smart-coding-mcp 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md ADDED
@@ -0,0 +1,305 @@
1
+ # Smart Coding MCP
2
+
3
+ An extensible Model Context Protocol (MCP) server that provides intelligent semantic code search for AI assistants. Built with local AI models, inspired by Cursor's semantic search research.
4
+
5
+ ## What This Does
6
+
7
+ AI coding assistants work better when they can find relevant code quickly. Traditional keyword search falls short - if you ask "where do we handle authentication?" but your code uses "login" and "session", keyword search misses it.
8
+
9
+ This MCP server solves that by indexing your codebase with AI embeddings. Your AI assistant can search by meaning instead of exact keywords, finding relevant code even when the terminology differs.
10
+
11
+ ## Why Use This
12
+
13
+ **Better Code Understanding**
14
+
15
+ - Search finds code by concept, not just matching words
16
+ - Works with typos and variations in terminology
17
+ - Natural language queries like "where do we validate user input?"
18
+
19
+ **Performance**
20
+
21
+ - Pre-indexed embeddings are faster than scanning files at runtime
22
+ - Smart project detection skips dependencies automatically (node_modules, vendor, etc.)
23
+ - Incremental updates - only re-processes changed files
24
+
25
+ **Privacy**
26
+
27
+ - Everything runs locally on your machine
28
+ - Your code never leaves your system
29
+ - No API calls to external services
30
+
31
+ ## Installation
32
+
33
+ ### Prerequisites
34
+
35
+ - Node.js 18 or higher
36
+ - npm or yarn
37
+
38
+ ### Setup
39
+
40
+ 1. Install dependencies:
41
+
42
+ ```bash
43
+ npm install
44
+ ```
45
+
46
+ 2. Add to your MCP configuration file:
47
+
48
+ ```json
49
+ {
50
+ "mcpServers": {
51
+ "smart-coding-mcp": {
52
+ "command": "node",
53
+ "args": ["/path/to/smart-coding-mcp/index.js"],
54
+ "cwd": "/path/to/smart-coding-mcp"
55
+ }
56
+ }
57
+ }
58
+ ```
59
+
60
+ 3. Restart your AI assistant
61
+
62
+ The server will automatically index your codebase on first run.
63
+
64
+ ## Available Tools
65
+
66
+ **semantic_search** - Find code by meaning
67
+
68
+ ```
69
+ Query: "Where do we validate user input?"
70
+ Returns: Relevant validation code with file paths and line numbers
71
+ ```
72
+
73
+ **index_codebase** - Manually trigger reindexing
74
+
75
+ ```
76
+ Use after major refactoring or branch switches
77
+ ```
78
+
79
+ **clear_cache** - Reset the embeddings cache
80
+
81
+ ```
82
+ Useful when cache becomes corrupted or outdated
83
+ ```
84
+
85
+ ## How It Works
86
+
87
+ The server indexes your code in four steps:
88
+
89
+ 1. **Discovery**: Scans your project for source files
90
+ 2. **Chunking**: Breaks code into meaningful pieces (respecting function boundaries)
91
+ 3. **Embedding**: Converts each chunk to a vector using a local AI model
92
+ 4. **Storage**: Saves embeddings to `.smart-coding-cache/` for fast startup
93
+
94
+ When you search, your query is converted to the same vector format and compared against all code chunks using cosine similarity. The most relevant matches are returned.
95
+
96
+ ### Smart Project Detection
97
+
98
+ The server detects your project type by looking for marker files and automatically applies appropriate ignore patterns:
99
+
100
+ **JavaScript/Node** (package.json found)
101
+
102
+ - Ignores: node_modules, dist, build, .next, coverage
103
+
104
+ **Python** (requirements.txt or pyproject.toml)
105
+
106
+ - Ignores: **pycache**, venv, .pytest_cache, .tox
107
+
108
+ **Android** (build.gradle)
109
+
110
+ - Ignores: .gradle, build artifacts, generated code
111
+
112
+ **iOS** (Podfile)
113
+
114
+ - Ignores: Pods, DerivedData, xcuserdata
115
+
116
+ **And more**: Go, PHP, Rust, Ruby, .NET
117
+
118
+ This typically reduces indexed file count by 100x. A project with 50,000 files (including node_modules) indexes just 500 actual source files.
119
+
120
+ ## Configuration
121
+
122
+ The server works out of the box with sensible defaults. Create a `config.json` file to customize:
123
+
124
+ ```json
125
+ {
126
+ "searchDirectory": ".",
127
+ "fileExtensions": ["js", "ts", "py", "java", "go"],
128
+ "excludePatterns": ["**/my-custom-ignore/**"],
129
+ "smartIndexing": true,
130
+ "verbose": false,
131
+ "enableCache": true,
132
+ "cacheDirectory": "./.smart-coding-cache",
133
+ "watchFiles": true,
134
+ "chunkSize": 15,
135
+ "maxResults": 5
136
+ }
137
+ ```
138
+
139
+ **Key options:**
140
+
141
+ - `smartIndexing`: Enable automatic project type detection and smart ignore patterns (default: true)
142
+ - `verbose`: Show detailed indexing logs (default: false)
143
+ - `watchFiles`: Automatically reindex when files change (default: true)
144
+ - `enableCache`: Cache embeddings to disk (default: true)
145
+ - `chunkSize`: Lines of code per chunk - smaller = more precise, larger = more context (default: 15)
146
+
147
+ ## Examples
148
+
149
+ **Natural language search:**
150
+
151
+ Query: "How do we handle cache persistence?"
152
+
153
+ Result:
154
+
155
+ ```javascript
156
+ // lib/cache.js (Relevance: 38.2%)
157
+ async save() {
158
+ await fs.writeFile(cacheFile, JSON.stringify(this.vectorStore));
159
+ await fs.writeFile(hashFile, JSON.stringify(this.fileHashes));
160
+ }
161
+ ```
162
+
163
+ **Typo tolerance:**
164
+
165
+ Query: "embeding modle initializashun"
166
+
167
+ Still finds embedding model initialization code despite multiple typos.
168
+
169
+ **Conceptual search:**
170
+
171
+ Query: "error handling and exceptions"
172
+
173
+ Finds all try/catch blocks and error handling patterns.
174
+
175
+ ## Performance
176
+
177
+ Tested on a typical JavaScript project:
178
+
179
+ | Metric | Without Smart Indexing | With Smart Indexing |
180
+ | -------------- | ---------------------- | ------------------- |
181
+ | Files scanned | 50,000+ | 500 |
182
+ | Indexing time | 10+ min | 2-3 min |
183
+ | Memory usage | 2GB+ | ~200MB |
184
+ | Search latency | N/A | <100ms |
185
+
186
+ ## Supported File Types
187
+
188
+ Languages: JavaScript, TypeScript, Python, Java, Kotlin, Scala, C, C++, C#, Go, Rust, Ruby, PHP, Swift, Shell
189
+
190
+ Web: HTML, CSS, SCSS, Sass, XML, SVG
191
+
192
+ Config/Data: JSON, YAML, TOML, SQL
193
+
194
+ Total: 36 file extensions
195
+
196
+ ## Architecture
197
+
198
+ ```
199
+ smart-coding-mcp/
200
+ ├── index.js # MCP server entry point
201
+ ├── lib/
202
+ │ ├── config.js # Configuration + smart detection
203
+ │ ├── cache.js # Embeddings persistence
204
+ │ ├── utils.js # Smart chunking
205
+ │ ├── ignore-patterns.js # Language-specific patterns
206
+ │ └── project-detector.js # Project type detection
207
+ └── features/
208
+ ├── hybrid-search.js # Semantic + exact match search
209
+ ├── index-codebase.js # File indexing + watching
210
+ └── clear-cache.js # Cache management
211
+ ```
212
+
213
+ The modular design makes it easy to add new features. See ARCHITECTURE.md for implementation details.
214
+
215
+ ## Troubleshooting
216
+
217
+ **"Server can't find config.json"**
218
+
219
+ Make sure `cwd` is set in your MCP configuration to the full path of smart-coding-mcp.
220
+
221
+ **"Indexing takes too long"**
222
+
223
+ - Verify `smartIndexing` is enabled
224
+ - Add more patterns to `excludePatterns`
225
+ - Reduce `fileExtensions` to only what you need
226
+
227
+ **"Search results aren't relevant"**
228
+
229
+ - Try more specific queries
230
+ - Increase `maxResults` to see more options
231
+ - Run `index_codebase` to force a full reindex
232
+
233
+ **"Cache corruption errors"**
234
+
235
+ Use the `clear_cache` tool or run:
236
+
237
+ ```bash
238
+ npm run clear-cache
239
+ ```
240
+
241
+ ## CLI Commands
242
+
243
+ ```bash
244
+ # Start the server
245
+ npm start
246
+
247
+ # Development mode with auto-restart
248
+ npm run dev
249
+
250
+ # Clear embeddings cache
251
+ npm run clear-cache
252
+ ```
253
+
254
+ ## Privacy
255
+
256
+ - AI model runs entirely on your machine
257
+ - No network requests to external services
258
+ - No telemetry or analytics
259
+ - Cache stored locally in `.smart-coding-cache/`
260
+
261
+ ## Technical Details
262
+
263
+ **Embedding Model**: all-MiniLM-L6-v2 via transformers.js
264
+
265
+ - Fast inference (CPU-friendly)
266
+ - Small model size (~100MB)
267
+ - Good accuracy for code search
268
+
269
+ **Vector Similarity**: Cosine similarity
270
+
271
+ - Efficient comparison of embeddings
272
+ - Normalized vectors for consistent scoring
273
+
274
+ **Hybrid Scoring**: Combines semantic similarity with exact text matching
275
+
276
+ - Semantic weight: 0.7 (configurable)
277
+ - Exact match boost: 1.5x (configurable)
278
+
279
+ ## Research Background
280
+
281
+ This project builds on research from Cursor showing that semantic search improves AI coding agent performance by 12.5% on average across question-answering tasks. The key insight is that AI assistants benefit more from relevant context than from large amounts of context.
282
+
283
+ See: https://cursor.com/blog/semsearch
284
+
285
+ ## Contributing
286
+
287
+ Contributions are welcome. See CONTRIBUTING.md for guidelines.
288
+
289
+ Potential areas for improvement:
290
+
291
+ - Additional language support
292
+ - Code complexity analysis
293
+ - Refactoring pattern detection
294
+ - Documentation generation
295
+
296
+ ## License
297
+
298
+ MIT - see LICENSE file
299
+
300
+ ## Documentation
301
+
302
+ - ARCHITECTURE.md - Implementation details and design decisions
303
+ - CONTRIBUTING.md - Guidelines for contributors
304
+ - EXAMPLES.md - More usage examples
305
+ - QUICKSTART.md - Detailed setup guide
package/config.json ADDED
@@ -0,0 +1,18 @@
1
+ {
2
+ "searchDirectory": ".",
3
+ "fileExtensions": ["js", "ts", "jsx", "tsx", "mjs", "cjs", "css", "scss", "sass", "less", "html", "htm", "xml", "svg", "py", "pyw", "java", "kt", "scala", "c", "cpp", "h", "hpp", "cs", "go", "rs", "rb", "php", "swift", "sh", "bash", "json", "yaml", "yml", "toml", "sql"],
4
+ "excludePatterns": ["**/node_modules/**", "**/dist/**", "**/build/**", "**/.git/**", "**/coverage/**", "**/.next/**", "**/target/**", "**/vendor/**", "**/.smart-coding-cache/**"],
5
+ "smartIndexing": true,
6
+ "chunkSize": 15,
7
+ "chunkOverlap": 3,
8
+ "batchSize": 100,
9
+ "maxFileSize": 1048576,
10
+ "maxResults": 5,
11
+ "enableCache": true,
12
+ "cacheDirectory": "./.smart-coding-cache",
13
+ "watchFiles": true,
14
+ "verbose": false,
15
+ "embeddingModel": "Xenova/all-MiniLM-L6-v2",
16
+ "semanticWeight": 0.7,
17
+ "exactMatchBoost": 1.5
18
+ }
@@ -0,0 +1,45 @@
1
+ export class CacheClearer {
2
+ constructor(embedder, cache, config) {
3
+ this.cache = cache;
4
+ this.config = config;
5
+ }
6
+
7
+ async execute() {
8
+ await this.cache.clear();
9
+ return {
10
+ success: true,
11
+ message: `Cache cleared successfully. Next indexing will be a full rebuild.`,
12
+ cacheDirectory: this.config.cacheDirectory
13
+ };
14
+ }
15
+ }
16
+
17
+ export function getToolDefinition() {
18
+ return {
19
+ name: "clear_cache",
20
+ description: "Clears the embeddings cache, forcing a complete reindex on next search or manual index operation. Useful when encountering cache corruption or after major codebase changes.",
21
+ inputSchema: {
22
+ type: "object",
23
+ properties: {}
24
+ }
25
+ };
26
+ }
27
+
28
+ export async function handleToolCall(request, cacheClearer) {
29
+ try {
30
+ const result = await cacheClearer.execute();
31
+ return {
32
+ content: [{
33
+ type: "text",
34
+ text: `${result.message}\n\nCache directory: ${result.cacheDirectory}`
35
+ }]
36
+ };
37
+ } catch (error) {
38
+ return {
39
+ content: [{
40
+ type: "text",
41
+ text: `Failed to clear cache: ${error.message}`
42
+ }]
43
+ };
44
+ }
45
+ }
@@ -0,0 +1,114 @@
1
+ import path from "path";
2
+ import { cosineSimilarity } from "../lib/utils.js";
3
+
4
+ export class HybridSearch {
5
+ constructor(embedder, cache, config) {
6
+ this.embedder = embedder;
7
+ this.cache = cache;
8
+ this.config = config;
9
+ }
10
+
11
+ async search(query, maxResults) {
12
+ const vectorStore = this.cache.getVectorStore();
13
+
14
+ if (vectorStore.length === 0) {
15
+ return {
16
+ results: [],
17
+ message: "No code has been indexed yet. Please wait for initial indexing to complete."
18
+ };
19
+ }
20
+
21
+ // Generate query embedding
22
+ const queryEmbed = await this.embedder(query, { pooling: "mean", normalize: true });
23
+ const queryVector = Array.from(queryEmbed.data);
24
+
25
+ // Score all chunks
26
+ const scoredChunks = vectorStore.map(chunk => {
27
+ // Semantic similarity
28
+ let score = cosineSimilarity(queryVector, chunk.vector) * this.config.semanticWeight;
29
+
30
+ // Exact match boost
31
+ const lowerQuery = query.toLowerCase();
32
+ const lowerContent = chunk.content.toLowerCase();
33
+
34
+ if (lowerContent.includes(lowerQuery)) {
35
+ score += this.config.exactMatchBoost;
36
+ } else {
37
+ // Partial word matching
38
+ const queryWords = lowerQuery.split(/\s+/);
39
+ const matchedWords = queryWords.filter(word =>
40
+ word.length > 2 && lowerContent.includes(word)
41
+ ).length;
42
+ score += (matchedWords / queryWords.length) * 0.3;
43
+ }
44
+
45
+ return { ...chunk, score };
46
+ });
47
+
48
+ // Get top results
49
+ const results = scoredChunks
50
+ .sort((a, b) => b.score - a.score)
51
+ .slice(0, maxResults);
52
+
53
+ return { results, message: null };
54
+ }
55
+
56
+ formatResults(results) {
57
+ if (results.length === 0) {
58
+ return "No matching code found for your query.";
59
+ }
60
+
61
+ return results.map((r, idx) => {
62
+ const relPath = path.relative(this.config.searchDirectory, r.file);
63
+ return `## Result ${idx + 1} (Relevance: ${(r.score * 100).toFixed(1)}%)\n` +
64
+ `**File:** \`${relPath}\`\n` +
65
+ `**Lines:** ${r.startLine}-${r.endLine}\n\n` +
66
+ "```" + path.extname(r.file).slice(1) + "\n" +
67
+ r.content + "\n" +
68
+ "```\n";
69
+ }).join("\n");
70
+ }
71
+ }
72
+
73
+ // MCP Tool definition for this feature
74
+ export function getToolDefinition(config) {
75
+ return {
76
+ name: "semantic_search",
77
+ description: "Performs intelligent hybrid code search combining semantic understanding with exact text matching. Ideal for finding code by meaning (e.g., 'authentication logic', 'database queries') even with typos or variations. Returns the most relevant code snippets with file locations and line numbers.",
78
+ inputSchema: {
79
+ type: "object",
80
+ properties: {
81
+ query: {
82
+ type: "string",
83
+ description: "Search query - can be natural language (e.g., 'where do we handle user login') or specific terms"
84
+ },
85
+ maxResults: {
86
+ type: "number",
87
+ description: "Maximum number of results to return (default: from config)",
88
+ default: config.maxResults
89
+ }
90
+ },
91
+ required: ["query"]
92
+ }
93
+ };
94
+ }
95
+
96
+ // Tool handler
97
+ export async function handleToolCall(request, hybridSearch) {
98
+ const query = request.params.arguments.query;
99
+ const maxResults = request.params.arguments.maxResults || hybridSearch.config.maxResults;
100
+
101
+ const { results, message } = await hybridSearch.search(query, maxResults);
102
+
103
+ if (message) {
104
+ return {
105
+ content: [{ type: "text", text: message }]
106
+ };
107
+ }
108
+
109
+ const formattedText = hybridSearch.formatResults(results);
110
+
111
+ return {
112
+ content: [{ type: "text", text: formattedText }]
113
+ };
114
+ }
@@ -0,0 +1,213 @@
1
+ import { glob } from "glob";
2
+ import fs from "fs/promises";
3
+ import chokidar from "chokidar";
4
+ import path from "path";
5
+ import { smartChunk, hashContent } from "../lib/utils.js";
6
+
7
+ export class CodebaseIndexer {
8
+ constructor(embedder, cache, config) {
9
+ this.embedder = embedder;
10
+ this.cache = cache;
11
+ this.config = config;
12
+ this.watcher = null;
13
+ }
14
+
15
+ async indexFile(file) {
16
+ const fileName = path.basename(file);
17
+ if (this.config.verbose) {
18
+ console.error(`[Indexer] Processing: ${fileName}...`);
19
+ }
20
+
21
+ try {
22
+ // Check file size first
23
+ const stats = await fs.stat(file);
24
+
25
+ // Skip directories
26
+ if (stats.isDirectory()) {
27
+ return 0;
28
+ }
29
+
30
+ if (stats.size > this.config.maxFileSize) {
31
+ if (this.config.verbose) {
32
+ console.error(`[Indexer] Skipped ${fileName} (too large: ${(stats.size / 1024 / 1024).toFixed(2)}MB)`);
33
+ }
34
+ return 0;
35
+ }
36
+
37
+ const content = await fs.readFile(file, "utf-8");
38
+ const hash = hashContent(content);
39
+
40
+ // Skip if file hasn't changed
41
+ if (this.cache.getFileHash(file) === hash) {
42
+ if (this.config.verbose) {
43
+ console.error(`[Indexer] Skipped ${fileName} (unchanged)`);
44
+ }
45
+ return 0;
46
+ }
47
+
48
+ if (this.config.verbose) {
49
+ console.error(`[Indexer] Indexing ${fileName}...`);
50
+ }
51
+
52
+ // Remove old chunks for this file
53
+ this.cache.removeFileFromStore(file);
54
+
55
+ const chunks = smartChunk(content, file, this.config);
56
+ let addedChunks = 0;
57
+
58
+ for (const chunk of chunks) {
59
+ try {
60
+ const output = await this.embedder(chunk.text, { pooling: "mean", normalize: true });
61
+
62
+ this.cache.addToStore({
63
+ file,
64
+ startLine: chunk.startLine,
65
+ endLine: chunk.endLine,
66
+ content: chunk.text,
67
+ vector: Array.from(output.data)
68
+ });
69
+ addedChunks++;
70
+ } catch (embeddingError) {
71
+ console.error(`[Indexer] Failed to embed chunk in ${fileName}:`, embeddingError.message);
72
+ }
73
+ }
74
+
75
+ this.cache.setFileHash(file, hash);
76
+ if (this.config.verbose) {
77
+ console.error(`[Indexer] Completed ${fileName} (${addedChunks} chunks)`);
78
+ }
79
+ return addedChunks;
80
+ } catch (error) {
81
+ console.error(`[Indexer] Error indexing ${fileName}:`, error.message);
82
+ return 0;
83
+ }
84
+ }
85
+
86
+ async indexAll() {
87
+ console.error(`[Indexer] Indexing files in ${this.config.searchDirectory}...`);
88
+
89
+ const pattern = `${this.config.searchDirectory}/**/*.{${this.config.fileExtensions.join(",")}}`;
90
+ const files = await glob(pattern, {
91
+ ignore: this.config.excludePatterns,
92
+ absolute: true
93
+ });
94
+
95
+ console.error(`[Indexer] Found ${files.length} files to process`);
96
+
97
+ let totalChunks = 0;
98
+ let processedFiles = 0;
99
+ let skippedFiles = 0;
100
+
101
+ // Process files in parallel batches for speed
102
+ const BATCH_SIZE = this.config.batchSize || 100;
103
+
104
+ for (let i = 0; i < files.length; i += BATCH_SIZE) {
105
+ const batch = files.slice(i, i + BATCH_SIZE);
106
+
107
+ // Process batch in parallel
108
+ const results = await Promise.all(
109
+ batch.map(file => this.indexFile(file))
110
+ );
111
+
112
+ // Aggregate results
113
+ for (const chunksAdded of results) {
114
+ totalChunks += chunksAdded;
115
+ processedFiles++;
116
+ if (chunksAdded === 0) skippedFiles++;
117
+ }
118
+
119
+ // Progress indicator every 500 files (less console overhead)
120
+ if (processedFiles % 500 === 0 || processedFiles === files.length) {
121
+ console.error(`[Indexer] Progress: ${processedFiles}/${files.length} files processed...`);
122
+ }
123
+ }
124
+
125
+ console.error(`[Indexer] Indexed ${totalChunks} code chunks from ${files.length} files (${skippedFiles} unchanged)`);
126
+ await this.cache.save();
127
+ }
128
+
129
+ setupFileWatcher() {
130
+ if (!this.config.watchFiles) return;
131
+
132
+ const pattern = this.config.fileExtensions.map(ext => `**/*.${ext}`);
133
+
134
+ this.watcher = chokidar.watch(pattern, {
135
+ cwd: this.config.searchDirectory,
136
+ ignored: this.config.excludePatterns,
137
+ persistent: true,
138
+ ignoreInitial: true
139
+ });
140
+
141
+ this.watcher
142
+ .on("add", async (filePath) => {
143
+ const fullPath = path.join(this.config.searchDirectory, filePath);
144
+ console.error(`[Indexer] New file detected: ${filePath}`);
145
+ await this.indexFile(fullPath);
146
+ await this.cache.save();
147
+ })
148
+ .on("change", async (filePath) => {
149
+ const fullPath = path.join(this.config.searchDirectory, filePath);
150
+ console.error(`[Indexer] File changed: ${filePath}`);
151
+ await this.indexFile(fullPath);
152
+ await this.cache.save();
153
+ })
154
+ .on("unlink", (filePath) => {
155
+ const fullPath = path.join(this.config.searchDirectory, filePath);
156
+ console.error(`[Indexer] File deleted: ${filePath}`);
157
+ this.cache.removeFileFromStore(fullPath);
158
+ this.cache.deleteFileHash(fullPath);
159
+ this.cache.save();
160
+ });
161
+
162
+ console.error("[Indexer] File watcher enabled for incremental indexing");
163
+ }
164
+
165
+ async initialize() {
166
+ await this.indexAll();
167
+ this.setupFileWatcher();
168
+ }
169
+ }
170
+
171
+ // MCP Tool definition for this feature
172
+ export function getToolDefinition() {
173
+ return {
174
+ name: "index_codebase",
175
+ description: "Manually trigger a full reindex of the codebase. This will scan all files and update the embeddings cache. Useful after large code changes or if the index seems out of date.",
176
+ inputSchema: {
177
+ type: "object",
178
+ properties: {
179
+ force: {
180
+ type: "boolean",
181
+ description: "Force reindex even if files haven't changed",
182
+ default: false
183
+ }
184
+ }
185
+ }
186
+ };
187
+ }
188
+
189
+ // Tool handler
190
+ export async function handleToolCall(request, indexer) {
191
+ const force = request.params.arguments?.force || false;
192
+
193
+ if (force) {
194
+ // Clear cache to force full reindex
195
+ indexer.cache.setVectorStore([]);
196
+ indexer.cache.fileHashes = new Map();
197
+ }
198
+
199
+ await indexer.indexAll();
200
+
201
+ const vectorStore = indexer.cache.getVectorStore();
202
+ const stats = {
203
+ totalChunks: vectorStore.length,
204
+ totalFiles: new Set(vectorStore.map(v => v.file)).size
205
+ };
206
+
207
+ return {
208
+ content: [{
209
+ type: "text",
210
+ text: `Codebase reindexed successfully.\n\nStatistics:\n- Files indexed: ${stats.totalFiles}\n- Code chunks: ${stats.totalChunks}`
211
+ }]
212
+ };
213
+ }