
|
197
|
+
}, o = [e.buffer];
|
|
198
|
+
return t && o.push(t.buffer), new Promise((c, f) => {
|
|
199
|
+
const l = (s) => {
|
|
200
|
+
s.data?.status === "success" ? (this.worker.removeEventListener("message", l), this.worker.removeEventListener("error", i), c(s.data.payload)) : s.data?.status === "error" && (this.worker.removeEventListener("message", l), this.worker.removeEventListener("error", i), f(new Error(s.data.error || "特征提取失败")));
|
|
201
|
+
}, i = (s) => {
|
|
202
|
+
this.worker.removeEventListener("message", l), this.worker.removeEventListener("error", i), f(s);
|
|
45
203
|
};
|
|
46
|
-
this.worker.addEventListener("message",
|
|
204
|
+
this.worker.addEventListener("message", l), this.worker.addEventListener("error", i), this.worker.postMessage(r, o);
|
|
47
205
|
});
|
|
48
206
|
}
|
|
49
207
|
dispose() {
|
|
50
208
|
this.worker.terminate();
|
|
51
209
|
}
|
|
52
210
|
}
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
211
|
+
const d = `import { env as k, InferenceSession as $, Tensor as W } from "onnxruntime-web";
|
|
212
|
+
import q from "jszip";
|
|
213
|
+
const V = 80, G = 4, H = 25, j = 1e3 / H, J = (t) => {
|
|
214
|
+
if (t === 128) return 4;
|
|
215
|
+
if (t === 96) return 3;
|
|
216
|
+
throw new Error(\`Unsupported crop size: \${t}. Only nano (96) and tiny (128) are supported.\`);
|
|
217
|
+
}, Q = (t, e, n) => {
|
|
218
|
+
if (e <= 1) return { nextIndex: 0, nextDirection: 1 };
|
|
219
|
+
let a = t + n, s = n;
|
|
220
|
+
return a >= e ? (a = e - 2, s = -1) : a < 0 && (a = 1, s = 1), { nextIndex: a, nextDirection: s };
|
|
221
|
+
};
|
|
222
|
+
k.wasm.numThreads = 1;
|
|
223
|
+
const Z = () => typeof navigator < "u" && !!navigator.gpu, F = 32;
|
|
224
|
+
let _ = null, R = null, x = null, L = null;
|
|
225
|
+
const w = {
|
|
226
|
+
tensors: /* @__PURE__ */ new Map(),
|
|
227
|
+
faceImages: /* @__PURE__ */ new Map(),
|
|
228
|
+
fullImages: /* @__PURE__ */ new Map()
|
|
229
|
+
};
|
|
230
|
+
let S = 3, b = 96, O = 0, z = 0, C = null, A = null, y = null, E = null, g = null, I = null, D = null, M = null, P = !1, v = "", p = null;
|
|
231
|
+
const T = (t) => {
|
|
232
|
+
self.postMessage({ type: "error", payload: t });
|
|
233
|
+
}, K = (t) => {
|
|
234
|
+
const e = w.tensors.get(t);
|
|
235
|
+
if (!e) throw new Error(\`Cache miss: \${t}\`);
|
|
236
|
+
const n = b - 2 * S;
|
|
237
|
+
return new W("float32", e, [1, 6, n, n]);
|
|
238
|
+
}, X = (t) => {
|
|
239
|
+
const e = w.faceImages.get(t);
|
|
240
|
+
if (!e) throw new Error(\`Cache miss: \${t}\`);
|
|
241
|
+
return e;
|
|
242
|
+
}, Y = async (t) => {
|
|
243
|
+
const e = w.fullImages.get(t);
|
|
244
|
+
if (!e) throw new Error(\`Cache miss: \${t}\`);
|
|
245
|
+
return await createImageBitmap(e);
|
|
246
|
+
}, ee = (t) => {
|
|
247
|
+
const [e, n, a, s] = t.dims, u = t.data;
|
|
248
|
+
(!y || y.width !== s || y.height !== a) && (C.width = s, C.height = a, y = A.createImageData(s, a));
|
|
249
|
+
const d = a * s, l = new Uint32Array(y.data.buffer), o = d, i = d * 2, c = n === 3;
|
|
250
|
+
for (let r = 0; r < d; r++) {
|
|
251
|
+
let m = (c ? u[r + i] : u[r]) * 255, f = (c ? u[r + o] : u[r]) * 255, h = u[r] * 255;
|
|
252
|
+
m = m < 0 ? 0 : m > 255 ? 255 : m, f = f < 0 ? 0 : f > 255 ? 255 : f, h = h < 0 ? 0 : h > 255 ? 255 : h, l[r] = 255 << 24 | (h & 255) << 16 | (f & 255) << 8 | m & 255;
|
|
253
|
+
}
|
|
254
|
+
A.putImageData(y, 0, 0);
|
|
255
|
+
}, te = async (t, e, n) => {
|
|
256
|
+
ee(t);
|
|
257
|
+
const a = X(e.face_image);
|
|
258
|
+
g.globalCompositeOperation = "source-over", g.drawImage(a, 0, 0), g.drawImage(C, S, S), g.globalCompositeOperation = "destination-in", g.drawImage(L, 0, 0, b, b), g.globalCompositeOperation = "destination-over", g.drawImage(a, 0, 0), g.globalCompositeOperation = "source-over", D.drawImage(n, 0, 0);
|
|
259
|
+
const s = e.crop_info.ymax - e.crop_info.ymin;
|
|
260
|
+
return D.drawImage(
|
|
261
|
+
E,
|
|
262
|
+
e.crop_info.xmin,
|
|
263
|
+
e.crop_info.ymin,
|
|
264
|
+
e.crop_info.width,
|
|
265
|
+
s
|
|
266
|
+
), await createImageBitmap(I);
|
|
267
|
+
}, ae = (t, e, n) => {
|
|
268
|
+
const [a, s, u] = e, d = s * u, l = F * d;
|
|
269
|
+
(!M || M.length !== l) && (M = new Float32Array(l));
|
|
270
|
+
for (let o = 0; o < F; o++) {
|
|
271
|
+
const c = Math.min(
|
|
272
|
+
Math.max(n - F / 2 + o, 0),
|
|
273
|
+
a - 1
|
|
274
|
+
) * d, r = o * d;
|
|
275
|
+
M.set(
|
|
276
|
+
t.subarray(c, c + d),
|
|
277
|
+
r
|
|
278
|
+
);
|
|
279
|
+
}
|
|
280
|
+
return M;
|
|
281
|
+
}, ne = (t, e, n) => {
|
|
282
|
+
C || (C = new OffscreenCanvas(1, 1), A = C.getContext("2d", {
|
|
283
|
+
willReadFrequently: !0
|
|
284
|
+
})), (!E || E.width !== n) && (E = new OffscreenCanvas(n, n), g = E.getContext("2d", {
|
|
285
|
+
willReadFrequently: !0
|
|
286
|
+
})), (!I || I.width !== t || I.height !== e) && (I = new OffscreenCanvas(t, e), D = I.getContext("2d", {
|
|
287
|
+
willReadFrequently: !0
|
|
288
|
+
}));
|
|
289
|
+
}, se = async (t) => {
|
|
290
|
+
try {
|
|
291
|
+
if (t.wasmPaths && (k.wasm.wasmPaths = t.wasmPaths), !t.dataset) throw new Error("Missing dataset");
|
|
292
|
+
const e = t.dataset;
|
|
293
|
+
R = e, b = e.dataset_info.config.crop_size, S = J(b), O = e.dataset_info.source_image_dimensions?.width || 0, z = e.dataset_info.source_image_dimensions?.height || 0, ne(O, z, b), x = await q.loadAsync(t.zipBuffer), t.zipBuffer = null, L = t.blendingMask;
|
|
294
|
+
const n = e.images.map(async (l) => {
|
|
295
|
+
if (!w.tensors.has(l.tensor_file)) {
|
|
296
|
+
const o = x.file(l.tensor_file);
|
|
297
|
+
if (o) {
|
|
298
|
+
const i = await o.async("arraybuffer");
|
|
299
|
+
w.tensors.set(l.tensor_file, new Float32Array(i));
|
|
300
|
+
}
|
|
301
|
+
}
|
|
302
|
+
if (!w.faceImages.has(l.face_image)) {
|
|
303
|
+
const o = x.file(l.face_image);
|
|
304
|
+
if (o) {
|
|
305
|
+
const i = await o.async("blob"), c = await createImageBitmap(i);
|
|
306
|
+
w.faceImages.set(l.face_image, c);
|
|
307
|
+
}
|
|
308
|
+
}
|
|
309
|
+
if (!w.fullImages.has(l.full_image)) {
|
|
310
|
+
const o = x.file(l.full_image);
|
|
311
|
+
if (o) {
|
|
312
|
+
const i = await o.async("blob");
|
|
313
|
+
w.fullImages.set(l.full_image, i);
|
|
314
|
+
}
|
|
315
|
+
}
|
|
316
|
+
});
|
|
317
|
+
await Promise.all(n), x = null;
|
|
318
|
+
const a = [];
|
|
319
|
+
Z() && a.push("webgpu"), a.push("wasm");
|
|
320
|
+
const s = new URL(t.modelPath, self.location.href).toString(), u = new URL(s).pathname.split("/").pop() || "model.onnx", d = new URL(\`\${u}.data\`, s).toString();
|
|
321
|
+
_ = await $.create(s, {
|
|
322
|
+
executionProviders: a,
|
|
323
|
+
graphOptimizationLevel: "all",
|
|
324
|
+
enableMemPattern: !0,
|
|
325
|
+
enableCpuMemArena: !0,
|
|
326
|
+
externalData: [{ data: d, path: \`\${u}.data\` }]
|
|
327
|
+
}), self.postMessage({ type: "ready" });
|
|
328
|
+
} catch (e) {
|
|
329
|
+
T(e?.message || "Init Error");
|
|
330
|
+
}
|
|
331
|
+
}, oe = async (t) => {
|
|
332
|
+
if (!_ || !R) {
|
|
333
|
+
T("Not initialized");
|
|
334
|
+
return;
|
|
335
|
+
}
|
|
336
|
+
P = !1;
|
|
337
|
+
const e = t.audioDimensions[0];
|
|
338
|
+
self.postMessage({
|
|
339
|
+
type: "start",
|
|
340
|
+
payload: { totalFrames: e, frameInterval: j }
|
|
341
|
+
});
|
|
342
|
+
let n = 0, a = 1;
|
|
343
|
+
const s = {}, u = _.inputNames[0], d = _.inputNames[1], l = _.outputNames[0];
|
|
344
|
+
v = "", p && (p.close(), p = null);
|
|
345
|
+
for (let o = 0; o < e && !P; o++) {
|
|
346
|
+
let i = null, c = null, r = null, m = null;
|
|
347
|
+
try {
|
|
348
|
+
const f = R.images[n];
|
|
349
|
+
i = K(f.tensor_file), f.full_image !== v && (p && p.close(), p = await Y(f.full_image), v = f.full_image);
|
|
350
|
+
const h = ae(
|
|
351
|
+
t.audioFeatures,
|
|
352
|
+
t.audioDimensions,
|
|
353
|
+
o
|
|
354
|
+
);
|
|
355
|
+
c = new W("float32", h, [
|
|
356
|
+
1,
|
|
357
|
+
F,
|
|
358
|
+
G,
|
|
359
|
+
V
|
|
360
|
+
]), s[u] = i, s[d] = c, r = await _.run(s);
|
|
361
|
+
const N = r[l];
|
|
362
|
+
if (!N)
|
|
363
|
+
throw new Error("Missing inference output tensor");
|
|
364
|
+
m = N;
|
|
365
|
+
const B = await te(N, f, p);
|
|
366
|
+
self.postMessage(
|
|
367
|
+
{ type: "frame", payload: { frame: B, index: o } },
|
|
368
|
+
[B]
|
|
369
|
+
);
|
|
370
|
+
const U = Q(
|
|
371
|
+
n,
|
|
372
|
+
R.images.length,
|
|
373
|
+
a
|
|
374
|
+
);
|
|
375
|
+
n = U.nextIndex, a = U.nextDirection;
|
|
376
|
+
} catch (f) {
|
|
377
|
+
T(f?.message || "Run Error");
|
|
378
|
+
break;
|
|
379
|
+
} finally {
|
|
380
|
+
i && i.dispose(), c && c.dispose(), m && m.dispose(), i = null, c = null, m = null, r = null;
|
|
59
381
|
}
|
|
60
|
-
|
|
382
|
+
}
|
|
383
|
+
p && (p.close(), p = null), v = "", self.postMessage({ type: "done" });
|
|
384
|
+
};
|
|
385
|
+
self.onmessage = (t) => {
|
|
386
|
+
const e = t.data;
|
|
387
|
+
e.type === "init" ? se(e) : e.type === "run" ? oe(e) : e.type === "stop" && (P = !0);
|
|
388
|
+
};
|
|
389
|
+
`, m = typeof self < "u" && self.Blob && new Blob(["URL.revokeObjectURL(import.meta.url);", d], { type: "text/javascript;charset=utf-8" });
|
|
390
|
+
function w(a) {
|
|
391
|
+
let n;
|
|
392
|
+
try {
|
|
393
|
+
if (n = m && (self.URL || self.webkitURL).createObjectURL(m), !n) throw "";
|
|
394
|
+
const e = new Worker(n, {
|
|
395
|
+
type: "module",
|
|
396
|
+
name: a?.name
|
|
397
|
+
});
|
|
398
|
+
return e.addEventListener("error", () => {
|
|
399
|
+
(self.URL || self.webkitURL).revokeObjectURL(n);
|
|
400
|
+
}), e;
|
|
401
|
+
} catch {
|
|
402
|
+
return new Worker(
|
|
403
|
+
"data:text/javascript;charset=utf-8," + encodeURIComponent(d),
|
|
404
|
+
{
|
|
405
|
+
type: "module",
|
|
406
|
+
name: a?.name
|
|
407
|
+
}
|
|
408
|
+
);
|
|
409
|
+
}
|
|
61
410
|
}
|
|
62
|
-
class
|
|
411
|
+
class O {
|
|
63
412
|
worker;
|
|
64
413
|
handlers = {};
|
|
65
|
-
constructor(
|
|
66
|
-
this.handlers =
|
|
414
|
+
constructor(n = {}) {
|
|
415
|
+
this.handlers = n, this.worker = new w(), this.worker.onmessage = this.handleMessage.bind(this);
|
|
67
416
|
}
|
|
68
|
-
handleMessage(
|
|
69
|
-
const { type:
|
|
70
|
-
switch (
|
|
417
|
+
handleMessage(n) {
|
|
418
|
+
const { type: e, payload: t } = n.data;
|
|
419
|
+
switch (e) {
|
|
71
420
|
case "ready":
|
|
72
421
|
this.handlers.onReady?.();
|
|
73
422
|
break;
|
|
74
423
|
case "start":
|
|
75
|
-
this.handlers.onStart?.(
|
|
424
|
+
this.handlers.onStart?.(t.totalFrames);
|
|
76
425
|
break;
|
|
77
426
|
case "frame":
|
|
78
|
-
this.handlers.onFrame?.(
|
|
427
|
+
this.handlers.onFrame?.(t.frame, t.index);
|
|
79
428
|
break;
|
|
80
429
|
case "done":
|
|
81
430
|
this.handlers.onDone?.();
|
|
82
431
|
break;
|
|
83
432
|
case "error":
|
|
84
|
-
this.handlers.onError?.(
|
|
433
|
+
this.handlers.onError?.(t);
|
|
85
434
|
break;
|
|
86
435
|
}
|
|
87
436
|
}
|
|
88
|
-
init(
|
|
437
|
+
init(n) {
|
|
89
438
|
this.worker.postMessage(
|
|
90
439
|
{
|
|
91
440
|
type: "init",
|
|
92
|
-
modelPath:
|
|
93
|
-
dataset:
|
|
94
|
-
zipBuffer:
|
|
95
|
-
blendingMask:
|
|
96
|
-
wasmPaths:
|
|
441
|
+
modelPath: n.modelPath,
|
|
442
|
+
dataset: n.dataset,
|
|
443
|
+
zipBuffer: n.zipBuffer,
|
|
444
|
+
blendingMask: n.blendingMask,
|
|
445
|
+
wasmPaths: n.wasmPaths
|
|
97
446
|
},
|
|
98
|
-
[
|
|
447
|
+
[n.zipBuffer, n.blendingMask]
|
|
99
448
|
);
|
|
100
449
|
}
|
|
101
|
-
run(
|
|
450
|
+
run(n) {
|
|
102
451
|
this.worker.postMessage(
|
|
103
452
|
{
|
|
104
453
|
type: "run",
|
|
105
|
-
audioFeatures:
|
|
106
|
-
audioDimensions:
|
|
454
|
+
audioFeatures: n.audioFeatures,
|
|
455
|
+
audioDimensions: n.audioDimensions
|
|
107
456
|
},
|
|
108
|
-
[
|
|
457
|
+
[n.audioFeatures.buffer]
|
|
109
458
|
);
|
|
110
459
|
}
|
|
111
460
|
stop() {
|
|
@@ -116,21 +465,21 @@ class v {
|
|
|
116
465
|
}
|
|
117
466
|
}
|
|
118
467
|
export {
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
468
|
+
k as DEFAULT_LOW_FREQ,
|
|
469
|
+
R as ENERGY_FLOOR,
|
|
470
|
+
x as FRAME_INTERVAL_MS,
|
|
471
|
+
y as FRAME_LENGTH_MS,
|
|
472
|
+
_ as FRAME_SHIFT_MS,
|
|
473
|
+
A as FeatureExtractor,
|
|
474
|
+
O as InferenceEngine,
|
|
475
|
+
M as NUM_MEL_BINS,
|
|
476
|
+
E as NUM_SEQUENCE_FRAMES,
|
|
477
|
+
b as PREEMPH_COEFF,
|
|
478
|
+
I as REMOVE_DC_OFFSET,
|
|
479
|
+
v as ROUND_TO_POWER_OF_TWO,
|
|
480
|
+
g as SAMPLE_RATE,
|
|
481
|
+
L as TARGET_FPS,
|
|
482
|
+
C as calculatePingPongState,
|
|
483
|
+
F as getBorder,
|
|
484
|
+
U as loadDataset
|
|
136
485
|
};
|
package/package.json
CHANGED
|
@@ -1,42 +1,41 @@
|
|
|
1
|
-
{
|
|
2
|
-
"name": "sophontalk-services",
|
|
3
|
-
"version": "0.0.
|
|
4
|
-
"type": "module",
|
|
5
|
-
"scripts": {
|
|
6
|
-
"dev": "vite",
|
|
7
|
-
"build": "vue-tsc -b && vite build",
|
|
8
|
-
"build:lib": "vite build --config vite.lib.config.ts",
|
|
9
|
-
"preview": "vite preview"
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
"
|
|
13
|
-
"
|
|
14
|
-
"
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
"
|
|
21
|
-
"
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
"
|
|
27
|
-
"
|
|
28
|
-
"
|
|
29
|
-
"
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
"@
|
|
34
|
-
"@
|
|
35
|
-
"
|
|
36
|
-
"
|
|
37
|
-
"vite": "^
|
|
38
|
-
"vite-plugin-
|
|
39
|
-
"
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
}
|
|
1
|
+
{
|
|
2
|
+
"name": "sophontalk-services",
|
|
3
|
+
"version": "0.0.4",
|
|
4
|
+
"type": "module",
|
|
5
|
+
"scripts": {
|
|
6
|
+
"dev": "vite",
|
|
7
|
+
"build": "vue-tsc -b && vite build",
|
|
8
|
+
"build:lib": "vite build --config vite.lib.config.ts",
|
|
9
|
+
"preview": "vite preview"
|
|
10
|
+
},
|
|
11
|
+
"main": "./dist-lib/sophontalk-services.cjs",
|
|
12
|
+
"module": "./dist-lib/sophontalk-services.js",
|
|
13
|
+
"types": "./dist-lib/types/src/services/index.d.ts",
|
|
14
|
+
"files": [
|
|
15
|
+
"dist-lib"
|
|
16
|
+
],
|
|
17
|
+
"exports": {
|
|
18
|
+
".": {
|
|
19
|
+
"types": "./dist-lib/types/src/services/index.d.ts",
|
|
20
|
+
"import": "./dist-lib/sophontalk-services.js",
|
|
21
|
+
"require": "./dist-lib/sophontalk-services.cjs"
|
|
22
|
+
}
|
|
23
|
+
},
|
|
24
|
+
"dependencies": {
|
|
25
|
+
"@alexanderolsen/libsamplerate-js": "^2.1.2",
|
|
26
|
+
"fft.js": "^4.0.4",
|
|
27
|
+
"jszip": "^3.10.1",
|
|
28
|
+
"onnxruntime-web": "^1.22.0",
|
|
29
|
+
"vue": "^3.5.17"
|
|
30
|
+
},
|
|
31
|
+
"devDependencies": {
|
|
32
|
+
"@rollup/plugin-replace": "^6.0.3",
|
|
33
|
+
"@vitejs/plugin-vue": "^6.0.0",
|
|
34
|
+
"@vue/tsconfig": "^0.7.0",
|
|
35
|
+
"typescript": "~5.8.3",
|
|
36
|
+
"vite": "^7.0.2",
|
|
37
|
+
"vite-plugin-dts": "^4.5.4",
|
|
38
|
+
"vite-plugin-static-copy": "^3.1.0",
|
|
39
|
+
"vue-tsc": "^3.0.1"
|
|
40
|
+
}
|
|
41
|
+
}
|
|
@@ -1,145 +0,0 @@
|
|
|
1
|
-
import x from "fft.js";
|
|
2
|
-
import { create as O, ConverterType as H } from "@alexanderolsen/libsamplerate-js";
|
|
3
|
-
const y = 16e3, U = 25, D = 10, u = 80, S = 4, W = 0.97, L = 1e-10, b = 20, h = Math.round(U * y / 1e3), C = Math.round(D * y / 1e3), k = (e) => {
|
|
4
|
-
if (e <= 0) return 1;
|
|
5
|
-
let t = 1;
|
|
6
|
-
for (; t < e; ) t *= 2;
|
|
7
|
-
return t;
|
|
8
|
-
}, P = k(h), N = new x(P), v = new Float32Array(h), G = () => {
|
|
9
|
-
if (h <= 1) return;
|
|
10
|
-
const e = 2 * Math.PI / (h - 1);
|
|
11
|
-
for (let t = 0; t < h; t++)
|
|
12
|
-
v[t] = 0.5 - 0.5 * Math.cos(t * e);
|
|
13
|
-
};
|
|
14
|
-
G();
|
|
15
|
-
function Q(e, t, o, a = 20, s) {
|
|
16
|
-
s = s || o / 2;
|
|
17
|
-
const i = (n) => 700 * (Math.exp(n / 1127) - 1), r = (n) => 1127 * Math.log(1 + n / 700), l = r(a), A = r(s), w = new Float32Array(e + 2);
|
|
18
|
-
for (let n = 0; n < e + 2; n++)
|
|
19
|
-
w[n] = l + (A - l) * n / (e + 1);
|
|
20
|
-
const _ = w.map(i).map((n) => n * t / o), f = Math.floor(t / 2) + 1, m = [];
|
|
21
|
-
for (let n = 1; n <= e; n++) {
|
|
22
|
-
const c = _[n - 1], F = _[n], M = _[n + 1], I = Math.ceil(c), T = Math.floor(M), E = Math.max(0, I), p = Math.min(f - 1, T), B = p - E + 1;
|
|
23
|
-
if (B <= 0) {
|
|
24
|
-
m.push({ startBin: 0, values: new Float32Array(0) });
|
|
25
|
-
continue;
|
|
26
|
-
}
|
|
27
|
-
const R = new Float32Array(B);
|
|
28
|
-
for (let d = E; d <= p; d++) {
|
|
29
|
-
let g = 0;
|
|
30
|
-
d <= F ? g = (d - c) / (F - c) : g = (M - d) / (M - F), R[d - E] = g;
|
|
31
|
-
}
|
|
32
|
-
m.push({ startBin: E, values: R });
|
|
33
|
-
}
|
|
34
|
-
return m;
|
|
35
|
-
}
|
|
36
|
-
const q = Q(
|
|
37
|
-
u,
|
|
38
|
-
P,
|
|
39
|
-
y,
|
|
40
|
-
b
|
|
41
|
-
);
|
|
42
|
-
function K(e) {
|
|
43
|
-
for (let t = 0; t < e.length; t++)
|
|
44
|
-
e[t] *= v[t];
|
|
45
|
-
}
|
|
46
|
-
function Y(e, t) {
|
|
47
|
-
for (let o = e.length - 1; o > 0; o--)
|
|
48
|
-
e[o] -= t * e[o - 1];
|
|
49
|
-
e[0] -= t * e[0];
|
|
50
|
-
}
|
|
51
|
-
function V(e) {
|
|
52
|
-
const t = e.length;
|
|
53
|
-
if (t === 0) return;
|
|
54
|
-
let o = 0;
|
|
55
|
-
for (let s = 0; s < t; s++) o += e[s];
|
|
56
|
-
const a = o / t;
|
|
57
|
-
for (let s = 0; s < t; s++) e[s] -= a;
|
|
58
|
-
}
|
|
59
|
-
function Z(e, t) {
|
|
60
|
-
const o = e.length;
|
|
61
|
-
for (let a = 0; a < o; a++) {
|
|
62
|
-
const s = t[a * 2], i = t[a * 2 + 1];
|
|
63
|
-
e[a] = s * s + i * i;
|
|
64
|
-
}
|
|
65
|
-
}
|
|
66
|
-
function j(e) {
|
|
67
|
-
const t = e.length;
|
|
68
|
-
if (t < 2) return;
|
|
69
|
-
let o = 0;
|
|
70
|
-
for (let r = 0; r < t; r++) o += e[r];
|
|
71
|
-
const a = o / t;
|
|
72
|
-
let s = 0;
|
|
73
|
-
for (let r = 0; r < t; r++) {
|
|
74
|
-
const l = e[r] - a;
|
|
75
|
-
s += l * l;
|
|
76
|
-
}
|
|
77
|
-
const i = Math.sqrt(s / (t - 1));
|
|
78
|
-
if (i > 1e-8) {
|
|
79
|
-
const r = 1 / i;
|
|
80
|
-
for (let l = 0; l < t; l++)
|
|
81
|
-
e[l] = (e[l] - a) * r;
|
|
82
|
-
} else
|
|
83
|
-
for (let r = 0; r < t; r++)
|
|
84
|
-
e[r] -= a;
|
|
85
|
-
}
|
|
86
|
-
async function z(e) {
|
|
87
|
-
let t = e.leftChannel;
|
|
88
|
-
if (e.rightChannel) {
|
|
89
|
-
const f = e.rightChannel, m = new Float32Array(t.length);
|
|
90
|
-
for (let n = 0; n < t.length; n++)
|
|
91
|
-
m[n] = (t[n] + f[n]) * 0.5;
|
|
92
|
-
t = m;
|
|
93
|
-
}
|
|
94
|
-
if (e.sampleRate !== y) {
|
|
95
|
-
const f = await O(1, e.sampleRate, y, {
|
|
96
|
-
converterType: H.SRC_SINC_MEDIUM_QUALITY
|
|
97
|
-
});
|
|
98
|
-
t = f.simple(t), f.destroy();
|
|
99
|
-
}
|
|
100
|
-
const o = Math.floor((t.length - h) / C) + 1;
|
|
101
|
-
if (o <= 0)
|
|
102
|
-
throw new Error("特征提取失败:音频时长过短。");
|
|
103
|
-
const a = Math.ceil(o / S) * S, s = a * u, i = new Float32Array(s), r = new Float32Array(h), l = N.createComplexArray(), A = N.createComplexArray(), w = new Float32Array(Math.floor(P / 2) + 1);
|
|
104
|
-
for (let f = 0; f < o; f++) {
|
|
105
|
-
const m = f * C;
|
|
106
|
-
r.set(t.subarray(m, m + h)), V(r), Y(r, W), K(r), l.fill(0);
|
|
107
|
-
for (let c = 0; c < h; c++)
|
|
108
|
-
l[c * 2] = r[c];
|
|
109
|
-
N.transform(A, l), Z(w, A);
|
|
110
|
-
const n = f * u;
|
|
111
|
-
for (let c = 0; c < u; c++) {
|
|
112
|
-
const F = q[c];
|
|
113
|
-
let M = 0;
|
|
114
|
-
const I = F.values, T = F.startBin, E = I.length;
|
|
115
|
-
for (let p = 0; p < E; p++)
|
|
116
|
-
M += w[T + p] * I[p];
|
|
117
|
-
M = M < L ? L : M, i[n + c] = Math.log(M);
|
|
118
|
-
}
|
|
119
|
-
}
|
|
120
|
-
if (a > o) {
|
|
121
|
-
const f = (o - 1) * u, m = f + u, n = i.subarray(f, m);
|
|
122
|
-
for (let c = o; c < a; c++)
|
|
123
|
-
i.set(n, c * u);
|
|
124
|
-
}
|
|
125
|
-
j(i);
|
|
126
|
-
const _ = a / S;
|
|
127
|
-
return {
|
|
128
|
-
features: i,
|
|
129
|
-
dimensions: [_, S, u]
|
|
130
|
-
};
|
|
131
|
-
}
|
|
132
|
-
self.addEventListener(
|
|
133
|
-
"message",
|
|
134
|
-
async (e) => {
|
|
135
|
-
try {
|
|
136
|
-
const t = e.data, o = await z(t);
|
|
137
|
-
self.postMessage(
|
|
138
|
-
{ status: "success", payload: o },
|
|
139
|
-
{ transfer: [o.features.buffer] }
|
|
140
|
-
);
|
|
141
|
-
} catch (t) {
|
|
142
|
-
self.postMessage({ status: "error", error: t.message });
|
|
143
|
-
}
|
|
144
|
-
}
|
|
145
|
-
);
|
|
@@ -1,175 +0,0 @@
|
|
|
1
|
-
import { env as B, InferenceSession as V, Tensor as U } from "onnxruntime-web";
|
|
2
|
-
import $ from "jszip";
|
|
3
|
-
const G = 80, L = 4, H = 25, j = 1e3 / H, J = (t) => {
|
|
4
|
-
if (t === 128) return 4;
|
|
5
|
-
if (t === 96) return 3;
|
|
6
|
-
throw new Error(`Unsupported crop size: ${t}. Only nano (96) and tiny (128) are supported.`);
|
|
7
|
-
}, Q = (t, e, a) => {
|
|
8
|
-
if (e <= 1) return { nextIndex: 0, nextDirection: 1 };
|
|
9
|
-
let s = t + a, o = a;
|
|
10
|
-
return s >= e ? (s = e - 2, o = -1) : s < 0 && (s = 1, o = 1), { nextIndex: s, nextDirection: o };
|
|
11
|
-
};
|
|
12
|
-
B.wasm.numThreads = 1;
|
|
13
|
-
const Z = () => typeof navigator < "u" && !!navigator.gpu, F = 32;
|
|
14
|
-
let _ = null, R = null, M = null, q = null;
|
|
15
|
-
const w = {
|
|
16
|
-
tensors: /* @__PURE__ */ new Map(),
|
|
17
|
-
faceImages: /* @__PURE__ */ new Map(),
|
|
18
|
-
fullImages: /* @__PURE__ */ new Map()
|
|
19
|
-
};
|
|
20
|
-
let P = 3, b = 96, k = 0, W = 0, C = null, N = null, y = null, E = null, g = null, I = null, S = null, x = null, T = !1, v = "", p = null;
|
|
21
|
-
const D = (t) => {
|
|
22
|
-
self.postMessage({ type: "error", payload: t });
|
|
23
|
-
}, K = (t) => {
|
|
24
|
-
const e = w.tensors.get(t);
|
|
25
|
-
if (!e) throw new Error(`Cache miss: ${t}`);
|
|
26
|
-
const a = b - 2 * P;
|
|
27
|
-
return new U("float32", e, [1, 6, a, a]);
|
|
28
|
-
}, X = (t) => {
|
|
29
|
-
const e = w.faceImages.get(t);
|
|
30
|
-
if (!e) throw new Error(`Cache miss: ${t}`);
|
|
31
|
-
return e;
|
|
32
|
-
}, Y = async (t) => {
|
|
33
|
-
const e = w.fullImages.get(t);
|
|
34
|
-
if (!e) throw new Error(`Cache miss: ${t}`);
|
|
35
|
-
return await createImageBitmap(e);
|
|
36
|
-
}, ee = (t) => {
|
|
37
|
-
const [e, a, s, o] = t.dims, c = t.data;
|
|
38
|
-
(!y || y.width !== o || y.height !== s) && (C.width = o, C.height = s, y = N.createImageData(o, s));
|
|
39
|
-
const n = s * o, l = new Uint32Array(y.data.buffer), i = n, d = n * 2, u = a === 3;
|
|
40
|
-
for (let r = 0; r < n; r++) {
|
|
41
|
-
let m = (u ? c[r + d] : c[r]) * 255, f = (u ? c[r + i] : c[r]) * 255, h = c[r] * 255;
|
|
42
|
-
m = m < 0 ? 0 : m > 255 ? 255 : m, f = f < 0 ? 0 : f > 255 ? 255 : f, h = h < 0 ? 0 : h > 255 ? 255 : h, l[r] = 255 << 24 | (h & 255) << 16 | (f & 255) << 8 | m & 255;
|
|
43
|
-
}
|
|
44
|
-
N.putImageData(y, 0, 0);
|
|
45
|
-
}, te = async (t, e, a) => {
|
|
46
|
-
ee(t);
|
|
47
|
-
const s = X(e.face_image);
|
|
48
|
-
g.globalCompositeOperation = "source-over", g.drawImage(s, 0, 0), g.drawImage(C, P, P), g.globalCompositeOperation = "destination-in", g.drawImage(q, 0, 0, b, b), g.globalCompositeOperation = "destination-over", g.drawImage(s, 0, 0), g.globalCompositeOperation = "source-over", S.drawImage(a, 0, 0);
|
|
49
|
-
const o = e.crop_info.ymax - e.crop_info.ymin;
|
|
50
|
-
return S.drawImage(
|
|
51
|
-
E,
|
|
52
|
-
e.crop_info.xmin,
|
|
53
|
-
e.crop_info.ymin,
|
|
54
|
-
e.crop_info.width,
|
|
55
|
-
o
|
|
56
|
-
), await createImageBitmap(I);
|
|
57
|
-
}, ae = (t, e, a) => {
|
|
58
|
-
const [s, o, c] = e, n = o * c, l = F * n;
|
|
59
|
-
(!x || x.length !== l) && (x = new Float32Array(l));
|
|
60
|
-
for (let i = 0; i < F; i++) {
|
|
61
|
-
const u = Math.min(
|
|
62
|
-
Math.max(a - F / 2 + i, 0),
|
|
63
|
-
s - 1
|
|
64
|
-
) * n, r = i * n;
|
|
65
|
-
x.set(
|
|
66
|
-
t.subarray(u, u + n),
|
|
67
|
-
r
|
|
68
|
-
);
|
|
69
|
-
}
|
|
70
|
-
return x;
|
|
71
|
-
}, ne = (t, e, a) => {
|
|
72
|
-
C || (C = new OffscreenCanvas(1, 1), N = C.getContext("2d", {
|
|
73
|
-
willReadFrequently: !0
|
|
74
|
-
})), (!E || E.width !== a) && (E = new OffscreenCanvas(a, a), g = E.getContext("2d", {
|
|
75
|
-
willReadFrequently: !0
|
|
76
|
-
})), (!I || I.width !== t || I.height !== e) && (I = new OffscreenCanvas(t, e), S = I.getContext("2d", {
|
|
77
|
-
willReadFrequently: !0
|
|
78
|
-
}));
|
|
79
|
-
}, se = async (t) => {
|
|
80
|
-
try {
|
|
81
|
-
if (t.wasmPaths ? B.wasm.wasmPaths = t.wasmPaths : B.wasm.wasmPaths = "/", !t.dataset) throw new Error("Missing dataset");
|
|
82
|
-
const e = t.dataset;
|
|
83
|
-
R = e, b = e.dataset_info.config.crop_size, P = J(b), k = e.dataset_info.source_image_dimensions?.width || 0, W = e.dataset_info.source_image_dimensions?.height || 0, ne(k, W, b), M = await $.loadAsync(t.zipBuffer), t.zipBuffer = null, q = t.blendingMask;
|
|
84
|
-
const a = e.images.map(async (n) => {
|
|
85
|
-
if (!w.tensors.has(n.tensor_file)) {
|
|
86
|
-
const l = M.file(n.tensor_file);
|
|
87
|
-
if (l) {
|
|
88
|
-
const i = await l.async("arraybuffer");
|
|
89
|
-
w.tensors.set(n.tensor_file, new Float32Array(i));
|
|
90
|
-
}
|
|
91
|
-
}
|
|
92
|
-
if (!w.faceImages.has(n.face_image)) {
|
|
93
|
-
const l = M.file(n.face_image);
|
|
94
|
-
if (l) {
|
|
95
|
-
const i = await l.async("blob"), d = await createImageBitmap(i);
|
|
96
|
-
w.faceImages.set(n.face_image, d);
|
|
97
|
-
}
|
|
98
|
-
}
|
|
99
|
-
if (!w.fullImages.has(n.full_image)) {
|
|
100
|
-
const l = M.file(n.full_image);
|
|
101
|
-
if (l) {
|
|
102
|
-
const i = await l.async("blob");
|
|
103
|
-
w.fullImages.set(n.full_image, i);
|
|
104
|
-
}
|
|
105
|
-
}
|
|
106
|
-
});
|
|
107
|
-
await Promise.all(a), M = null;
|
|
108
|
-
const o = await (await fetch(t.modelPath)).arrayBuffer(), c = [];
|
|
109
|
-
Z() && c.push("webgpu"), c.push("wasm"), _ = await V.create(o, {
|
|
110
|
-
executionProviders: c,
|
|
111
|
-
graphOptimizationLevel: "all",
|
|
112
|
-
enableMemPattern: !0,
|
|
113
|
-
enableCpuMemArena: !0
|
|
114
|
-
}), self.postMessage({ type: "ready" });
|
|
115
|
-
} catch (e) {
|
|
116
|
-
D(e?.message || "Init Error");
|
|
117
|
-
}
|
|
118
|
-
}, oe = async (t) => {
|
|
119
|
-
if (!_ || !R) {
|
|
120
|
-
D("Not initialized");
|
|
121
|
-
return;
|
|
122
|
-
}
|
|
123
|
-
T = !1;
|
|
124
|
-
const e = t.audioDimensions[0];
|
|
125
|
-
self.postMessage({
|
|
126
|
-
type: "start",
|
|
127
|
-
payload: { totalFrames: e, frameInterval: j }
|
|
128
|
-
});
|
|
129
|
-
let a = 0, s = 1;
|
|
130
|
-
const o = {}, c = _.inputNames[0], n = _.inputNames[1], l = _.outputNames[0];
|
|
131
|
-
v = "", p && (p.close(), p = null);
|
|
132
|
-
for (let i = 0; i < e && !T; i++) {
|
|
133
|
-
let d = null, u = null, r = null, m = null;
|
|
134
|
-
try {
|
|
135
|
-
const f = R.images[a];
|
|
136
|
-
d = K(f.tensor_file), f.full_image !== v && (p && p.close(), p = await Y(f.full_image), v = f.full_image);
|
|
137
|
-
const h = ae(
|
|
138
|
-
t.audioFeatures,
|
|
139
|
-
t.audioDimensions,
|
|
140
|
-
i
|
|
141
|
-
);
|
|
142
|
-
u = new U("float32", h, [
|
|
143
|
-
1,
|
|
144
|
-
F,
|
|
145
|
-
L,
|
|
146
|
-
G
|
|
147
|
-
]), o[c] = d, o[n] = u, r = await _.run(o);
|
|
148
|
-
const A = r[l];
|
|
149
|
-
if (!A)
|
|
150
|
-
throw new Error("Missing inference output tensor");
|
|
151
|
-
m = A;
|
|
152
|
-
const O = await te(A, f, p);
|
|
153
|
-
self.postMessage(
|
|
154
|
-
{ type: "frame", payload: { frame: O, index: i } },
|
|
155
|
-
[O]
|
|
156
|
-
);
|
|
157
|
-
const z = Q(
|
|
158
|
-
a,
|
|
159
|
-
R.images.length,
|
|
160
|
-
s
|
|
161
|
-
);
|
|
162
|
-
a = z.nextIndex, s = z.nextDirection;
|
|
163
|
-
} catch (f) {
|
|
164
|
-
D(f?.message || "Run Error");
|
|
165
|
-
break;
|
|
166
|
-
} finally {
|
|
167
|
-
d && d.dispose(), u && u.dispose(), m && m.dispose(), d = null, u = null, m = null, r = null;
|
|
168
|
-
}
|
|
169
|
-
}
|
|
170
|
-
p && (p.close(), p = null), v = "", self.postMessage({ type: "done" });
|
|
171
|
-
};
|
|
172
|
-
self.onmessage = (t) => {
|
|
173
|
-
const e = t.data;
|
|
174
|
-
e.type === "init" ? se(e) : e.type === "run" ? oe(e) : e.type === "stop" && (T = !0);
|
|
175
|
-
};
|