semantic-router-ts 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/LICENSE ADDED
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2026 Nilesh
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
package/README.md ADDED
@@ -0,0 +1,187 @@
1
+ # @anthropic/semantic-router
2
+
3
+ Superfast semantic routing for LLMs and AI agents. TypeScript port of [aurelio-labs/semantic-router](https://github.com/aurelio-labs/semantic-router).
4
+
5
+ [![npm version](https://badge.fury.io/js/%40anthropic%2Fsemantic-router.svg)](https://www.npmjs.com/package/@anthropic/semantic-router)
6
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
7
+
8
+ ## Features
9
+
10
+ - 🚀 **Fast** - Uses semantic embeddings for sub-100ms routing decisions
11
+ - 🔌 **Pluggable Encoders** - OpenAI, local Transformers.js, or bring your own
12
+ - 🎯 **Accurate** - Semantic similarity beats keyword matching
13
+ - 📦 **Zero Dependencies** - Core package has no deps; encoders are optional
14
+ - 🔒 **Type Safe** - Full TypeScript support with strict types
15
+ - 🌐 **Offline Support** - LocalEncoder works without API calls
16
+
17
+ ## Installation
18
+
19
+ ```bash
20
+ npm install @anthropic/semantic-router
21
+
22
+ # For local/offline embeddings (recommended)
23
+ npm install @xenova/transformers
24
+
25
+ # For OpenAI embeddings
26
+ npm install openai
27
+ ```
28
+
29
+ ## Quick Start
30
+
31
+ ```typescript
32
+ import { SemanticRouter, Route, LocalEncoder } from '@anthropic/semantic-router';
33
+
34
+ // Define your routes
35
+ const routes: Route[] = [
36
+ {
37
+ name: 'greeting',
38
+ utterances: ['hello', 'hi there', 'hey', 'good morning'],
39
+ },
40
+ {
41
+ name: 'farewell',
42
+ utterances: ['goodbye', 'bye', 'see you later', 'take care'],
43
+ },
44
+ {
45
+ name: 'help',
46
+ utterances: ['I need help', 'can you assist me', 'support please'],
47
+ },
48
+ ];
49
+
50
+ // Create router with local encoder (no API calls)
51
+ const router = new SemanticRouter({
52
+ routes,
53
+ encoder: new LocalEncoder(),
54
+ threshold: 0.4, // Minimum confidence to match
55
+ });
56
+
57
+ // Initialize (pre-encodes all routes)
58
+ await router.initialize();
59
+
60
+ // Route queries
61
+ const result = await router.route('hey, how are you doing?');
62
+ console.log(result.name); // 'greeting'
63
+ console.log(result.confidence); // 0.85
64
+
65
+ // No match below threshold
66
+ const noMatch = await router.route('what is the weather?');
67
+ console.log(noMatch.name); // null
68
+ ```
69
+
70
+ ## Encoders
71
+
72
+ ### LocalEncoder (Recommended)
73
+
74
+ Uses [Transformers.js](https://huggingface.co/docs/transformers.js) for fully offline embeddings:
75
+
76
+ ```typescript
77
+ import { LocalEncoder } from '@anthropic/semantic-router';
78
+
79
+ const encoder = new LocalEncoder({
80
+ model: 'Xenova/all-MiniLM-L6-v2', // Default, 384 dimensions
81
+ normalize: true,
82
+ });
83
+ ```
84
+
85
+ Supported models:
86
+ - `Xenova/all-MiniLM-L6-v2` (384d, fast)
87
+ - `Xenova/all-mpnet-base-v2` (768d, more accurate)
88
+ - `Xenova/bge-small-en-v1.5` (384d)
89
+ - `Xenova/bge-base-en-v1.5` (768d)
90
+
91
+ ### OpenAIEncoder
92
+
93
+ Uses OpenAI's embedding API:
94
+
95
+ ```typescript
96
+ import { OpenAIEncoder } from '@anthropic/semantic-router';
97
+
98
+ const encoder = new OpenAIEncoder({
99
+ apiKey: process.env.OPENAI_API_KEY,
100
+ model: 'text-embedding-3-small', // Default
101
+ dimensions: 1536,
102
+ });
103
+ ```
104
+
105
+ ## Configuration
106
+
107
+ ```typescript
108
+ const router = new SemanticRouter({
109
+ routes: [...],
110
+ encoder: new LocalEncoder(),
111
+
112
+ // How many similar utterances to consider
113
+ topK: 5,
114
+
115
+ // How to aggregate scores ('mean' | 'max' | 'sum')
116
+ aggregation: 'mean',
117
+
118
+ // Minimum confidence threshold (0-1)
119
+ threshold: 0.4,
120
+
121
+ // Optional LLM for low-confidence fallback
122
+ llm: myLLMImplementation,
123
+ });
124
+ ```
125
+
126
+ ## Dynamic Routes
127
+
128
+ Add routes at runtime:
129
+
130
+ ```typescript
131
+ await router.addRoute({
132
+ name: 'billing',
133
+ utterances: ['payment issue', 'invoice problem', 'billing question'],
134
+ description: 'Billing and payment related queries',
135
+ });
136
+ ```
137
+
138
+ ## LLM Fallback
139
+
140
+ For ambiguous queries, provide an LLM to classify:
141
+
142
+ ```typescript
143
+ const router = new SemanticRouter({
144
+ routes,
145
+ encoder: new LocalEncoder(),
146
+ threshold: 0.4,
147
+ llm: {
148
+ name: 'claude',
149
+ generate: async (prompt) => {
150
+ // Your LLM call here
151
+ return await callClaude(prompt);
152
+ },
153
+ },
154
+ });
155
+ ```
156
+
157
+ ## API Reference
158
+
159
+ ### SemanticRouter
160
+
161
+ | Method | Description |
162
+ |--------|-------------|
163
+ | `initialize()` | Pre-encode all routes (call once) |
164
+ | `route(query)` | Route a query, returns `RouteMatch` |
165
+ | `classify(query)` | Shorthand, returns route name or null |
166
+ | `addRoute(route)` | Add a route dynamically |
167
+ | `getStats()` | Get router statistics |
168
+ | `isReady()` | Check if initialized |
169
+
170
+ ### RouteMatch
171
+
172
+ ```typescript
173
+ interface RouteMatch {
174
+ route: Route | null; // Full route object
175
+ name: string | null; // Route name
176
+ confidence: number; // 0-1 score
177
+ scores?: RouteScore[]; // All route scores
178
+ }
179
+ ```
180
+
181
+ ## Acknowledgments
182
+
183
+ This is a TypeScript port of the excellent [semantic-router](https://github.com/aurelio-labs/semantic-router) by Aurelio Labs.
184
+
185
+ ## License
186
+
187
+ MIT
@@ -0,0 +1,272 @@
1
+ /**
2
+ * Route - A semantic route definition
3
+ *
4
+ * Routes define decision paths that the router can choose based on
5
+ * semantic similarity to user queries.
6
+ */
7
+ interface Route {
8
+ /** Unique identifier for this route */
9
+ name: string;
10
+ /** Example utterances that should trigger this route */
11
+ utterances: string[];
12
+ /** Optional description for documentation */
13
+ description?: string;
14
+ /** Optional metadata to attach to route matches */
15
+ metadata?: Record<string, unknown>;
16
+ /** Optional function schema for tool calling */
17
+ functionSchema?: FunctionSchema;
18
+ }
19
+ interface FunctionSchema {
20
+ name: string;
21
+ description?: string;
22
+ parameters?: Record<string, unknown>;
23
+ }
24
+ /**
25
+ * RouteMatch - Result of routing a query
26
+ */
27
+ interface RouteMatch {
28
+ /** The matched route, or null if no match */
29
+ route: Route | null;
30
+ /** Name of the matched route */
31
+ name: string | null;
32
+ /** Confidence score (0-1) */
33
+ confidence: number;
34
+ /** All scored routes for debugging */
35
+ scores?: RouteScore[];
36
+ }
37
+ interface RouteScore {
38
+ name: string;
39
+ score: number;
40
+ }
41
+ /**
42
+ * RouterConfig - Configuration for SemanticRouter
43
+ */
44
+ interface RouterConfig {
45
+ /** Routes to register */
46
+ routes?: Route[];
47
+ /** Encoder to use for embeddings */
48
+ encoder?: Encoder;
49
+ /** Number of top matches to consider */
50
+ topK?: number;
51
+ /** Score aggregation method */
52
+ aggregation?: 'mean' | 'max' | 'sum';
53
+ /** Minimum score to consider a match */
54
+ threshold?: number;
55
+ }
56
+ /**
57
+ * Encoder - Interface for embedding providers
58
+ */
59
+ interface Encoder {
60
+ /** Encode a single text */
61
+ encode(text: string): Promise<number[]>;
62
+ /** Encode multiple texts (batch) */
63
+ encodeBatch(texts: string[]): Promise<number[][]>;
64
+ /** Encoder name for logging */
65
+ readonly name: string;
66
+ /** Embedding dimensions */
67
+ readonly dimensions: number;
68
+ }
69
+ /**
70
+ * Index - Interface for vector storage
71
+ */
72
+ interface Index {
73
+ /** Add embeddings with route names */
74
+ add(embeddings: number[][], routes: string[], utterances: string[]): Promise<void>;
75
+ /** Query for similar embeddings */
76
+ query(embedding: number[], topK: number): Promise<IndexMatch[]>;
77
+ /** Clear all stored data */
78
+ clear(): Promise<void>;
79
+ /** Check if index is ready */
80
+ isReady(): boolean;
81
+ }
82
+ interface IndexMatch {
83
+ route: string;
84
+ utterance: string;
85
+ score: number;
86
+ }
87
+ /**
88
+ * LLM - Interface for LLM fallback
89
+ */
90
+ interface LLM {
91
+ /** Generate a response */
92
+ generate(prompt: string): Promise<string>;
93
+ /** LLM name for logging */
94
+ readonly name: string;
95
+ }
96
+
97
+ /**
98
+ * SemanticRouter - Fast decision-making layer for LLMs
99
+ *
100
+ * Port of Python semantic_router.routers.semantic
101
+ *
102
+ * Uses semantic vector space to route queries to the best matching route
103
+ * based on similarity to pre-encoded utterances.
104
+ */
105
+
106
+ interface SemanticRouterConfig extends RouterConfig {
107
+ /** Optional LLM for fallback classification */
108
+ llm?: LLM;
109
+ }
110
+ declare class SemanticRouter {
111
+ private routes;
112
+ private encoder;
113
+ private index;
114
+ private llm?;
115
+ private topK;
116
+ private aggregation;
117
+ private threshold;
118
+ private initialized;
119
+ private initPromise;
120
+ constructor(config?: SemanticRouterConfig);
121
+ /**
122
+ * Initialize the router by encoding all routes.
123
+ * Safe to call multiple times.
124
+ */
125
+ initialize(): Promise<void>;
126
+ private doInitialize;
127
+ /**
128
+ * Route a query to the best matching route.
129
+ */
130
+ route(query: string): Promise<RouteMatch>;
131
+ /**
132
+ * Shorthand to get just the route name
133
+ */
134
+ classify(query: string): Promise<string | null>;
135
+ /**
136
+ * Add a route dynamically
137
+ */
138
+ addRoute(route: Route): Promise<void>;
139
+ /**
140
+ * Aggregate scores from multiple matches by route
141
+ */
142
+ private aggregateScores;
143
+ /**
144
+ * Use LLM to classify when similarity is low
145
+ */
146
+ private llmFallback;
147
+ /**
148
+ * Return a no-match result
149
+ */
150
+ private noMatch;
151
+ /**
152
+ * Get router statistics
153
+ */
154
+ getStats(): {
155
+ routeCount: number;
156
+ routes: string[];
157
+ encoder: string;
158
+ threshold: number;
159
+ initialized: boolean;
160
+ };
161
+ /**
162
+ * Check if router is ready
163
+ */
164
+ isReady(): boolean;
165
+ }
166
+
167
+ /**
168
+ * BaseEncoder - Abstract base class for all encoders
169
+ *
170
+ * Port of Python semantic_router.encoders.base
171
+ */
172
+
173
+ declare abstract class BaseEncoder implements Encoder {
174
+ abstract readonly name: string;
175
+ abstract readonly dimensions: number;
176
+ protected initialized: boolean;
177
+ /**
178
+ * Encode a single text into an embedding vector.
179
+ */
180
+ abstract encode(text: string): Promise<number[]>;
181
+ /**
182
+ * Encode multiple texts in batch.
183
+ * Default implementation calls encode() for each, but subclasses
184
+ * can override for more efficient batch processing.
185
+ */
186
+ encodeBatch(texts: string[]): Promise<number[][]>;
187
+ /**
188
+ * Normalize an embedding vector to unit length.
189
+ */
190
+ protected normalize(embedding: number[]): number[];
191
+ }
192
+
193
+ /**
194
+ * LocalEncoder - Offline embedding using Transformers.js
195
+ *
196
+ * Uses Xenova/all-MiniLM-L6-v2 by default (384 dimensions).
197
+ * Runs entirely locally with no API calls.
198
+ */
199
+
200
+ interface LocalEncoderConfig {
201
+ /** Model to use (default: Xenova/all-MiniLM-L6-v2) */
202
+ model?: string;
203
+ /** Whether to normalize embeddings (default: true) */
204
+ normalize?: boolean;
205
+ }
206
+ declare class LocalEncoder extends BaseEncoder {
207
+ readonly name = "LocalEncoder";
208
+ readonly dimensions: number;
209
+ private model;
210
+ private embedder;
211
+ private initPromise;
212
+ private shouldNormalize;
213
+ private static readonly MODEL_DIMENSIONS;
214
+ constructor(config?: LocalEncoderConfig);
215
+ private ensureInitialized;
216
+ private initialize;
217
+ encode(text: string): Promise<number[]>;
218
+ encodeBatch(texts: string[]): Promise<number[][]>;
219
+ }
220
+
221
+ /**
222
+ * OpenAIEncoder - Embedding using OpenAI API
223
+ *
224
+ * Uses text-embedding-3-small by default (1536 dimensions).
225
+ */
226
+
227
+ interface OpenAIEncoderConfig {
228
+ /** OpenAI API key */
229
+ apiKey?: string;
230
+ /** Model to use (default: text-embedding-3-small) */
231
+ model?: string;
232
+ /** Embedding dimensions (for ada-3 models that support it) */
233
+ dimensions?: number;
234
+ }
235
+ declare class OpenAIEncoder extends BaseEncoder {
236
+ readonly name = "OpenAIEncoder";
237
+ readonly dimensions: number;
238
+ private model;
239
+ private apiKey;
240
+ private client;
241
+ private static readonly MODEL_DIMENSIONS;
242
+ constructor(config?: OpenAIEncoderConfig);
243
+ private ensureClient;
244
+ encode(text: string): Promise<number[]>;
245
+ encodeBatch(texts: string[]): Promise<number[][]>;
246
+ }
247
+
248
+ /**
249
+ * LocalIndex - In-memory vector storage
250
+ *
251
+ * Simple, fast index for development and small-scale use.
252
+ * Port of Python semantic_router.index.local
253
+ */
254
+
255
+ declare class LocalIndex implements Index {
256
+ private vectors;
257
+ private ready;
258
+ add(embeddings: number[][], routes: string[], utterances: string[]): Promise<void>;
259
+ query(embedding: number[], topK: number): Promise<IndexMatch[]>;
260
+ clear(): Promise<void>;
261
+ isReady(): boolean;
262
+ /**
263
+ * Get number of stored vectors
264
+ */
265
+ get size(): number;
266
+ /**
267
+ * Cosine similarity between two vectors
268
+ */
269
+ private cosineSimilarity;
270
+ }
271
+
272
+ export { BaseEncoder, type Encoder, type FunctionSchema, type Index, type IndexMatch, type LLM, LocalEncoder, type LocalEncoderConfig, LocalIndex, OpenAIEncoder, type OpenAIEncoderConfig, type Route, type RouteMatch, type RouteScore, type RouterConfig, SemanticRouter, type SemanticRouterConfig };