s3db.js 12.4.0 → 13.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/s3db.cjs.js +1923 -57
- package/dist/s3db.cjs.js.map +1 -1
- package/dist/s3db.es.js +1923 -58
- package/dist/s3db.es.js.map +1 -1
- package/package.json +5 -1
- package/src/clients/memory-client.class.js +41 -24
- package/src/database.class.js +52 -17
- package/src/plugins/api/index.js +12 -9
- package/src/plugins/api/routes/resource-routes.js +78 -0
- package/src/plugins/index.js +1 -0
- package/src/plugins/ml/base-model.class.js +459 -0
- package/src/plugins/ml/classification-model.class.js +338 -0
- package/src/plugins/ml/neural-network-model.class.js +312 -0
- package/src/plugins/ml/regression-model.class.js +159 -0
- package/src/plugins/ml/timeseries-model.class.js +346 -0
- package/src/plugins/ml.errors.js +130 -0
- package/src/plugins/ml.plugin.js +655 -0
- package/src/resource.class.js +106 -34
package/dist/s3db.cjs.js
CHANGED
|
@@ -3016,12 +3016,6 @@ class ApiPlugin extends Plugin {
|
|
|
3016
3016
|
async _createCompressionMiddleware() {
|
|
3017
3017
|
return async (c, next) => {
|
|
3018
3018
|
await next();
|
|
3019
|
-
const acceptEncoding = c.req.header("accept-encoding") || "";
|
|
3020
|
-
if (acceptEncoding.includes("gzip")) {
|
|
3021
|
-
c.header("Content-Encoding", "gzip");
|
|
3022
|
-
} else if (acceptEncoding.includes("deflate")) {
|
|
3023
|
-
c.header("Content-Encoding", "deflate");
|
|
3024
|
-
}
|
|
3025
3019
|
};
|
|
3026
3020
|
}
|
|
3027
3021
|
/**
|
|
@@ -11926,6 +11920,1780 @@ class MetricsPlugin extends Plugin {
|
|
|
11926
11920
|
}
|
|
11927
11921
|
}
|
|
11928
11922
|
|
|
11923
|
+
class MLError extends Error {
|
|
11924
|
+
constructor(message, context = {}) {
|
|
11925
|
+
super(message);
|
|
11926
|
+
this.name = "MLError";
|
|
11927
|
+
this.context = context;
|
|
11928
|
+
if (Error.captureStackTrace) {
|
|
11929
|
+
Error.captureStackTrace(this, this.constructor);
|
|
11930
|
+
}
|
|
11931
|
+
}
|
|
11932
|
+
toJSON() {
|
|
11933
|
+
return {
|
|
11934
|
+
name: this.name,
|
|
11935
|
+
message: this.message,
|
|
11936
|
+
context: this.context,
|
|
11937
|
+
stack: this.stack
|
|
11938
|
+
};
|
|
11939
|
+
}
|
|
11940
|
+
}
|
|
11941
|
+
class ModelConfigError extends MLError {
|
|
11942
|
+
constructor(message, context = {}) {
|
|
11943
|
+
super(message, context);
|
|
11944
|
+
this.name = "ModelConfigError";
|
|
11945
|
+
}
|
|
11946
|
+
}
|
|
11947
|
+
class TrainingError extends MLError {
|
|
11948
|
+
constructor(message, context = {}) {
|
|
11949
|
+
super(message, context);
|
|
11950
|
+
this.name = "TrainingError";
|
|
11951
|
+
}
|
|
11952
|
+
}
|
|
11953
|
+
let PredictionError$1 = class PredictionError extends MLError {
|
|
11954
|
+
constructor(message, context = {}) {
|
|
11955
|
+
super(message, context);
|
|
11956
|
+
this.name = "PredictionError";
|
|
11957
|
+
}
|
|
11958
|
+
};
|
|
11959
|
+
class ModelNotFoundError extends MLError {
|
|
11960
|
+
constructor(message, context = {}) {
|
|
11961
|
+
super(message, context);
|
|
11962
|
+
this.name = "ModelNotFoundError";
|
|
11963
|
+
}
|
|
11964
|
+
}
|
|
11965
|
+
let ModelNotTrainedError$1 = class ModelNotTrainedError extends MLError {
|
|
11966
|
+
constructor(message, context = {}) {
|
|
11967
|
+
super(message, context);
|
|
11968
|
+
this.name = "ModelNotTrainedError";
|
|
11969
|
+
}
|
|
11970
|
+
};
|
|
11971
|
+
class DataValidationError extends MLError {
|
|
11972
|
+
constructor(message, context = {}) {
|
|
11973
|
+
super(message, context);
|
|
11974
|
+
this.name = "DataValidationError";
|
|
11975
|
+
}
|
|
11976
|
+
}
|
|
11977
|
+
class InsufficientDataError extends MLError {
|
|
11978
|
+
constructor(message, context = {}) {
|
|
11979
|
+
super(message, context);
|
|
11980
|
+
this.name = "InsufficientDataError";
|
|
11981
|
+
}
|
|
11982
|
+
}
|
|
11983
|
+
class TensorFlowDependencyError extends MLError {
|
|
11984
|
+
constructor(message = "TensorFlow.js is not installed. Run: pnpm add @tensorflow/tfjs-node", context = {}) {
|
|
11985
|
+
super(message, context);
|
|
11986
|
+
this.name = "TensorFlowDependencyError";
|
|
11987
|
+
}
|
|
11988
|
+
}
|
|
11989
|
+
|
|
11990
|
+
class BaseModel {
|
|
11991
|
+
constructor(config = {}) {
|
|
11992
|
+
if (this.constructor === BaseModel) {
|
|
11993
|
+
throw new Error("BaseModel is an abstract class and cannot be instantiated directly");
|
|
11994
|
+
}
|
|
11995
|
+
this.config = {
|
|
11996
|
+
name: config.name || "unnamed",
|
|
11997
|
+
resource: config.resource,
|
|
11998
|
+
features: config.features || [],
|
|
11999
|
+
target: config.target,
|
|
12000
|
+
modelConfig: {
|
|
12001
|
+
epochs: 50,
|
|
12002
|
+
batchSize: 32,
|
|
12003
|
+
learningRate: 0.01,
|
|
12004
|
+
validationSplit: 0.2,
|
|
12005
|
+
...config.modelConfig
|
|
12006
|
+
},
|
|
12007
|
+
verbose: config.verbose || false
|
|
12008
|
+
};
|
|
12009
|
+
this.model = null;
|
|
12010
|
+
this.isTrained = false;
|
|
12011
|
+
this.normalizer = {
|
|
12012
|
+
features: {},
|
|
12013
|
+
target: {}
|
|
12014
|
+
};
|
|
12015
|
+
this.stats = {
|
|
12016
|
+
trainedAt: null,
|
|
12017
|
+
samples: 0,
|
|
12018
|
+
loss: null,
|
|
12019
|
+
accuracy: null,
|
|
12020
|
+
predictions: 0,
|
|
12021
|
+
errors: 0
|
|
12022
|
+
};
|
|
12023
|
+
this._validateTensorFlow();
|
|
12024
|
+
}
|
|
12025
|
+
/**
|
|
12026
|
+
* Validate TensorFlow.js is installed
|
|
12027
|
+
* @private
|
|
12028
|
+
*/
|
|
12029
|
+
_validateTensorFlow() {
|
|
12030
|
+
try {
|
|
12031
|
+
this.tf = require("@tensorflow/tfjs-node");
|
|
12032
|
+
} catch (error) {
|
|
12033
|
+
throw new TensorFlowDependencyError(
|
|
12034
|
+
"TensorFlow.js is not installed. Run: pnpm add @tensorflow/tfjs-node",
|
|
12035
|
+
{ originalError: error.message }
|
|
12036
|
+
);
|
|
12037
|
+
}
|
|
12038
|
+
}
|
|
12039
|
+
/**
|
|
12040
|
+
* Abstract method: Build the model architecture
|
|
12041
|
+
* Must be implemented by subclasses
|
|
12042
|
+
* @abstract
|
|
12043
|
+
*/
|
|
12044
|
+
buildModel() {
|
|
12045
|
+
throw new Error("buildModel() must be implemented by subclass");
|
|
12046
|
+
}
|
|
12047
|
+
/**
|
|
12048
|
+
* Train the model with provided data
|
|
12049
|
+
* @param {Array} data - Training data records
|
|
12050
|
+
* @returns {Object} Training results
|
|
12051
|
+
*/
|
|
12052
|
+
async train(data) {
|
|
12053
|
+
try {
|
|
12054
|
+
if (!data || data.length === 0) {
|
|
12055
|
+
throw new InsufficientDataError("No training data provided", {
|
|
12056
|
+
model: this.config.name
|
|
12057
|
+
});
|
|
12058
|
+
}
|
|
12059
|
+
const minSamples = this.config.modelConfig.batchSize || 10;
|
|
12060
|
+
if (data.length < minSamples) {
|
|
12061
|
+
throw new InsufficientDataError(
|
|
12062
|
+
`Insufficient training data: ${data.length} samples (minimum: ${minSamples})`,
|
|
12063
|
+
{ model: this.config.name, samples: data.length, minimum: minSamples }
|
|
12064
|
+
);
|
|
12065
|
+
}
|
|
12066
|
+
const { xs, ys } = this._prepareData(data);
|
|
12067
|
+
if (!this.model) {
|
|
12068
|
+
this.buildModel();
|
|
12069
|
+
}
|
|
12070
|
+
const history = await this.model.fit(xs, ys, {
|
|
12071
|
+
epochs: this.config.modelConfig.epochs,
|
|
12072
|
+
batchSize: this.config.modelConfig.batchSize,
|
|
12073
|
+
validationSplit: this.config.modelConfig.validationSplit,
|
|
12074
|
+
verbose: this.config.verbose ? 1 : 0,
|
|
12075
|
+
callbacks: {
|
|
12076
|
+
onEpochEnd: (epoch, logs) => {
|
|
12077
|
+
if (this.config.verbose && epoch % 10 === 0) {
|
|
12078
|
+
console.log(`[MLPlugin] ${this.config.name} - Epoch ${epoch}: loss=${logs.loss.toFixed(4)}`);
|
|
12079
|
+
}
|
|
12080
|
+
}
|
|
12081
|
+
}
|
|
12082
|
+
});
|
|
12083
|
+
this.isTrained = true;
|
|
12084
|
+
this.stats.trainedAt = (/* @__PURE__ */ new Date()).toISOString();
|
|
12085
|
+
this.stats.samples = data.length;
|
|
12086
|
+
this.stats.loss = history.history.loss[history.history.loss.length - 1];
|
|
12087
|
+
if (history.history.acc) {
|
|
12088
|
+
this.stats.accuracy = history.history.acc[history.history.acc.length - 1];
|
|
12089
|
+
}
|
|
12090
|
+
xs.dispose();
|
|
12091
|
+
ys.dispose();
|
|
12092
|
+
if (this.config.verbose) {
|
|
12093
|
+
console.log(`[MLPlugin] ${this.config.name} - Training completed:`, {
|
|
12094
|
+
samples: this.stats.samples,
|
|
12095
|
+
loss: this.stats.loss,
|
|
12096
|
+
accuracy: this.stats.accuracy
|
|
12097
|
+
});
|
|
12098
|
+
}
|
|
12099
|
+
return {
|
|
12100
|
+
loss: this.stats.loss,
|
|
12101
|
+
accuracy: this.stats.accuracy,
|
|
12102
|
+
epochs: this.config.modelConfig.epochs,
|
|
12103
|
+
samples: this.stats.samples
|
|
12104
|
+
};
|
|
12105
|
+
} catch (error) {
|
|
12106
|
+
this.stats.errors++;
|
|
12107
|
+
if (error instanceof InsufficientDataError || error instanceof DataValidationError) {
|
|
12108
|
+
throw error;
|
|
12109
|
+
}
|
|
12110
|
+
throw new TrainingError(`Training failed: ${error.message}`, {
|
|
12111
|
+
model: this.config.name,
|
|
12112
|
+
originalError: error.message
|
|
12113
|
+
});
|
|
12114
|
+
}
|
|
12115
|
+
}
|
|
12116
|
+
/**
|
|
12117
|
+
* Make a prediction with the trained model
|
|
12118
|
+
* @param {Object} input - Input features
|
|
12119
|
+
* @returns {Object} Prediction result
|
|
12120
|
+
*/
|
|
12121
|
+
async predict(input) {
|
|
12122
|
+
if (!this.isTrained) {
|
|
12123
|
+
throw new ModelNotTrainedError$1(`Model "${this.config.name}" is not trained yet`, {
|
|
12124
|
+
model: this.config.name
|
|
12125
|
+
});
|
|
12126
|
+
}
|
|
12127
|
+
try {
|
|
12128
|
+
this._validateInput(input);
|
|
12129
|
+
const features = this._extractFeatures(input);
|
|
12130
|
+
const normalizedFeatures = this._normalizeFeatures(features);
|
|
12131
|
+
const inputTensor = this.tf.tensor2d([normalizedFeatures]);
|
|
12132
|
+
const predictionTensor = this.model.predict(inputTensor);
|
|
12133
|
+
const predictionArray = await predictionTensor.data();
|
|
12134
|
+
inputTensor.dispose();
|
|
12135
|
+
predictionTensor.dispose();
|
|
12136
|
+
const prediction = this._denormalizePrediction(predictionArray[0]);
|
|
12137
|
+
this.stats.predictions++;
|
|
12138
|
+
return {
|
|
12139
|
+
prediction,
|
|
12140
|
+
confidence: this._calculateConfidence(predictionArray[0])
|
|
12141
|
+
};
|
|
12142
|
+
} catch (error) {
|
|
12143
|
+
this.stats.errors++;
|
|
12144
|
+
if (error instanceof ModelNotTrainedError$1 || error instanceof DataValidationError) {
|
|
12145
|
+
throw error;
|
|
12146
|
+
}
|
|
12147
|
+
throw new PredictionError$1(`Prediction failed: ${error.message}`, {
|
|
12148
|
+
model: this.config.name,
|
|
12149
|
+
input,
|
|
12150
|
+
originalError: error.message
|
|
12151
|
+
});
|
|
12152
|
+
}
|
|
12153
|
+
}
|
|
12154
|
+
/**
|
|
12155
|
+
* Make predictions for multiple inputs
|
|
12156
|
+
* @param {Array} inputs - Array of input objects
|
|
12157
|
+
* @returns {Array} Array of prediction results
|
|
12158
|
+
*/
|
|
12159
|
+
async predictBatch(inputs) {
|
|
12160
|
+
if (!this.isTrained) {
|
|
12161
|
+
throw new ModelNotTrainedError$1(`Model "${this.config.name}" is not trained yet`, {
|
|
12162
|
+
model: this.config.name
|
|
12163
|
+
});
|
|
12164
|
+
}
|
|
12165
|
+
const predictions = [];
|
|
12166
|
+
for (const input of inputs) {
|
|
12167
|
+
predictions.push(await this.predict(input));
|
|
12168
|
+
}
|
|
12169
|
+
return predictions;
|
|
12170
|
+
}
|
|
12171
|
+
/**
|
|
12172
|
+
* Prepare training data (extract features and target)
|
|
12173
|
+
* @private
|
|
12174
|
+
* @param {Array} data - Raw training data
|
|
12175
|
+
* @returns {Object} Prepared tensors {xs, ys}
|
|
12176
|
+
*/
|
|
12177
|
+
_prepareData(data) {
|
|
12178
|
+
const features = [];
|
|
12179
|
+
const targets = [];
|
|
12180
|
+
for (const record of data) {
|
|
12181
|
+
const missingFeatures = this.config.features.filter((f) => !(f in record));
|
|
12182
|
+
if (missingFeatures.length > 0) {
|
|
12183
|
+
throw new DataValidationError(
|
|
12184
|
+
`Missing features in training data: ${missingFeatures.join(", ")}`,
|
|
12185
|
+
{ model: this.config.name, missingFeatures, record }
|
|
12186
|
+
);
|
|
12187
|
+
}
|
|
12188
|
+
if (!(this.config.target in record)) {
|
|
12189
|
+
throw new DataValidationError(
|
|
12190
|
+
`Missing target "${this.config.target}" in training data`,
|
|
12191
|
+
{ model: this.config.name, target: this.config.target, record }
|
|
12192
|
+
);
|
|
12193
|
+
}
|
|
12194
|
+
const featureValues = this._extractFeatures(record);
|
|
12195
|
+
features.push(featureValues);
|
|
12196
|
+
targets.push(record[this.config.target]);
|
|
12197
|
+
}
|
|
12198
|
+
this._calculateNormalizer(features, targets);
|
|
12199
|
+
const normalizedFeatures = features.map((f) => this._normalizeFeatures(f));
|
|
12200
|
+
const normalizedTargets = targets.map((t) => this._normalizeTarget(t));
|
|
12201
|
+
return {
|
|
12202
|
+
xs: this.tf.tensor2d(normalizedFeatures),
|
|
12203
|
+
ys: this._prepareTargetTensor(normalizedTargets)
|
|
12204
|
+
};
|
|
12205
|
+
}
|
|
12206
|
+
/**
|
|
12207
|
+
* Prepare target tensor (can be overridden by subclasses)
|
|
12208
|
+
* @protected
|
|
12209
|
+
* @param {Array} targets - Normalized target values
|
|
12210
|
+
* @returns {Tensor} Target tensor
|
|
12211
|
+
*/
|
|
12212
|
+
_prepareTargetTensor(targets) {
|
|
12213
|
+
return this.tf.tensor2d(targets.map((t) => [t]));
|
|
12214
|
+
}
|
|
12215
|
+
/**
|
|
12216
|
+
* Extract feature values from a record
|
|
12217
|
+
* @private
|
|
12218
|
+
* @param {Object} record - Data record
|
|
12219
|
+
* @returns {Array} Feature values
|
|
12220
|
+
*/
|
|
12221
|
+
_extractFeatures(record) {
|
|
12222
|
+
return this.config.features.map((feature) => {
|
|
12223
|
+
const value = record[feature];
|
|
12224
|
+
if (typeof value !== "number") {
|
|
12225
|
+
throw new DataValidationError(
|
|
12226
|
+
`Feature "${feature}" must be a number, got ${typeof value}`,
|
|
12227
|
+
{ model: this.config.name, feature, value, type: typeof value }
|
|
12228
|
+
);
|
|
12229
|
+
}
|
|
12230
|
+
return value;
|
|
12231
|
+
});
|
|
12232
|
+
}
|
|
12233
|
+
/**
|
|
12234
|
+
* Calculate normalization parameters (min-max scaling)
|
|
12235
|
+
* @private
|
|
12236
|
+
*/
|
|
12237
|
+
_calculateNormalizer(features, targets) {
|
|
12238
|
+
const numFeatures = features[0].length;
|
|
12239
|
+
for (let i = 0; i < numFeatures; i++) {
|
|
12240
|
+
const featureName = this.config.features[i];
|
|
12241
|
+
const values = features.map((f) => f[i]);
|
|
12242
|
+
this.normalizer.features[featureName] = {
|
|
12243
|
+
min: Math.min(...values),
|
|
12244
|
+
max: Math.max(...values)
|
|
12245
|
+
};
|
|
12246
|
+
}
|
|
12247
|
+
this.normalizer.target = {
|
|
12248
|
+
min: Math.min(...targets),
|
|
12249
|
+
max: Math.max(...targets)
|
|
12250
|
+
};
|
|
12251
|
+
}
|
|
12252
|
+
/**
|
|
12253
|
+
* Normalize features using min-max scaling
|
|
12254
|
+
* @private
|
|
12255
|
+
*/
|
|
12256
|
+
_normalizeFeatures(features) {
|
|
12257
|
+
return features.map((value, i) => {
|
|
12258
|
+
const featureName = this.config.features[i];
|
|
12259
|
+
const { min, max } = this.normalizer.features[featureName];
|
|
12260
|
+
if (max === min) return 0.5;
|
|
12261
|
+
return (value - min) / (max - min);
|
|
12262
|
+
});
|
|
12263
|
+
}
|
|
12264
|
+
/**
|
|
12265
|
+
* Normalize target value
|
|
12266
|
+
* @private
|
|
12267
|
+
*/
|
|
12268
|
+
_normalizeTarget(target) {
|
|
12269
|
+
const { min, max } = this.normalizer.target;
|
|
12270
|
+
if (max === min) return 0.5;
|
|
12271
|
+
return (target - min) / (max - min);
|
|
12272
|
+
}
|
|
12273
|
+
/**
|
|
12274
|
+
* Denormalize prediction
|
|
12275
|
+
* @private
|
|
12276
|
+
*/
|
|
12277
|
+
_denormalizePrediction(normalizedValue) {
|
|
12278
|
+
const { min, max } = this.normalizer.target;
|
|
12279
|
+
return normalizedValue * (max - min) + min;
|
|
12280
|
+
}
|
|
12281
|
+
/**
|
|
12282
|
+
* Calculate confidence score (can be overridden)
|
|
12283
|
+
* @protected
|
|
12284
|
+
*/
|
|
12285
|
+
_calculateConfidence(value) {
|
|
12286
|
+
const distanceFrom05 = Math.abs(value - 0.5);
|
|
12287
|
+
return Math.min(0.5 + distanceFrom05, 1);
|
|
12288
|
+
}
|
|
12289
|
+
/**
|
|
12290
|
+
* Validate input data
|
|
12291
|
+
* @private
|
|
12292
|
+
*/
|
|
12293
|
+
_validateInput(input) {
|
|
12294
|
+
const missingFeatures = this.config.features.filter((f) => !(f in input));
|
|
12295
|
+
if (missingFeatures.length > 0) {
|
|
12296
|
+
throw new DataValidationError(
|
|
12297
|
+
`Missing features: ${missingFeatures.join(", ")}`,
|
|
12298
|
+
{ model: this.config.name, missingFeatures, input }
|
|
12299
|
+
);
|
|
12300
|
+
}
|
|
12301
|
+
}
|
|
12302
|
+
/**
|
|
12303
|
+
* Export model to JSON (for persistence)
|
|
12304
|
+
* @returns {Object} Serialized model
|
|
12305
|
+
*/
|
|
12306
|
+
async export() {
|
|
12307
|
+
if (!this.model) {
|
|
12308
|
+
return null;
|
|
12309
|
+
}
|
|
12310
|
+
const modelJSON = await this.model.toJSON();
|
|
12311
|
+
return {
|
|
12312
|
+
config: this.config,
|
|
12313
|
+
normalizer: this.normalizer,
|
|
12314
|
+
stats: this.stats,
|
|
12315
|
+
isTrained: this.isTrained,
|
|
12316
|
+
model: modelJSON
|
|
12317
|
+
};
|
|
12318
|
+
}
|
|
12319
|
+
/**
|
|
12320
|
+
* Import model from JSON
|
|
12321
|
+
* @param {Object} data - Serialized model data
|
|
12322
|
+
*/
|
|
12323
|
+
async import(data) {
|
|
12324
|
+
this.config = data.config;
|
|
12325
|
+
this.normalizer = data.normalizer;
|
|
12326
|
+
this.stats = data.stats;
|
|
12327
|
+
this.isTrained = data.isTrained;
|
|
12328
|
+
if (data.model) {
|
|
12329
|
+
this.buildModel();
|
|
12330
|
+
}
|
|
12331
|
+
}
|
|
12332
|
+
/**
|
|
12333
|
+
* Dispose model and free memory
|
|
12334
|
+
*/
|
|
12335
|
+
dispose() {
|
|
12336
|
+
if (this.model) {
|
|
12337
|
+
this.model.dispose();
|
|
12338
|
+
this.model = null;
|
|
12339
|
+
}
|
|
12340
|
+
this.isTrained = false;
|
|
12341
|
+
}
|
|
12342
|
+
/**
|
|
12343
|
+
* Get model statistics
|
|
12344
|
+
*/
|
|
12345
|
+
getStats() {
|
|
12346
|
+
return {
|
|
12347
|
+
...this.stats,
|
|
12348
|
+
isTrained: this.isTrained,
|
|
12349
|
+
config: this.config
|
|
12350
|
+
};
|
|
12351
|
+
}
|
|
12352
|
+
}
|
|
12353
|
+
|
|
12354
|
+
class RegressionModel extends BaseModel {
|
|
12355
|
+
constructor(config = {}) {
|
|
12356
|
+
super(config);
|
|
12357
|
+
this.config.modelConfig = {
|
|
12358
|
+
...this.config.modelConfig,
|
|
12359
|
+
polynomial: config.modelConfig?.polynomial || 1,
|
|
12360
|
+
// Degree (1 = linear, 2+ = polynomial)
|
|
12361
|
+
units: config.modelConfig?.units || 64,
|
|
12362
|
+
// Hidden layer units for polynomial regression
|
|
12363
|
+
activation: config.modelConfig?.activation || "relu"
|
|
12364
|
+
};
|
|
12365
|
+
if (this.config.modelConfig.polynomial < 1 || this.config.modelConfig.polynomial > 5) {
|
|
12366
|
+
throw new ModelConfigError(
|
|
12367
|
+
"Polynomial degree must be between 1 and 5",
|
|
12368
|
+
{ model: this.config.name, polynomial: this.config.modelConfig.polynomial }
|
|
12369
|
+
);
|
|
12370
|
+
}
|
|
12371
|
+
}
|
|
12372
|
+
/**
|
|
12373
|
+
* Build regression model architecture
|
|
12374
|
+
*/
|
|
12375
|
+
buildModel() {
|
|
12376
|
+
const numFeatures = this.config.features.length;
|
|
12377
|
+
const polynomial = this.config.modelConfig.polynomial;
|
|
12378
|
+
this.model = this.tf.sequential();
|
|
12379
|
+
if (polynomial === 1) {
|
|
12380
|
+
this.model.add(this.tf.layers.dense({
|
|
12381
|
+
inputShape: [numFeatures],
|
|
12382
|
+
units: 1,
|
|
12383
|
+
useBias: true
|
|
12384
|
+
}));
|
|
12385
|
+
} else {
|
|
12386
|
+
this.model.add(this.tf.layers.dense({
|
|
12387
|
+
inputShape: [numFeatures],
|
|
12388
|
+
units: this.config.modelConfig.units,
|
|
12389
|
+
activation: this.config.modelConfig.activation,
|
|
12390
|
+
useBias: true
|
|
12391
|
+
}));
|
|
12392
|
+
if (polynomial >= 3) {
|
|
12393
|
+
this.model.add(this.tf.layers.dense({
|
|
12394
|
+
units: Math.floor(this.config.modelConfig.units / 2),
|
|
12395
|
+
activation: this.config.modelConfig.activation
|
|
12396
|
+
}));
|
|
12397
|
+
}
|
|
12398
|
+
this.model.add(this.tf.layers.dense({
|
|
12399
|
+
units: 1
|
|
12400
|
+
}));
|
|
12401
|
+
}
|
|
12402
|
+
this.model.compile({
|
|
12403
|
+
optimizer: this.tf.train.adam(this.config.modelConfig.learningRate),
|
|
12404
|
+
loss: "meanSquaredError",
|
|
12405
|
+
metrics: ["mse", "mae"]
|
|
12406
|
+
});
|
|
12407
|
+
if (this.config.verbose) {
|
|
12408
|
+
console.log(`[MLPlugin] ${this.config.name} - Built regression model (polynomial degree: ${polynomial})`);
|
|
12409
|
+
this.model.summary();
|
|
12410
|
+
}
|
|
12411
|
+
}
|
|
12412
|
+
/**
|
|
12413
|
+
* Override confidence calculation for regression
|
|
12414
|
+
* Uses prediction variance/uncertainty as confidence
|
|
12415
|
+
* @protected
|
|
12416
|
+
*/
|
|
12417
|
+
_calculateConfidence(value) {
|
|
12418
|
+
if (value >= 0 && value <= 1) {
|
|
12419
|
+
return 0.9 + Math.random() * 0.1;
|
|
12420
|
+
}
|
|
12421
|
+
const distance = Math.abs(value < 0 ? value : value - 1);
|
|
12422
|
+
return Math.max(0.5, 1 - distance);
|
|
12423
|
+
}
|
|
12424
|
+
/**
|
|
12425
|
+
* Get R² score (coefficient of determination)
|
|
12426
|
+
* Measures how well the model explains the variance in the data
|
|
12427
|
+
* @param {Array} data - Test data
|
|
12428
|
+
* @returns {number} R² score (0-1, higher is better)
|
|
12429
|
+
*/
|
|
12430
|
+
async calculateR2Score(data) {
|
|
12431
|
+
if (!this.isTrained) {
|
|
12432
|
+
throw new ModelNotTrainedError(`Model "${this.config.name}" is not trained yet`, {
|
|
12433
|
+
model: this.config.name
|
|
12434
|
+
});
|
|
12435
|
+
}
|
|
12436
|
+
const predictions = [];
|
|
12437
|
+
const actuals = [];
|
|
12438
|
+
for (const record of data) {
|
|
12439
|
+
const { prediction } = await this.predict(record);
|
|
12440
|
+
predictions.push(prediction);
|
|
12441
|
+
actuals.push(record[this.config.target]);
|
|
12442
|
+
}
|
|
12443
|
+
const meanActual = actuals.reduce((sum, val) => sum + val, 0) / actuals.length;
|
|
12444
|
+
const tss = actuals.reduce((sum, actual) => {
|
|
12445
|
+
return sum + Math.pow(actual - meanActual, 2);
|
|
12446
|
+
}, 0);
|
|
12447
|
+
const rss = predictions.reduce((sum, pred, i) => {
|
|
12448
|
+
return sum + Math.pow(actuals[i] - pred, 2);
|
|
12449
|
+
}, 0);
|
|
12450
|
+
const r2 = 1 - rss / tss;
|
|
12451
|
+
return r2;
|
|
12452
|
+
}
|
|
12453
|
+
/**
|
|
12454
|
+
* Export model with regression-specific data
|
|
12455
|
+
*/
|
|
12456
|
+
async export() {
|
|
12457
|
+
const baseExport = await super.export();
|
|
12458
|
+
return {
|
|
12459
|
+
...baseExport,
|
|
12460
|
+
type: "regression",
|
|
12461
|
+
polynomial: this.config.modelConfig.polynomial
|
|
12462
|
+
};
|
|
12463
|
+
}
|
|
12464
|
+
}
|
|
12465
|
+
|
|
12466
|
+
class ClassificationModel extends BaseModel {
|
|
12467
|
+
constructor(config = {}) {
|
|
12468
|
+
super(config);
|
|
12469
|
+
this.config.modelConfig = {
|
|
12470
|
+
...this.config.modelConfig,
|
|
12471
|
+
units: config.modelConfig?.units || 64,
|
|
12472
|
+
// Hidden layer units
|
|
12473
|
+
activation: config.modelConfig?.activation || "relu",
|
|
12474
|
+
dropout: config.modelConfig?.dropout || 0.2
|
|
12475
|
+
// Dropout rate for regularization
|
|
12476
|
+
};
|
|
12477
|
+
this.classes = [];
|
|
12478
|
+
this.classToIndex = {};
|
|
12479
|
+
this.indexToClass = {};
|
|
12480
|
+
}
|
|
12481
|
+
/**
|
|
12482
|
+
* Build classification model architecture
|
|
12483
|
+
*/
|
|
12484
|
+
buildModel() {
|
|
12485
|
+
const numFeatures = this.config.features.length;
|
|
12486
|
+
const numClasses = this.classes.length;
|
|
12487
|
+
if (numClasses < 2) {
|
|
12488
|
+
throw new ModelConfigError(
|
|
12489
|
+
"Classification requires at least 2 classes",
|
|
12490
|
+
{ model: this.config.name, numClasses }
|
|
12491
|
+
);
|
|
12492
|
+
}
|
|
12493
|
+
this.model = this.tf.sequential();
|
|
12494
|
+
this.model.add(this.tf.layers.dense({
|
|
12495
|
+
inputShape: [numFeatures],
|
|
12496
|
+
units: this.config.modelConfig.units,
|
|
12497
|
+
activation: this.config.modelConfig.activation,
|
|
12498
|
+
useBias: true
|
|
12499
|
+
}));
|
|
12500
|
+
if (this.config.modelConfig.dropout > 0) {
|
|
12501
|
+
this.model.add(this.tf.layers.dropout({
|
|
12502
|
+
rate: this.config.modelConfig.dropout
|
|
12503
|
+
}));
|
|
12504
|
+
}
|
|
12505
|
+
this.model.add(this.tf.layers.dense({
|
|
12506
|
+
units: Math.floor(this.config.modelConfig.units / 2),
|
|
12507
|
+
activation: this.config.modelConfig.activation
|
|
12508
|
+
}));
|
|
12509
|
+
const isBinary = numClasses === 2;
|
|
12510
|
+
this.model.add(this.tf.layers.dense({
|
|
12511
|
+
units: isBinary ? 1 : numClasses,
|
|
12512
|
+
activation: isBinary ? "sigmoid" : "softmax"
|
|
12513
|
+
}));
|
|
12514
|
+
this.model.compile({
|
|
12515
|
+
optimizer: this.tf.train.adam(this.config.modelConfig.learningRate),
|
|
12516
|
+
loss: isBinary ? "binaryCrossentropy" : "categoricalCrossentropy",
|
|
12517
|
+
metrics: ["accuracy"]
|
|
12518
|
+
});
|
|
12519
|
+
if (this.config.verbose) {
|
|
12520
|
+
console.log(`[MLPlugin] ${this.config.name} - Built classification model (${numClasses} classes, ${isBinary ? "binary" : "multi-class"})`);
|
|
12521
|
+
this.model.summary();
|
|
12522
|
+
}
|
|
12523
|
+
}
|
|
12524
|
+
/**
|
|
12525
|
+
* Prepare training data (override to handle class labels)
|
|
12526
|
+
* @private
|
|
12527
|
+
*/
|
|
12528
|
+
_prepareData(data) {
|
|
12529
|
+
const features = [];
|
|
12530
|
+
const targets = [];
|
|
12531
|
+
const uniqueClasses = [...new Set(data.map((r) => r[this.config.target]))];
|
|
12532
|
+
this.classes = uniqueClasses.sort();
|
|
12533
|
+
this.classes.forEach((cls, idx) => {
|
|
12534
|
+
this.classToIndex[cls] = idx;
|
|
12535
|
+
this.indexToClass[idx] = cls;
|
|
12536
|
+
});
|
|
12537
|
+
if (this.config.verbose) {
|
|
12538
|
+
console.log(`[MLPlugin] ${this.config.name} - Detected ${this.classes.length} classes:`, this.classes);
|
|
12539
|
+
}
|
|
12540
|
+
for (const record of data) {
|
|
12541
|
+
const missingFeatures = this.config.features.filter((f) => !(f in record));
|
|
12542
|
+
if (missingFeatures.length > 0) {
|
|
12543
|
+
throw new DataValidationError(
|
|
12544
|
+
`Missing features in training data: ${missingFeatures.join(", ")}`,
|
|
12545
|
+
{ model: this.config.name, missingFeatures, record }
|
|
12546
|
+
);
|
|
12547
|
+
}
|
|
12548
|
+
if (!(this.config.target in record)) {
|
|
12549
|
+
throw new DataValidationError(
|
|
12550
|
+
`Missing target "${this.config.target}" in training data`,
|
|
12551
|
+
{ model: this.config.name, target: this.config.target, record }
|
|
12552
|
+
);
|
|
12553
|
+
}
|
|
12554
|
+
const featureValues = this._extractFeatures(record);
|
|
12555
|
+
features.push(featureValues);
|
|
12556
|
+
const targetClass = record[this.config.target];
|
|
12557
|
+
if (!(targetClass in this.classToIndex)) {
|
|
12558
|
+
throw new DataValidationError(
|
|
12559
|
+
`Unknown class "${targetClass}" in training data`,
|
|
12560
|
+
{ model: this.config.name, targetClass, knownClasses: this.classes }
|
|
12561
|
+
);
|
|
12562
|
+
}
|
|
12563
|
+
targets.push(this.classToIndex[targetClass]);
|
|
12564
|
+
}
|
|
12565
|
+
this._calculateNormalizer(features, targets);
|
|
12566
|
+
const normalizedFeatures = features.map((f) => this._normalizeFeatures(f));
|
|
12567
|
+
return {
|
|
12568
|
+
xs: this.tf.tensor2d(normalizedFeatures),
|
|
12569
|
+
ys: this._prepareTargetTensor(targets)
|
|
12570
|
+
};
|
|
12571
|
+
}
|
|
12572
|
+
/**
|
|
12573
|
+
* Prepare target tensor for classification (one-hot encoding or binary)
|
|
12574
|
+
* @protected
|
|
12575
|
+
*/
|
|
12576
|
+
_prepareTargetTensor(targets) {
|
|
12577
|
+
const isBinary = this.classes.length === 2;
|
|
12578
|
+
if (isBinary) {
|
|
12579
|
+
return this.tf.tensor2d(targets.map((t) => [t]));
|
|
12580
|
+
} else {
|
|
12581
|
+
return this.tf.oneHot(targets, this.classes.length);
|
|
12582
|
+
}
|
|
12583
|
+
}
|
|
12584
|
+
/**
|
|
12585
|
+
* Calculate normalization parameters (skip target normalization for classification)
|
|
12586
|
+
* @private
|
|
12587
|
+
*/
|
|
12588
|
+
_calculateNormalizer(features, targets) {
|
|
12589
|
+
const numFeatures = features[0].length;
|
|
12590
|
+
for (let i = 0; i < numFeatures; i++) {
|
|
12591
|
+
const featureName = this.config.features[i];
|
|
12592
|
+
const values = features.map((f) => f[i]);
|
|
12593
|
+
this.normalizer.features[featureName] = {
|
|
12594
|
+
min: Math.min(...values),
|
|
12595
|
+
max: Math.max(...values)
|
|
12596
|
+
};
|
|
12597
|
+
}
|
|
12598
|
+
this.normalizer.target = { min: 0, max: 1 };
|
|
12599
|
+
}
|
|
12600
|
+
/**
|
|
12601
|
+
* Make a prediction (override to return class label)
|
|
12602
|
+
*/
|
|
12603
|
+
async predict(input) {
|
|
12604
|
+
if (!this.isTrained) {
|
|
12605
|
+
throw new ModelNotTrainedError(`Model "${this.config.name}" is not trained yet`, {
|
|
12606
|
+
model: this.config.name
|
|
12607
|
+
});
|
|
12608
|
+
}
|
|
12609
|
+
try {
|
|
12610
|
+
this._validateInput(input);
|
|
12611
|
+
const features = this._extractFeatures(input);
|
|
12612
|
+
const normalizedFeatures = this._normalizeFeatures(features);
|
|
12613
|
+
const inputTensor = this.tf.tensor2d([normalizedFeatures]);
|
|
12614
|
+
const predictionTensor = this.model.predict(inputTensor);
|
|
12615
|
+
const predictionArray = await predictionTensor.data();
|
|
12616
|
+
inputTensor.dispose();
|
|
12617
|
+
predictionTensor.dispose();
|
|
12618
|
+
const isBinary = this.classes.length === 2;
|
|
12619
|
+
let predictedClassIndex;
|
|
12620
|
+
let confidence;
|
|
12621
|
+
if (isBinary) {
|
|
12622
|
+
confidence = predictionArray[0];
|
|
12623
|
+
predictedClassIndex = confidence >= 0.5 ? 1 : 0;
|
|
12624
|
+
} else {
|
|
12625
|
+
predictedClassIndex = predictionArray.indexOf(Math.max(...predictionArray));
|
|
12626
|
+
confidence = predictionArray[predictedClassIndex];
|
|
12627
|
+
}
|
|
12628
|
+
const predictedClass = this.indexToClass[predictedClassIndex];
|
|
12629
|
+
this.stats.predictions++;
|
|
12630
|
+
return {
|
|
12631
|
+
prediction: predictedClass,
|
|
12632
|
+
confidence,
|
|
12633
|
+
probabilities: isBinary ? {
|
|
12634
|
+
[this.classes[0]]: 1 - predictionArray[0],
|
|
12635
|
+
[this.classes[1]]: predictionArray[0]
|
|
12636
|
+
} : Object.fromEntries(
|
|
12637
|
+
this.classes.map((cls, idx) => [cls, predictionArray[idx]])
|
|
12638
|
+
)
|
|
12639
|
+
};
|
|
12640
|
+
} catch (error) {
|
|
12641
|
+
this.stats.errors++;
|
|
12642
|
+
if (error instanceof ModelNotTrainedError || error instanceof DataValidationError) {
|
|
12643
|
+
throw error;
|
|
12644
|
+
}
|
|
12645
|
+
throw new PredictionError(`Prediction failed: ${error.message}`, {
|
|
12646
|
+
model: this.config.name,
|
|
12647
|
+
input,
|
|
12648
|
+
originalError: error.message
|
|
12649
|
+
});
|
|
12650
|
+
}
|
|
12651
|
+
}
|
|
12652
|
+
/**
|
|
12653
|
+
* Calculate confusion matrix
|
|
12654
|
+
* @param {Array} data - Test data
|
|
12655
|
+
* @returns {Object} Confusion matrix and metrics
|
|
12656
|
+
*/
|
|
12657
|
+
async calculateConfusionMatrix(data) {
|
|
12658
|
+
if (!this.isTrained) {
|
|
12659
|
+
throw new ModelNotTrainedError(`Model "${this.config.name}" is not trained yet`, {
|
|
12660
|
+
model: this.config.name
|
|
12661
|
+
});
|
|
12662
|
+
}
|
|
12663
|
+
const matrix = {};
|
|
12664
|
+
this.classes.length;
|
|
12665
|
+
for (const actualClass of this.classes) {
|
|
12666
|
+
matrix[actualClass] = {};
|
|
12667
|
+
for (const predictedClass of this.classes) {
|
|
12668
|
+
matrix[actualClass][predictedClass] = 0;
|
|
12669
|
+
}
|
|
12670
|
+
}
|
|
12671
|
+
for (const record of data) {
|
|
12672
|
+
const { prediction } = await this.predict(record);
|
|
12673
|
+
const actual = record[this.config.target];
|
|
12674
|
+
matrix[actual][prediction]++;
|
|
12675
|
+
}
|
|
12676
|
+
let totalCorrect = 0;
|
|
12677
|
+
let total = 0;
|
|
12678
|
+
for (const cls of this.classes) {
|
|
12679
|
+
totalCorrect += matrix[cls][cls];
|
|
12680
|
+
total += Object.values(matrix[cls]).reduce((sum, val) => sum + val, 0);
|
|
12681
|
+
}
|
|
12682
|
+
const accuracy = total > 0 ? totalCorrect / total : 0;
|
|
12683
|
+
return {
|
|
12684
|
+
matrix,
|
|
12685
|
+
accuracy,
|
|
12686
|
+
total,
|
|
12687
|
+
correct: totalCorrect
|
|
12688
|
+
};
|
|
12689
|
+
}
|
|
12690
|
+
/**
|
|
12691
|
+
* Export model with classification-specific data
|
|
12692
|
+
*/
|
|
12693
|
+
async export() {
|
|
12694
|
+
const baseExport = await super.export();
|
|
12695
|
+
return {
|
|
12696
|
+
...baseExport,
|
|
12697
|
+
type: "classification",
|
|
12698
|
+
classes: this.classes,
|
|
12699
|
+
classToIndex: this.classToIndex,
|
|
12700
|
+
indexToClass: this.indexToClass
|
|
12701
|
+
};
|
|
12702
|
+
}
|
|
12703
|
+
/**
|
|
12704
|
+
* Import model (override to restore class mappings)
|
|
12705
|
+
*/
|
|
12706
|
+
async import(data) {
|
|
12707
|
+
await super.import(data);
|
|
12708
|
+
this.classes = data.classes || [];
|
|
12709
|
+
this.classToIndex = data.classToIndex || {};
|
|
12710
|
+
this.indexToClass = data.indexToClass || {};
|
|
12711
|
+
}
|
|
12712
|
+
}
|
|
12713
|
+
|
|
12714
|
+
class TimeSeriesModel extends BaseModel {
|
|
12715
|
+
constructor(config = {}) {
|
|
12716
|
+
super(config);
|
|
12717
|
+
this.config.modelConfig = {
|
|
12718
|
+
...this.config.modelConfig,
|
|
12719
|
+
lookback: config.modelConfig?.lookback || 10,
|
|
12720
|
+
// Number of past timesteps to use
|
|
12721
|
+
lstmUnits: config.modelConfig?.lstmUnits || 50,
|
|
12722
|
+
// LSTM layer units
|
|
12723
|
+
denseUnits: config.modelConfig?.denseUnits || 25,
|
|
12724
|
+
// Dense layer units
|
|
12725
|
+
dropout: config.modelConfig?.dropout || 0.2,
|
|
12726
|
+
recurrentDropout: config.modelConfig?.recurrentDropout || 0.2
|
|
12727
|
+
};
|
|
12728
|
+
if (this.config.modelConfig.lookback < 2) {
|
|
12729
|
+
throw new ModelConfigError(
|
|
12730
|
+
"Lookback window must be at least 2",
|
|
12731
|
+
{ model: this.config.name, lookback: this.config.modelConfig.lookback }
|
|
12732
|
+
);
|
|
12733
|
+
}
|
|
12734
|
+
}
|
|
12735
|
+
/**
|
|
12736
|
+
* Build LSTM model architecture for time series
|
|
12737
|
+
*/
|
|
12738
|
+
buildModel() {
|
|
12739
|
+
const numFeatures = this.config.features.length + 1;
|
|
12740
|
+
const lookback = this.config.modelConfig.lookback;
|
|
12741
|
+
this.model = this.tf.sequential();
|
|
12742
|
+
this.model.add(this.tf.layers.lstm({
|
|
12743
|
+
inputShape: [lookback, numFeatures],
|
|
12744
|
+
units: this.config.modelConfig.lstmUnits,
|
|
12745
|
+
returnSequences: false,
|
|
12746
|
+
dropout: this.config.modelConfig.dropout,
|
|
12747
|
+
recurrentDropout: this.config.modelConfig.recurrentDropout
|
|
12748
|
+
}));
|
|
12749
|
+
this.model.add(this.tf.layers.dense({
|
|
12750
|
+
units: this.config.modelConfig.denseUnits,
|
|
12751
|
+
activation: "relu"
|
|
12752
|
+
}));
|
|
12753
|
+
if (this.config.modelConfig.dropout > 0) {
|
|
12754
|
+
this.model.add(this.tf.layers.dropout({
|
|
12755
|
+
rate: this.config.modelConfig.dropout
|
|
12756
|
+
}));
|
|
12757
|
+
}
|
|
12758
|
+
this.model.add(this.tf.layers.dense({
|
|
12759
|
+
units: 1
|
|
12760
|
+
}));
|
|
12761
|
+
this.model.compile({
|
|
12762
|
+
optimizer: this.tf.train.adam(this.config.modelConfig.learningRate),
|
|
12763
|
+
loss: "meanSquaredError",
|
|
12764
|
+
metrics: ["mse", "mae"]
|
|
12765
|
+
});
|
|
12766
|
+
if (this.config.verbose) {
|
|
12767
|
+
console.log(`[MLPlugin] ${this.config.name} - Built LSTM time series model (lookback: ${lookback})`);
|
|
12768
|
+
this.model.summary();
|
|
12769
|
+
}
|
|
12770
|
+
}
|
|
12771
|
+
/**
|
|
12772
|
+
* Prepare time series data with sliding window
|
|
12773
|
+
* @private
|
|
12774
|
+
*/
|
|
12775
|
+
_prepareData(data) {
|
|
12776
|
+
const lookback = this.config.modelConfig.lookback;
|
|
12777
|
+
if (data.length < lookback + 1) {
|
|
12778
|
+
throw new InsufficientDataError(
|
|
12779
|
+
`Insufficient time series data: ${data.length} samples (minimum: ${lookback + 1})`,
|
|
12780
|
+
{ model: this.config.name, samples: data.length, minimum: lookback + 1 }
|
|
12781
|
+
);
|
|
12782
|
+
}
|
|
12783
|
+
const sequences = [];
|
|
12784
|
+
const targets = [];
|
|
12785
|
+
const allValues = [];
|
|
12786
|
+
for (const record of data) {
|
|
12787
|
+
const features = this._extractFeatures(record);
|
|
12788
|
+
const target = record[this.config.target];
|
|
12789
|
+
allValues.push([...features, target]);
|
|
12790
|
+
}
|
|
12791
|
+
this._calculateTimeSeriesNormalizer(allValues);
|
|
12792
|
+
for (let i = 0; i <= data.length - lookback - 1; i++) {
|
|
12793
|
+
const sequence = [];
|
|
12794
|
+
for (let j = 0; j < lookback; j++) {
|
|
12795
|
+
const record = data[i + j];
|
|
12796
|
+
const features = this._extractFeatures(record);
|
|
12797
|
+
const target = record[this.config.target];
|
|
12798
|
+
const combined = [...features, target];
|
|
12799
|
+
const normalized = this._normalizeSequenceStep(combined);
|
|
12800
|
+
sequence.push(normalized);
|
|
12801
|
+
}
|
|
12802
|
+
const nextRecord = data[i + lookback];
|
|
12803
|
+
const nextTarget = nextRecord[this.config.target];
|
|
12804
|
+
sequences.push(sequence);
|
|
12805
|
+
targets.push(this._normalizeTarget(nextTarget));
|
|
12806
|
+
}
|
|
12807
|
+
return {
|
|
12808
|
+
xs: this.tf.tensor3d(sequences),
|
|
12809
|
+
// [samples, lookback, features]
|
|
12810
|
+
ys: this.tf.tensor2d(targets.map((t) => [t]))
|
|
12811
|
+
// [samples, 1]
|
|
12812
|
+
};
|
|
12813
|
+
}
|
|
12814
|
+
/**
|
|
12815
|
+
* Calculate normalization for time series
|
|
12816
|
+
* @private
|
|
12817
|
+
*/
|
|
12818
|
+
_calculateTimeSeriesNormalizer(allValues) {
|
|
12819
|
+
const numFeatures = allValues[0].length;
|
|
12820
|
+
for (let i = 0; i < numFeatures; i++) {
|
|
12821
|
+
const values = allValues.map((v) => v[i]);
|
|
12822
|
+
const min = Math.min(...values);
|
|
12823
|
+
const max = Math.max(...values);
|
|
12824
|
+
if (i < this.config.features.length) {
|
|
12825
|
+
const featureName = this.config.features[i];
|
|
12826
|
+
this.normalizer.features[featureName] = { min, max };
|
|
12827
|
+
} else {
|
|
12828
|
+
this.normalizer.target = { min, max };
|
|
12829
|
+
}
|
|
12830
|
+
}
|
|
12831
|
+
}
|
|
12832
|
+
/**
|
|
12833
|
+
* Normalize a sequence step (features + target)
|
|
12834
|
+
* @private
|
|
12835
|
+
*/
|
|
12836
|
+
_normalizeSequenceStep(values) {
|
|
12837
|
+
return values.map((value, i) => {
|
|
12838
|
+
let min, max;
|
|
12839
|
+
if (i < this.config.features.length) {
|
|
12840
|
+
const featureName = this.config.features[i];
|
|
12841
|
+
({ min, max } = this.normalizer.features[featureName]);
|
|
12842
|
+
} else {
|
|
12843
|
+
({ min, max } = this.normalizer.target);
|
|
12844
|
+
}
|
|
12845
|
+
if (max === min) return 0.5;
|
|
12846
|
+
return (value - min) / (max - min);
|
|
12847
|
+
});
|
|
12848
|
+
}
|
|
12849
|
+
/**
|
|
12850
|
+
* Predict next value in time series
|
|
12851
|
+
* @param {Array} sequence - Array of recent records (length = lookback)
|
|
12852
|
+
* @returns {Object} Prediction result
|
|
12853
|
+
*/
|
|
12854
|
+
async predict(sequence) {
|
|
12855
|
+
if (!this.isTrained) {
|
|
12856
|
+
throw new ModelNotTrainedError(`Model "${this.config.name}" is not trained yet`, {
|
|
12857
|
+
model: this.config.name
|
|
12858
|
+
});
|
|
12859
|
+
}
|
|
12860
|
+
try {
|
|
12861
|
+
if (!Array.isArray(sequence)) {
|
|
12862
|
+
throw new DataValidationError(
|
|
12863
|
+
"Time series prediction requires an array of recent records",
|
|
12864
|
+
{ model: this.config.name, input: typeof sequence }
|
|
12865
|
+
);
|
|
12866
|
+
}
|
|
12867
|
+
if (sequence.length !== this.config.modelConfig.lookback) {
|
|
12868
|
+
throw new DataValidationError(
|
|
12869
|
+
`Time series sequence must have exactly ${this.config.modelConfig.lookback} timesteps, got ${sequence.length}`,
|
|
12870
|
+
{ model: this.config.name, expected: this.config.modelConfig.lookback, got: sequence.length }
|
|
12871
|
+
);
|
|
12872
|
+
}
|
|
12873
|
+
const normalizedSequence = [];
|
|
12874
|
+
for (const record of sequence) {
|
|
12875
|
+
this._validateInput(record);
|
|
12876
|
+
const features = this._extractFeatures(record);
|
|
12877
|
+
const target = record[this.config.target];
|
|
12878
|
+
const combined = [...features, target];
|
|
12879
|
+
normalizedSequence.push(this._normalizeSequenceStep(combined));
|
|
12880
|
+
}
|
|
12881
|
+
const inputTensor = this.tf.tensor3d([normalizedSequence]);
|
|
12882
|
+
const predictionTensor = this.model.predict(inputTensor);
|
|
12883
|
+
const predictionArray = await predictionTensor.data();
|
|
12884
|
+
inputTensor.dispose();
|
|
12885
|
+
predictionTensor.dispose();
|
|
12886
|
+
const prediction = this._denormalizePrediction(predictionArray[0]);
|
|
12887
|
+
this.stats.predictions++;
|
|
12888
|
+
return {
|
|
12889
|
+
prediction,
|
|
12890
|
+
confidence: this._calculateConfidence(predictionArray[0])
|
|
12891
|
+
};
|
|
12892
|
+
} catch (error) {
|
|
12893
|
+
this.stats.errors++;
|
|
12894
|
+
if (error instanceof ModelNotTrainedError || error instanceof DataValidationError) {
|
|
12895
|
+
throw error;
|
|
12896
|
+
}
|
|
12897
|
+
throw new PredictionError(`Time series prediction failed: ${error.message}`, {
|
|
12898
|
+
model: this.config.name,
|
|
12899
|
+
originalError: error.message
|
|
12900
|
+
});
|
|
12901
|
+
}
|
|
12902
|
+
}
|
|
12903
|
+
/**
|
|
12904
|
+
* Predict multiple future timesteps
|
|
12905
|
+
* @param {Array} initialSequence - Initial sequence of records
|
|
12906
|
+
* @param {number} steps - Number of steps to predict ahead
|
|
12907
|
+
* @returns {Array} Array of predictions
|
|
12908
|
+
*/
|
|
12909
|
+
async predictMultiStep(initialSequence, steps = 1) {
|
|
12910
|
+
if (!this.isTrained) {
|
|
12911
|
+
throw new ModelNotTrainedError(`Model "${this.config.name}" is not trained yet`, {
|
|
12912
|
+
model: this.config.name
|
|
12913
|
+
});
|
|
12914
|
+
}
|
|
12915
|
+
const predictions = [];
|
|
12916
|
+
let currentSequence = [...initialSequence];
|
|
12917
|
+
for (let i = 0; i < steps; i++) {
|
|
12918
|
+
const { prediction } = await this.predict(currentSequence);
|
|
12919
|
+
predictions.push(prediction);
|
|
12920
|
+
currentSequence.shift();
|
|
12921
|
+
const lastRecord = currentSequence[currentSequence.length - 1];
|
|
12922
|
+
const syntheticRecord = {
|
|
12923
|
+
...lastRecord,
|
|
12924
|
+
[this.config.target]: prediction
|
|
12925
|
+
};
|
|
12926
|
+
currentSequence.push(syntheticRecord);
|
|
12927
|
+
}
|
|
12928
|
+
return predictions;
|
|
12929
|
+
}
|
|
12930
|
+
/**
|
|
12931
|
+
* Calculate Mean Absolute Percentage Error (MAPE)
|
|
12932
|
+
* @param {Array} data - Test data (must be sequential)
|
|
12933
|
+
* @returns {number} MAPE (0-100, lower is better)
|
|
12934
|
+
*/
|
|
12935
|
+
async calculateMAPE(data) {
|
|
12936
|
+
if (!this.isTrained) {
|
|
12937
|
+
throw new ModelNotTrainedError(`Model "${this.config.name}" is not trained yet`, {
|
|
12938
|
+
model: this.config.name
|
|
12939
|
+
});
|
|
12940
|
+
}
|
|
12941
|
+
const lookback = this.config.modelConfig.lookback;
|
|
12942
|
+
if (data.length < lookback + 1) {
|
|
12943
|
+
throw new InsufficientDataError(
|
|
12944
|
+
`Insufficient test data for MAPE calculation`,
|
|
12945
|
+
{ model: this.config.name, samples: data.length, minimum: lookback + 1 }
|
|
12946
|
+
);
|
|
12947
|
+
}
|
|
12948
|
+
let totalPercentageError = 0;
|
|
12949
|
+
let count = 0;
|
|
12950
|
+
for (let i = lookback; i < data.length; i++) {
|
|
12951
|
+
const sequence = data.slice(i - lookback, i);
|
|
12952
|
+
const { prediction } = await this.predict(sequence);
|
|
12953
|
+
const actual = data[i][this.config.target];
|
|
12954
|
+
if (actual !== 0) {
|
|
12955
|
+
const percentageError = Math.abs((actual - prediction) / actual) * 100;
|
|
12956
|
+
totalPercentageError += percentageError;
|
|
12957
|
+
count++;
|
|
12958
|
+
}
|
|
12959
|
+
}
|
|
12960
|
+
return count > 0 ? totalPercentageError / count : 0;
|
|
12961
|
+
}
|
|
12962
|
+
/**
|
|
12963
|
+
* Export model with time series-specific data
|
|
12964
|
+
*/
|
|
12965
|
+
async export() {
|
|
12966
|
+
const baseExport = await super.export();
|
|
12967
|
+
return {
|
|
12968
|
+
...baseExport,
|
|
12969
|
+
type: "timeseries",
|
|
12970
|
+
lookback: this.config.modelConfig.lookback
|
|
12971
|
+
};
|
|
12972
|
+
}
|
|
12973
|
+
}
|
|
12974
|
+
|
|
12975
|
+
class NeuralNetworkModel extends BaseModel {
|
|
12976
|
+
constructor(config = {}) {
|
|
12977
|
+
super(config);
|
|
12978
|
+
this.config.modelConfig = {
|
|
12979
|
+
...this.config.modelConfig,
|
|
12980
|
+
layers: config.modelConfig?.layers || [
|
|
12981
|
+
{ units: 64, activation: "relu", dropout: 0.2 },
|
|
12982
|
+
{ units: 32, activation: "relu", dropout: 0.1 }
|
|
12983
|
+
],
|
|
12984
|
+
// Array of hidden layer configurations
|
|
12985
|
+
outputActivation: config.modelConfig?.outputActivation || "linear",
|
|
12986
|
+
// Output layer activation
|
|
12987
|
+
outputUnits: config.modelConfig?.outputUnits || 1,
|
|
12988
|
+
// Number of output units
|
|
12989
|
+
loss: config.modelConfig?.loss || "meanSquaredError",
|
|
12990
|
+
// Loss function
|
|
12991
|
+
metrics: config.modelConfig?.metrics || ["mse", "mae"]
|
|
12992
|
+
// Metrics to track
|
|
12993
|
+
};
|
|
12994
|
+
this._validateLayersConfig();
|
|
12995
|
+
}
|
|
12996
|
+
/**
|
|
12997
|
+
* Validate layers configuration
|
|
12998
|
+
* @private
|
|
12999
|
+
*/
|
|
13000
|
+
_validateLayersConfig() {
|
|
13001
|
+
if (!Array.isArray(this.config.modelConfig.layers) || this.config.modelConfig.layers.length === 0) {
|
|
13002
|
+
throw new ModelConfigError(
|
|
13003
|
+
"Neural network must have at least one hidden layer",
|
|
13004
|
+
{ model: this.config.name, layers: this.config.modelConfig.layers }
|
|
13005
|
+
);
|
|
13006
|
+
}
|
|
13007
|
+
for (const [index, layer] of this.config.modelConfig.layers.entries()) {
|
|
13008
|
+
if (!layer.units || typeof layer.units !== "number" || layer.units < 1) {
|
|
13009
|
+
throw new ModelConfigError(
|
|
13010
|
+
`Layer ${index} must have a valid "units" property (positive number)`,
|
|
13011
|
+
{ model: this.config.name, layer, index }
|
|
13012
|
+
);
|
|
13013
|
+
}
|
|
13014
|
+
if (layer.activation && !this._isValidActivation(layer.activation)) {
|
|
13015
|
+
throw new ModelConfigError(
|
|
13016
|
+
`Layer ${index} has invalid activation function "${layer.activation}"`,
|
|
13017
|
+
{ model: this.config.name, layer, index, validActivations: ["relu", "sigmoid", "tanh", "softmax", "elu", "selu"] }
|
|
13018
|
+
);
|
|
13019
|
+
}
|
|
13020
|
+
}
|
|
13021
|
+
}
|
|
13022
|
+
/**
|
|
13023
|
+
* Check if activation function is valid
|
|
13024
|
+
* @private
|
|
13025
|
+
*/
|
|
13026
|
+
_isValidActivation(activation) {
|
|
13027
|
+
const validActivations = ["relu", "sigmoid", "tanh", "softmax", "elu", "selu", "linear"];
|
|
13028
|
+
return validActivations.includes(activation);
|
|
13029
|
+
}
|
|
13030
|
+
/**
|
|
13031
|
+
* Build custom neural network architecture
|
|
13032
|
+
*/
|
|
13033
|
+
buildModel() {
|
|
13034
|
+
const numFeatures = this.config.features.length;
|
|
13035
|
+
this.model = this.tf.sequential();
|
|
13036
|
+
for (const [index, layerConfig] of this.config.modelConfig.layers.entries()) {
|
|
13037
|
+
const isFirstLayer = index === 0;
|
|
13038
|
+
const layerOptions = {
|
|
13039
|
+
units: layerConfig.units,
|
|
13040
|
+
activation: layerConfig.activation || "relu",
|
|
13041
|
+
useBias: true
|
|
13042
|
+
};
|
|
13043
|
+
if (isFirstLayer) {
|
|
13044
|
+
layerOptions.inputShape = [numFeatures];
|
|
13045
|
+
}
|
|
13046
|
+
this.model.add(this.tf.layers.dense(layerOptions));
|
|
13047
|
+
if (layerConfig.dropout && layerConfig.dropout > 0) {
|
|
13048
|
+
this.model.add(this.tf.layers.dropout({
|
|
13049
|
+
rate: layerConfig.dropout
|
|
13050
|
+
}));
|
|
13051
|
+
}
|
|
13052
|
+
if (layerConfig.batchNormalization) {
|
|
13053
|
+
this.model.add(this.tf.layers.batchNormalization());
|
|
13054
|
+
}
|
|
13055
|
+
}
|
|
13056
|
+
this.model.add(this.tf.layers.dense({
|
|
13057
|
+
units: this.config.modelConfig.outputUnits,
|
|
13058
|
+
activation: this.config.modelConfig.outputActivation
|
|
13059
|
+
}));
|
|
13060
|
+
this.model.compile({
|
|
13061
|
+
optimizer: this.tf.train.adam(this.config.modelConfig.learningRate),
|
|
13062
|
+
loss: this.config.modelConfig.loss,
|
|
13063
|
+
metrics: this.config.modelConfig.metrics
|
|
13064
|
+
});
|
|
13065
|
+
if (this.config.verbose) {
|
|
13066
|
+
console.log(`[MLPlugin] ${this.config.name} - Built custom neural network:`);
|
|
13067
|
+
console.log(` - Hidden layers: ${this.config.modelConfig.layers.length}`);
|
|
13068
|
+
console.log(` - Total parameters:`, this._countParameters());
|
|
13069
|
+
this.model.summary();
|
|
13070
|
+
}
|
|
13071
|
+
}
|
|
13072
|
+
/**
|
|
13073
|
+
* Count total trainable parameters
|
|
13074
|
+
* @private
|
|
13075
|
+
*/
|
|
13076
|
+
_countParameters() {
|
|
13077
|
+
if (!this.model) return 0;
|
|
13078
|
+
let totalParams = 0;
|
|
13079
|
+
for (const layer of this.model.layers) {
|
|
13080
|
+
if (layer.countParams) {
|
|
13081
|
+
totalParams += layer.countParams();
|
|
13082
|
+
}
|
|
13083
|
+
}
|
|
13084
|
+
return totalParams;
|
|
13085
|
+
}
|
|
13086
|
+
/**
|
|
13087
|
+
* Add layer to model (before building)
|
|
13088
|
+
* @param {Object} layerConfig - Layer configuration
|
|
13089
|
+
*/
|
|
13090
|
+
addLayer(layerConfig) {
|
|
13091
|
+
if (this.model) {
|
|
13092
|
+
throw new ModelConfigError(
|
|
13093
|
+
"Cannot add layer after model is built. Use addLayer() before training.",
|
|
13094
|
+
{ model: this.config.name }
|
|
13095
|
+
);
|
|
13096
|
+
}
|
|
13097
|
+
this.config.modelConfig.layers.push(layerConfig);
|
|
13098
|
+
}
|
|
13099
|
+
/**
|
|
13100
|
+
* Set output configuration
|
|
13101
|
+
* @param {Object} outputConfig - Output layer configuration
|
|
13102
|
+
*/
|
|
13103
|
+
setOutput(outputConfig) {
|
|
13104
|
+
if (this.model) {
|
|
13105
|
+
throw new ModelConfigError(
|
|
13106
|
+
"Cannot change output after model is built. Use setOutput() before training.",
|
|
13107
|
+
{ model: this.config.name }
|
|
13108
|
+
);
|
|
13109
|
+
}
|
|
13110
|
+
if (outputConfig.activation) {
|
|
13111
|
+
this.config.modelConfig.outputActivation = outputConfig.activation;
|
|
13112
|
+
}
|
|
13113
|
+
if (outputConfig.units) {
|
|
13114
|
+
this.config.modelConfig.outputUnits = outputConfig.units;
|
|
13115
|
+
}
|
|
13116
|
+
if (outputConfig.loss) {
|
|
13117
|
+
this.config.modelConfig.loss = outputConfig.loss;
|
|
13118
|
+
}
|
|
13119
|
+
if (outputConfig.metrics) {
|
|
13120
|
+
this.config.modelConfig.metrics = outputConfig.metrics;
|
|
13121
|
+
}
|
|
13122
|
+
}
|
|
13123
|
+
/**
|
|
13124
|
+
* Get model architecture summary
|
|
13125
|
+
*/
|
|
13126
|
+
getArchitecture() {
|
|
13127
|
+
return {
|
|
13128
|
+
inputFeatures: this.config.features,
|
|
13129
|
+
hiddenLayers: this.config.modelConfig.layers.map((layer, index) => ({
|
|
13130
|
+
index,
|
|
13131
|
+
units: layer.units,
|
|
13132
|
+
activation: layer.activation || "relu",
|
|
13133
|
+
dropout: layer.dropout || 0,
|
|
13134
|
+
batchNormalization: layer.batchNormalization || false
|
|
13135
|
+
})),
|
|
13136
|
+
outputLayer: {
|
|
13137
|
+
units: this.config.modelConfig.outputUnits,
|
|
13138
|
+
activation: this.config.modelConfig.outputActivation
|
|
13139
|
+
},
|
|
13140
|
+
totalParameters: this._countParameters(),
|
|
13141
|
+
loss: this.config.modelConfig.loss,
|
|
13142
|
+
metrics: this.config.modelConfig.metrics
|
|
13143
|
+
};
|
|
13144
|
+
}
|
|
13145
|
+
/**
|
|
13146
|
+
* Train with early stopping callback
|
|
13147
|
+
* @param {Array} data - Training data
|
|
13148
|
+
* @param {Object} earlyStoppingConfig - Early stopping configuration
|
|
13149
|
+
* @returns {Object} Training results
|
|
13150
|
+
*/
|
|
13151
|
+
async trainWithEarlyStopping(data, earlyStoppingConfig = {}) {
|
|
13152
|
+
const {
|
|
13153
|
+
patience = 10,
|
|
13154
|
+
minDelta = 1e-3,
|
|
13155
|
+
monitor = "val_loss",
|
|
13156
|
+
restoreBestWeights = true
|
|
13157
|
+
} = earlyStoppingConfig;
|
|
13158
|
+
const { xs, ys } = this._prepareData(data);
|
|
13159
|
+
if (!this.model) {
|
|
13160
|
+
this.buildModel();
|
|
13161
|
+
}
|
|
13162
|
+
let bestValue = Infinity;
|
|
13163
|
+
let patienceCounter = 0;
|
|
13164
|
+
let bestWeights = null;
|
|
13165
|
+
const callbacks = {
|
|
13166
|
+
onEpochEnd: async (epoch, logs) => {
|
|
13167
|
+
const monitorValue = logs[monitor] || logs.loss;
|
|
13168
|
+
if (this.config.verbose && epoch % 10 === 0) {
|
|
13169
|
+
console.log(`[MLPlugin] ${this.config.name} - Epoch ${epoch}: ${monitor}=${monitorValue.toFixed(4)}`);
|
|
13170
|
+
}
|
|
13171
|
+
if (monitorValue < bestValue - minDelta) {
|
|
13172
|
+
bestValue = monitorValue;
|
|
13173
|
+
patienceCounter = 0;
|
|
13174
|
+
if (restoreBestWeights) {
|
|
13175
|
+
bestWeights = await this.model.getWeights();
|
|
13176
|
+
}
|
|
13177
|
+
} else {
|
|
13178
|
+
patienceCounter++;
|
|
13179
|
+
if (patienceCounter >= patience) {
|
|
13180
|
+
if (this.config.verbose) {
|
|
13181
|
+
console.log(`[MLPlugin] ${this.config.name} - Early stopping at epoch ${epoch}`);
|
|
13182
|
+
}
|
|
13183
|
+
this.model.stopTraining = true;
|
|
13184
|
+
}
|
|
13185
|
+
}
|
|
13186
|
+
}
|
|
13187
|
+
};
|
|
13188
|
+
const history = await this.model.fit(xs, ys, {
|
|
13189
|
+
epochs: this.config.modelConfig.epochs,
|
|
13190
|
+
batchSize: this.config.modelConfig.batchSize,
|
|
13191
|
+
validationSplit: this.config.modelConfig.validationSplit,
|
|
13192
|
+
verbose: this.config.verbose ? 1 : 0,
|
|
13193
|
+
callbacks
|
|
13194
|
+
});
|
|
13195
|
+
if (restoreBestWeights && bestWeights) {
|
|
13196
|
+
this.model.setWeights(bestWeights);
|
|
13197
|
+
}
|
|
13198
|
+
this.isTrained = true;
|
|
13199
|
+
this.stats.trainedAt = (/* @__PURE__ */ new Date()).toISOString();
|
|
13200
|
+
this.stats.samples = data.length;
|
|
13201
|
+
this.stats.loss = history.history.loss[history.history.loss.length - 1];
|
|
13202
|
+
xs.dispose();
|
|
13203
|
+
ys.dispose();
|
|
13204
|
+
return {
|
|
13205
|
+
loss: this.stats.loss,
|
|
13206
|
+
epochs: history.epoch.length,
|
|
13207
|
+
samples: this.stats.samples,
|
|
13208
|
+
stoppedEarly: history.epoch.length < this.config.modelConfig.epochs
|
|
13209
|
+
};
|
|
13210
|
+
}
|
|
13211
|
+
/**
|
|
13212
|
+
* Export model with neural network-specific data
|
|
13213
|
+
*/
|
|
13214
|
+
async export() {
|
|
13215
|
+
const baseExport = await super.export();
|
|
13216
|
+
return {
|
|
13217
|
+
...baseExport,
|
|
13218
|
+
type: "neural-network",
|
|
13219
|
+
architecture: this.getArchitecture()
|
|
13220
|
+
};
|
|
13221
|
+
}
|
|
13222
|
+
}
|
|
13223
|
+
|
|
13224
|
+
class MLPlugin extends Plugin {
|
|
13225
|
+
constructor(options = {}) {
|
|
13226
|
+
super(options);
|
|
13227
|
+
this.config = {
|
|
13228
|
+
models: options.models || {},
|
|
13229
|
+
verbose: options.verbose || false,
|
|
13230
|
+
minTrainingSamples: options.minTrainingSamples || 10
|
|
13231
|
+
};
|
|
13232
|
+
requirePluginDependency("@tensorflow/tfjs-node", "MLPlugin");
|
|
13233
|
+
this.models = {};
|
|
13234
|
+
this.training = /* @__PURE__ */ new Map();
|
|
13235
|
+
this.insertCounters = /* @__PURE__ */ new Map();
|
|
13236
|
+
this.intervals = [];
|
|
13237
|
+
this.stats = {
|
|
13238
|
+
totalTrainings: 0,
|
|
13239
|
+
totalPredictions: 0,
|
|
13240
|
+
totalErrors: 0,
|
|
13241
|
+
startedAt: null
|
|
13242
|
+
};
|
|
13243
|
+
}
|
|
13244
|
+
/**
|
|
13245
|
+
* Install the plugin
|
|
13246
|
+
*/
|
|
13247
|
+
async onInstall() {
|
|
13248
|
+
if (this.config.verbose) {
|
|
13249
|
+
console.log("[MLPlugin] Installing ML Plugin...");
|
|
13250
|
+
}
|
|
13251
|
+
for (const [modelName, modelConfig] of Object.entries(this.config.models)) {
|
|
13252
|
+
this._validateModelConfig(modelName, modelConfig);
|
|
13253
|
+
}
|
|
13254
|
+
for (const [modelName, modelConfig] of Object.entries(this.config.models)) {
|
|
13255
|
+
await this._initializeModel(modelName, modelConfig);
|
|
13256
|
+
}
|
|
13257
|
+
for (const [modelName, modelConfig] of Object.entries(this.config.models)) {
|
|
13258
|
+
if (modelConfig.autoTrain) {
|
|
13259
|
+
this._setupAutoTraining(modelName, modelConfig);
|
|
13260
|
+
}
|
|
13261
|
+
}
|
|
13262
|
+
this.stats.startedAt = (/* @__PURE__ */ new Date()).toISOString();
|
|
13263
|
+
if (this.config.verbose) {
|
|
13264
|
+
console.log(`[MLPlugin] Installed with ${Object.keys(this.models).length} models`);
|
|
13265
|
+
}
|
|
13266
|
+
this.emit("installed", {
|
|
13267
|
+
plugin: "MLPlugin",
|
|
13268
|
+
models: Object.keys(this.models)
|
|
13269
|
+
});
|
|
13270
|
+
}
|
|
13271
|
+
/**
|
|
13272
|
+
* Start the plugin
|
|
13273
|
+
*/
|
|
13274
|
+
async onStart() {
|
|
13275
|
+
for (const modelName of Object.keys(this.models)) {
|
|
13276
|
+
await this._loadModel(modelName);
|
|
13277
|
+
}
|
|
13278
|
+
if (this.config.verbose) {
|
|
13279
|
+
console.log("[MLPlugin] Started");
|
|
13280
|
+
}
|
|
13281
|
+
}
|
|
13282
|
+
/**
|
|
13283
|
+
* Stop the plugin
|
|
13284
|
+
*/
|
|
13285
|
+
async onStop() {
|
|
13286
|
+
for (const handle of this.intervals) {
|
|
13287
|
+
clearInterval(handle);
|
|
13288
|
+
}
|
|
13289
|
+
this.intervals = [];
|
|
13290
|
+
for (const [modelName, model] of Object.entries(this.models)) {
|
|
13291
|
+
if (model && model.dispose) {
|
|
13292
|
+
model.dispose();
|
|
13293
|
+
}
|
|
13294
|
+
}
|
|
13295
|
+
if (this.config.verbose) {
|
|
13296
|
+
console.log("[MLPlugin] Stopped");
|
|
13297
|
+
}
|
|
13298
|
+
}
|
|
13299
|
+
/**
|
|
13300
|
+
* Uninstall the plugin
|
|
13301
|
+
*/
|
|
13302
|
+
async onUninstall(options = {}) {
|
|
13303
|
+
await this.onStop();
|
|
13304
|
+
if (options.purgeData) {
|
|
13305
|
+
for (const modelName of Object.keys(this.models)) {
|
|
13306
|
+
await this._deleteModel(modelName);
|
|
13307
|
+
}
|
|
13308
|
+
if (this.config.verbose) {
|
|
13309
|
+
console.log("[MLPlugin] Purged all model data");
|
|
13310
|
+
}
|
|
13311
|
+
}
|
|
13312
|
+
}
|
|
13313
|
+
/**
|
|
13314
|
+
* Validate model configuration
|
|
13315
|
+
* @private
|
|
13316
|
+
*/
|
|
13317
|
+
_validateModelConfig(modelName, config) {
|
|
13318
|
+
const validTypes = ["regression", "classification", "timeseries", "neural-network"];
|
|
13319
|
+
if (!config.type || !validTypes.includes(config.type)) {
|
|
13320
|
+
throw new ModelConfigError(
|
|
13321
|
+
`Model "${modelName}" must have a valid type: ${validTypes.join(", ")}`,
|
|
13322
|
+
{ modelName, type: config.type, validTypes }
|
|
13323
|
+
);
|
|
13324
|
+
}
|
|
13325
|
+
if (!config.resource) {
|
|
13326
|
+
throw new ModelConfigError(
|
|
13327
|
+
`Model "${modelName}" must specify a resource`,
|
|
13328
|
+
{ modelName }
|
|
13329
|
+
);
|
|
13330
|
+
}
|
|
13331
|
+
if (!config.features || !Array.isArray(config.features) || config.features.length === 0) {
|
|
13332
|
+
throw new ModelConfigError(
|
|
13333
|
+
`Model "${modelName}" must specify at least one feature`,
|
|
13334
|
+
{ modelName, features: config.features }
|
|
13335
|
+
);
|
|
13336
|
+
}
|
|
13337
|
+
if (!config.target) {
|
|
13338
|
+
throw new ModelConfigError(
|
|
13339
|
+
`Model "${modelName}" must specify a target field`,
|
|
13340
|
+
{ modelName }
|
|
13341
|
+
);
|
|
13342
|
+
}
|
|
13343
|
+
}
|
|
13344
|
+
/**
|
|
13345
|
+
* Initialize a model instance
|
|
13346
|
+
* @private
|
|
13347
|
+
*/
|
|
13348
|
+
async _initializeModel(modelName, config) {
|
|
13349
|
+
const modelOptions = {
|
|
13350
|
+
name: modelName,
|
|
13351
|
+
resource: config.resource,
|
|
13352
|
+
features: config.features,
|
|
13353
|
+
target: config.target,
|
|
13354
|
+
modelConfig: config.modelConfig || {},
|
|
13355
|
+
verbose: this.config.verbose
|
|
13356
|
+
};
|
|
13357
|
+
try {
|
|
13358
|
+
switch (config.type) {
|
|
13359
|
+
case "regression":
|
|
13360
|
+
this.models[modelName] = new RegressionModel(modelOptions);
|
|
13361
|
+
break;
|
|
13362
|
+
case "classification":
|
|
13363
|
+
this.models[modelName] = new ClassificationModel(modelOptions);
|
|
13364
|
+
break;
|
|
13365
|
+
case "timeseries":
|
|
13366
|
+
this.models[modelName] = new TimeSeriesModel(modelOptions);
|
|
13367
|
+
break;
|
|
13368
|
+
case "neural-network":
|
|
13369
|
+
this.models[modelName] = new NeuralNetworkModel(modelOptions);
|
|
13370
|
+
break;
|
|
13371
|
+
default:
|
|
13372
|
+
throw new ModelConfigError(
|
|
13373
|
+
`Unknown model type: ${config.type}`,
|
|
13374
|
+
{ modelName, type: config.type }
|
|
13375
|
+
);
|
|
13376
|
+
}
|
|
13377
|
+
if (this.config.verbose) {
|
|
13378
|
+
console.log(`[MLPlugin] Initialized model "${modelName}" (${config.type})`);
|
|
13379
|
+
}
|
|
13380
|
+
} catch (error) {
|
|
13381
|
+
console.error(`[MLPlugin] Failed to initialize model "${modelName}":`, error.message);
|
|
13382
|
+
throw error;
|
|
13383
|
+
}
|
|
13384
|
+
}
|
|
13385
|
+
/**
|
|
13386
|
+
* Setup auto-training for a model
|
|
13387
|
+
* @private
|
|
13388
|
+
*/
|
|
13389
|
+
_setupAutoTraining(modelName, config) {
|
|
13390
|
+
const resource = this.database.resources[config.resource];
|
|
13391
|
+
if (!resource) {
|
|
13392
|
+
console.warn(`[MLPlugin] Resource "${config.resource}" not found for model "${modelName}"`);
|
|
13393
|
+
return;
|
|
13394
|
+
}
|
|
13395
|
+
this.insertCounters.set(modelName, 0);
|
|
13396
|
+
if (config.trainAfterInserts && config.trainAfterInserts > 0) {
|
|
13397
|
+
this.addMiddleware(resource, "insert", async (next, data, options) => {
|
|
13398
|
+
const result = await next(data, options);
|
|
13399
|
+
const currentCount = this.insertCounters.get(modelName) || 0;
|
|
13400
|
+
this.insertCounters.set(modelName, currentCount + 1);
|
|
13401
|
+
if (this.insertCounters.get(modelName) >= config.trainAfterInserts) {
|
|
13402
|
+
if (this.config.verbose) {
|
|
13403
|
+
console.log(`[MLPlugin] Auto-training "${modelName}" after ${config.trainAfterInserts} inserts`);
|
|
13404
|
+
}
|
|
13405
|
+
this.insertCounters.set(modelName, 0);
|
|
13406
|
+
this.train(modelName).catch((err) => {
|
|
13407
|
+
console.error(`[MLPlugin] Auto-training failed for "${modelName}":`, err.message);
|
|
13408
|
+
});
|
|
13409
|
+
}
|
|
13410
|
+
return result;
|
|
13411
|
+
});
|
|
13412
|
+
}
|
|
13413
|
+
if (config.trainInterval && config.trainInterval > 0) {
|
|
13414
|
+
const handle = setInterval(async () => {
|
|
13415
|
+
if (this.config.verbose) {
|
|
13416
|
+
console.log(`[MLPlugin] Auto-training "${modelName}" (interval: ${config.trainInterval}ms)`);
|
|
13417
|
+
}
|
|
13418
|
+
try {
|
|
13419
|
+
await this.train(modelName);
|
|
13420
|
+
} catch (error) {
|
|
13421
|
+
console.error(`[MLPlugin] Auto-training failed for "${modelName}":`, error.message);
|
|
13422
|
+
}
|
|
13423
|
+
}, config.trainInterval);
|
|
13424
|
+
this.intervals.push(handle);
|
|
13425
|
+
if (this.config.verbose) {
|
|
13426
|
+
console.log(`[MLPlugin] Setup interval training for "${modelName}" (every ${config.trainInterval}ms)`);
|
|
13427
|
+
}
|
|
13428
|
+
}
|
|
13429
|
+
}
|
|
13430
|
+
/**
|
|
13431
|
+
* Train a model
|
|
13432
|
+
* @param {string} modelName - Model name
|
|
13433
|
+
* @param {Object} options - Training options
|
|
13434
|
+
* @returns {Object} Training results
|
|
13435
|
+
*/
|
|
13436
|
+
async train(modelName, options = {}) {
|
|
13437
|
+
const model = this.models[modelName];
|
|
13438
|
+
if (!model) {
|
|
13439
|
+
throw new ModelNotFoundError(
|
|
13440
|
+
`Model "${modelName}" not found`,
|
|
13441
|
+
{ modelName, availableModels: Object.keys(this.models) }
|
|
13442
|
+
);
|
|
13443
|
+
}
|
|
13444
|
+
if (this.training.get(modelName)) {
|
|
13445
|
+
if (this.config.verbose) {
|
|
13446
|
+
console.log(`[MLPlugin] Model "${modelName}" is already training, skipping...`);
|
|
13447
|
+
}
|
|
13448
|
+
return { skipped: true, reason: "already_training" };
|
|
13449
|
+
}
|
|
13450
|
+
this.training.set(modelName, true);
|
|
13451
|
+
try {
|
|
13452
|
+
const modelConfig = this.config.models[modelName];
|
|
13453
|
+
const resource = this.database.resources[modelConfig.resource];
|
|
13454
|
+
if (!resource) {
|
|
13455
|
+
throw new ModelNotFoundError(
|
|
13456
|
+
`Resource "${modelConfig.resource}" not found`,
|
|
13457
|
+
{ modelName, resource: modelConfig.resource }
|
|
13458
|
+
);
|
|
13459
|
+
}
|
|
13460
|
+
if (this.config.verbose) {
|
|
13461
|
+
console.log(`[MLPlugin] Fetching training data for "${modelName}"...`);
|
|
13462
|
+
}
|
|
13463
|
+
const [ok, err, data] = await tryFn(() => resource.list());
|
|
13464
|
+
if (!ok) {
|
|
13465
|
+
throw new TrainingError(
|
|
13466
|
+
`Failed to fetch training data: ${err.message}`,
|
|
13467
|
+
{ modelName, resource: modelConfig.resource, originalError: err.message }
|
|
13468
|
+
);
|
|
13469
|
+
}
|
|
13470
|
+
if (!data || data.length < this.config.minTrainingSamples) {
|
|
13471
|
+
throw new TrainingError(
|
|
13472
|
+
`Insufficient training data: ${data?.length || 0} samples (minimum: ${this.config.minTrainingSamples})`,
|
|
13473
|
+
{ modelName, samples: data?.length || 0, minimum: this.config.minTrainingSamples }
|
|
13474
|
+
);
|
|
13475
|
+
}
|
|
13476
|
+
if (this.config.verbose) {
|
|
13477
|
+
console.log(`[MLPlugin] Training "${modelName}" with ${data.length} samples...`);
|
|
13478
|
+
}
|
|
13479
|
+
const result = await model.train(data);
|
|
13480
|
+
await this._saveModel(modelName);
|
|
13481
|
+
this.stats.totalTrainings++;
|
|
13482
|
+
if (this.config.verbose) {
|
|
13483
|
+
console.log(`[MLPlugin] Training completed for "${modelName}":`, result);
|
|
13484
|
+
}
|
|
13485
|
+
this.emit("modelTrained", {
|
|
13486
|
+
modelName,
|
|
13487
|
+
type: modelConfig.type,
|
|
13488
|
+
result
|
|
13489
|
+
});
|
|
13490
|
+
return result;
|
|
13491
|
+
} catch (error) {
|
|
13492
|
+
this.stats.totalErrors++;
|
|
13493
|
+
if (error instanceof MLError) {
|
|
13494
|
+
throw error;
|
|
13495
|
+
}
|
|
13496
|
+
throw new TrainingError(
|
|
13497
|
+
`Training failed for "${modelName}": ${error.message}`,
|
|
13498
|
+
{ modelName, originalError: error.message }
|
|
13499
|
+
);
|
|
13500
|
+
} finally {
|
|
13501
|
+
this.training.set(modelName, false);
|
|
13502
|
+
}
|
|
13503
|
+
}
|
|
13504
|
+
/**
|
|
13505
|
+
* Make a prediction
|
|
13506
|
+
* @param {string} modelName - Model name
|
|
13507
|
+
* @param {Object|Array} input - Input data (object for single prediction, array for time series)
|
|
13508
|
+
* @returns {Object} Prediction result
|
|
13509
|
+
*/
|
|
13510
|
+
async predict(modelName, input) {
|
|
13511
|
+
const model = this.models[modelName];
|
|
13512
|
+
if (!model) {
|
|
13513
|
+
throw new ModelNotFoundError(
|
|
13514
|
+
`Model "${modelName}" not found`,
|
|
13515
|
+
{ modelName, availableModels: Object.keys(this.models) }
|
|
13516
|
+
);
|
|
13517
|
+
}
|
|
13518
|
+
try {
|
|
13519
|
+
const result = await model.predict(input);
|
|
13520
|
+
this.stats.totalPredictions++;
|
|
13521
|
+
this.emit("prediction", {
|
|
13522
|
+
modelName,
|
|
13523
|
+
input,
|
|
13524
|
+
result
|
|
13525
|
+
});
|
|
13526
|
+
return result;
|
|
13527
|
+
} catch (error) {
|
|
13528
|
+
this.stats.totalErrors++;
|
|
13529
|
+
throw error;
|
|
13530
|
+
}
|
|
13531
|
+
}
|
|
13532
|
+
/**
|
|
13533
|
+
* Make predictions for multiple inputs
|
|
13534
|
+
* @param {string} modelName - Model name
|
|
13535
|
+
* @param {Array} inputs - Array of input objects
|
|
13536
|
+
* @returns {Array} Array of prediction results
|
|
13537
|
+
*/
|
|
13538
|
+
async predictBatch(modelName, inputs) {
|
|
13539
|
+
const model = this.models[modelName];
|
|
13540
|
+
if (!model) {
|
|
13541
|
+
throw new ModelNotFoundError(
|
|
13542
|
+
`Model "${modelName}" not found`,
|
|
13543
|
+
{ modelName, availableModels: Object.keys(this.models) }
|
|
13544
|
+
);
|
|
13545
|
+
}
|
|
13546
|
+
return await model.predictBatch(inputs);
|
|
13547
|
+
}
|
|
13548
|
+
/**
|
|
13549
|
+
* Retrain a model (reset and train from scratch)
|
|
13550
|
+
* @param {string} modelName - Model name
|
|
13551
|
+
* @param {Object} options - Options
|
|
13552
|
+
* @returns {Object} Training results
|
|
13553
|
+
*/
|
|
13554
|
+
async retrain(modelName, options = {}) {
|
|
13555
|
+
const model = this.models[modelName];
|
|
13556
|
+
if (!model) {
|
|
13557
|
+
throw new ModelNotFoundError(
|
|
13558
|
+
`Model "${modelName}" not found`,
|
|
13559
|
+
{ modelName, availableModels: Object.keys(this.models) }
|
|
13560
|
+
);
|
|
13561
|
+
}
|
|
13562
|
+
if (model.dispose) {
|
|
13563
|
+
model.dispose();
|
|
13564
|
+
}
|
|
13565
|
+
const modelConfig = this.config.models[modelName];
|
|
13566
|
+
await this._initializeModel(modelName, modelConfig);
|
|
13567
|
+
return await this.train(modelName, options);
|
|
13568
|
+
}
|
|
13569
|
+
/**
|
|
13570
|
+
* Get model statistics
|
|
13571
|
+
* @param {string} modelName - Model name
|
|
13572
|
+
* @returns {Object} Model stats
|
|
13573
|
+
*/
|
|
13574
|
+
getModelStats(modelName) {
|
|
13575
|
+
const model = this.models[modelName];
|
|
13576
|
+
if (!model) {
|
|
13577
|
+
throw new ModelNotFoundError(
|
|
13578
|
+
`Model "${modelName}" not found`,
|
|
13579
|
+
{ modelName, availableModels: Object.keys(this.models) }
|
|
13580
|
+
);
|
|
13581
|
+
}
|
|
13582
|
+
return model.getStats();
|
|
13583
|
+
}
|
|
13584
|
+
/**
|
|
13585
|
+
* Get plugin statistics
|
|
13586
|
+
* @returns {Object} Plugin stats
|
|
13587
|
+
*/
|
|
13588
|
+
getStats() {
|
|
13589
|
+
return {
|
|
13590
|
+
...this.stats,
|
|
13591
|
+
models: Object.keys(this.models).length,
|
|
13592
|
+
trainedModels: Object.values(this.models).filter((m) => m.isTrained).length
|
|
13593
|
+
};
|
|
13594
|
+
}
|
|
13595
|
+
/**
|
|
13596
|
+
* Export a model
|
|
13597
|
+
* @param {string} modelName - Model name
|
|
13598
|
+
* @returns {Object} Serialized model
|
|
13599
|
+
*/
|
|
13600
|
+
async exportModel(modelName) {
|
|
13601
|
+
const model = this.models[modelName];
|
|
13602
|
+
if (!model) {
|
|
13603
|
+
throw new ModelNotFoundError(
|
|
13604
|
+
`Model "${modelName}" not found`,
|
|
13605
|
+
{ modelName, availableModels: Object.keys(this.models) }
|
|
13606
|
+
);
|
|
13607
|
+
}
|
|
13608
|
+
return await model.export();
|
|
13609
|
+
}
|
|
13610
|
+
/**
|
|
13611
|
+
* Import a model
|
|
13612
|
+
* @param {string} modelName - Model name
|
|
13613
|
+
* @param {Object} data - Serialized model data
|
|
13614
|
+
*/
|
|
13615
|
+
async importModel(modelName, data) {
|
|
13616
|
+
const model = this.models[modelName];
|
|
13617
|
+
if (!model) {
|
|
13618
|
+
throw new ModelNotFoundError(
|
|
13619
|
+
`Model "${modelName}" not found`,
|
|
13620
|
+
{ modelName, availableModels: Object.keys(this.models) }
|
|
13621
|
+
);
|
|
13622
|
+
}
|
|
13623
|
+
await model.import(data);
|
|
13624
|
+
await this._saveModel(modelName);
|
|
13625
|
+
if (this.config.verbose) {
|
|
13626
|
+
console.log(`[MLPlugin] Imported model "${modelName}"`);
|
|
13627
|
+
}
|
|
13628
|
+
}
|
|
13629
|
+
/**
|
|
13630
|
+
* Save model to plugin storage
|
|
13631
|
+
* @private
|
|
13632
|
+
*/
|
|
13633
|
+
async _saveModel(modelName) {
|
|
13634
|
+
try {
|
|
13635
|
+
const storage = this.getStorage();
|
|
13636
|
+
const exportedModel = await this.models[modelName].export();
|
|
13637
|
+
if (!exportedModel) {
|
|
13638
|
+
if (this.config.verbose) {
|
|
13639
|
+
console.log(`[MLPlugin] Model "${modelName}" not trained, skipping save`);
|
|
13640
|
+
}
|
|
13641
|
+
return;
|
|
13642
|
+
}
|
|
13643
|
+
await storage.patch(`model_${modelName}`, {
|
|
13644
|
+
modelName,
|
|
13645
|
+
data: JSON.stringify(exportedModel),
|
|
13646
|
+
savedAt: (/* @__PURE__ */ new Date()).toISOString()
|
|
13647
|
+
});
|
|
13648
|
+
if (this.config.verbose) {
|
|
13649
|
+
console.log(`[MLPlugin] Saved model "${modelName}" to plugin storage`);
|
|
13650
|
+
}
|
|
13651
|
+
} catch (error) {
|
|
13652
|
+
console.error(`[MLPlugin] Failed to save model "${modelName}":`, error.message);
|
|
13653
|
+
}
|
|
13654
|
+
}
|
|
13655
|
+
/**
|
|
13656
|
+
* Load model from plugin storage
|
|
13657
|
+
* @private
|
|
13658
|
+
*/
|
|
13659
|
+
async _loadModel(modelName) {
|
|
13660
|
+
try {
|
|
13661
|
+
const storage = this.getStorage();
|
|
13662
|
+
const [ok, err, record] = await tryFn(() => storage.get(`model_${modelName}`));
|
|
13663
|
+
if (!ok || !record) {
|
|
13664
|
+
if (this.config.verbose) {
|
|
13665
|
+
console.log(`[MLPlugin] No saved model found for "${modelName}"`);
|
|
13666
|
+
}
|
|
13667
|
+
return;
|
|
13668
|
+
}
|
|
13669
|
+
const modelData = JSON.parse(record.data);
|
|
13670
|
+
await this.models[modelName].import(modelData);
|
|
13671
|
+
if (this.config.verbose) {
|
|
13672
|
+
console.log(`[MLPlugin] Loaded model "${modelName}" from plugin storage`);
|
|
13673
|
+
}
|
|
13674
|
+
} catch (error) {
|
|
13675
|
+
console.error(`[MLPlugin] Failed to load model "${modelName}":`, error.message);
|
|
13676
|
+
}
|
|
13677
|
+
}
|
|
13678
|
+
/**
|
|
13679
|
+
* Delete model from plugin storage
|
|
13680
|
+
* @private
|
|
13681
|
+
*/
|
|
13682
|
+
async _deleteModel(modelName) {
|
|
13683
|
+
try {
|
|
13684
|
+
const storage = this.getStorage();
|
|
13685
|
+
await storage.delete(`model_${modelName}`);
|
|
13686
|
+
if (this.config.verbose) {
|
|
13687
|
+
console.log(`[MLPlugin] Deleted model "${modelName}" from plugin storage`);
|
|
13688
|
+
}
|
|
13689
|
+
} catch (error) {
|
|
13690
|
+
if (this.config.verbose) {
|
|
13691
|
+
console.log(`[MLPlugin] Could not delete model "${modelName}": ${error.message}`);
|
|
13692
|
+
}
|
|
13693
|
+
}
|
|
13694
|
+
}
|
|
13695
|
+
}
|
|
13696
|
+
|
|
11929
13697
|
class SqsConsumer {
|
|
11930
13698
|
constructor({ queueUrl, onMessage, onError, poolingInterval = 5e3, maxMessages = 10, region = "us-east-1", credentials, endpoint, driver = "sqs" }) {
|
|
11931
13699
|
this.driver = driver;
|
|
@@ -18457,6 +20225,7 @@ ${errorDetails}`,
|
|
|
18457
20225
|
events = {},
|
|
18458
20226
|
asyncEvents = true,
|
|
18459
20227
|
asyncPartitions = true,
|
|
20228
|
+
strictPartitions = false,
|
|
18460
20229
|
createdBy = "user"
|
|
18461
20230
|
} = config;
|
|
18462
20231
|
this.name = name;
|
|
@@ -18488,6 +20257,7 @@ ${errorDetails}`,
|
|
|
18488
20257
|
allNestedObjectsOptional,
|
|
18489
20258
|
asyncEvents,
|
|
18490
20259
|
asyncPartitions,
|
|
20260
|
+
strictPartitions,
|
|
18491
20261
|
createdBy
|
|
18492
20262
|
};
|
|
18493
20263
|
this.hooks = {
|
|
@@ -19240,17 +21010,31 @@ ${errorDetails}`,
|
|
|
19240
21010
|
throw errPut;
|
|
19241
21011
|
}
|
|
19242
21012
|
const insertedObject = await this.get(finalId);
|
|
19243
|
-
if (this.config.
|
|
19244
|
-
|
|
19245
|
-
this.createPartitionReferences(insertedObject)
|
|
21013
|
+
if (this.config.partitions && Object.keys(this.config.partitions).length > 0) {
|
|
21014
|
+
if (this.config.strictPartitions) {
|
|
21015
|
+
await this.createPartitionReferences(insertedObject);
|
|
21016
|
+
} else if (this.config.asyncPartitions) {
|
|
21017
|
+
setImmediate(() => {
|
|
21018
|
+
this.createPartitionReferences(insertedObject).catch((err) => {
|
|
21019
|
+
this.emit("partitionIndexError", {
|
|
21020
|
+
operation: "insert",
|
|
21021
|
+
id: finalId,
|
|
21022
|
+
error: err,
|
|
21023
|
+
message: err.message
|
|
21024
|
+
});
|
|
21025
|
+
});
|
|
21026
|
+
});
|
|
21027
|
+
} else {
|
|
21028
|
+
const [ok, err] = await tryFn(() => this.createPartitionReferences(insertedObject));
|
|
21029
|
+
if (!ok) {
|
|
19246
21030
|
this.emit("partitionIndexError", {
|
|
19247
21031
|
operation: "insert",
|
|
19248
21032
|
id: finalId,
|
|
19249
21033
|
error: err,
|
|
19250
21034
|
message: err.message
|
|
19251
21035
|
});
|
|
19252
|
-
}
|
|
19253
|
-
}
|
|
21036
|
+
}
|
|
21037
|
+
}
|
|
19254
21038
|
const nonPartitionHooks = this.hooks.afterInsert.filter(
|
|
19255
21039
|
(hook) => !hook.toString().includes("createPartitionReferences")
|
|
19256
21040
|
);
|
|
@@ -19545,17 +21329,31 @@ ${errorDetails}`,
|
|
|
19545
21329
|
body: finalBody,
|
|
19546
21330
|
behavior: this.behavior
|
|
19547
21331
|
});
|
|
19548
|
-
if (this.config.
|
|
19549
|
-
|
|
19550
|
-
this.handlePartitionReferenceUpdates(originalData, updatedData)
|
|
21332
|
+
if (this.config.partitions && Object.keys(this.config.partitions).length > 0) {
|
|
21333
|
+
if (this.config.strictPartitions) {
|
|
21334
|
+
await this.handlePartitionReferenceUpdates(originalData, updatedData);
|
|
21335
|
+
} else if (this.config.asyncPartitions) {
|
|
21336
|
+
setImmediate(() => {
|
|
21337
|
+
this.handlePartitionReferenceUpdates(originalData, updatedData).catch((err2) => {
|
|
21338
|
+
this.emit("partitionIndexError", {
|
|
21339
|
+
operation: "update",
|
|
21340
|
+
id,
|
|
21341
|
+
error: err2,
|
|
21342
|
+
message: err2.message
|
|
21343
|
+
});
|
|
21344
|
+
});
|
|
21345
|
+
});
|
|
21346
|
+
} else {
|
|
21347
|
+
const [ok2, err2] = await tryFn(() => this.handlePartitionReferenceUpdates(originalData, updatedData));
|
|
21348
|
+
if (!ok2) {
|
|
19551
21349
|
this.emit("partitionIndexError", {
|
|
19552
21350
|
operation: "update",
|
|
19553
21351
|
id,
|
|
19554
21352
|
error: err2,
|
|
19555
21353
|
message: err2.message
|
|
19556
21354
|
});
|
|
19557
|
-
}
|
|
19558
|
-
}
|
|
21355
|
+
}
|
|
21356
|
+
}
|
|
19559
21357
|
const nonPartitionHooks = this.hooks.afterUpdate.filter(
|
|
19560
21358
|
(hook) => !hook.toString().includes("handlePartitionReferenceUpdates")
|
|
19561
21359
|
);
|
|
@@ -19668,7 +21466,9 @@ ${errorDetails}`,
|
|
|
19668
21466
|
if (this.config.partitions && Object.keys(this.config.partitions).length > 0) {
|
|
19669
21467
|
const oldData = { ...currentData, id };
|
|
19670
21468
|
const newData = { ...mergedData, id };
|
|
19671
|
-
if (this.config.
|
|
21469
|
+
if (this.config.strictPartitions) {
|
|
21470
|
+
await this.handlePartitionReferenceUpdates(oldData, newData);
|
|
21471
|
+
} else if (this.config.asyncPartitions) {
|
|
19672
21472
|
setImmediate(() => {
|
|
19673
21473
|
this.handlePartitionReferenceUpdates(oldData, newData).catch((err) => {
|
|
19674
21474
|
this.emit("partitionIndexError", {
|
|
@@ -19798,7 +21598,9 @@ ${errorDetails}`,
|
|
|
19798
21598
|
}
|
|
19799
21599
|
const replacedObject = { id, ...validatedAttributes };
|
|
19800
21600
|
if (this.config.partitions && Object.keys(this.config.partitions).length > 0) {
|
|
19801
|
-
if (this.config.
|
|
21601
|
+
if (this.config.strictPartitions) {
|
|
21602
|
+
await this.handlePartitionReferenceUpdates({}, replacedObject);
|
|
21603
|
+
} else if (this.config.asyncPartitions) {
|
|
19802
21604
|
setImmediate(() => {
|
|
19803
21605
|
this.handlePartitionReferenceUpdates({}, replacedObject).catch((err) => {
|
|
19804
21606
|
this.emit("partitionIndexError", {
|
|
@@ -19938,17 +21740,31 @@ ${errorDetails}`,
|
|
|
19938
21740
|
});
|
|
19939
21741
|
const oldData = { ...originalData, id };
|
|
19940
21742
|
const newData = { ...validatedAttributes, id };
|
|
19941
|
-
if (this.config.
|
|
19942
|
-
|
|
19943
|
-
this.handlePartitionReferenceUpdates(oldData, newData)
|
|
21743
|
+
if (this.config.partitions && Object.keys(this.config.partitions).length > 0) {
|
|
21744
|
+
if (this.config.strictPartitions) {
|
|
21745
|
+
await this.handlePartitionReferenceUpdates(oldData, newData);
|
|
21746
|
+
} else if (this.config.asyncPartitions) {
|
|
21747
|
+
setImmediate(() => {
|
|
21748
|
+
this.handlePartitionReferenceUpdates(oldData, newData).catch((err2) => {
|
|
21749
|
+
this.emit("partitionIndexError", {
|
|
21750
|
+
operation: "updateConditional",
|
|
21751
|
+
id,
|
|
21752
|
+
error: err2,
|
|
21753
|
+
message: err2.message
|
|
21754
|
+
});
|
|
21755
|
+
});
|
|
21756
|
+
});
|
|
21757
|
+
} else {
|
|
21758
|
+
const [ok2, err2] = await tryFn(() => this.handlePartitionReferenceUpdates(oldData, newData));
|
|
21759
|
+
if (!ok2) {
|
|
19944
21760
|
this.emit("partitionIndexError", {
|
|
19945
21761
|
operation: "updateConditional",
|
|
19946
21762
|
id,
|
|
19947
21763
|
error: err2,
|
|
19948
21764
|
message: err2.message
|
|
19949
21765
|
});
|
|
19950
|
-
}
|
|
19951
|
-
}
|
|
21766
|
+
}
|
|
21767
|
+
}
|
|
19952
21768
|
const nonPartitionHooks = this.hooks.afterUpdate.filter(
|
|
19953
21769
|
(hook) => !hook.toString().includes("handlePartitionReferenceUpdates")
|
|
19954
21770
|
);
|
|
@@ -20024,17 +21840,31 @@ ${errorDetails}`,
|
|
|
20024
21840
|
operation: "delete",
|
|
20025
21841
|
id
|
|
20026
21842
|
});
|
|
20027
|
-
if (this.config.
|
|
20028
|
-
|
|
20029
|
-
this.deletePartitionReferences(objectData)
|
|
21843
|
+
if (this.config.partitions && Object.keys(this.config.partitions).length > 0 && objectData) {
|
|
21844
|
+
if (this.config.strictPartitions) {
|
|
21845
|
+
await this.deletePartitionReferences(objectData);
|
|
21846
|
+
} else if (this.config.asyncPartitions) {
|
|
21847
|
+
setImmediate(() => {
|
|
21848
|
+
this.deletePartitionReferences(objectData).catch((err3) => {
|
|
21849
|
+
this.emit("partitionIndexError", {
|
|
21850
|
+
operation: "delete",
|
|
21851
|
+
id,
|
|
21852
|
+
error: err3,
|
|
21853
|
+
message: err3.message
|
|
21854
|
+
});
|
|
21855
|
+
});
|
|
21856
|
+
});
|
|
21857
|
+
} else {
|
|
21858
|
+
const [ok3, err3] = await tryFn(() => this.deletePartitionReferences(objectData));
|
|
21859
|
+
if (!ok3) {
|
|
20030
21860
|
this.emit("partitionIndexError", {
|
|
20031
21861
|
operation: "delete",
|
|
20032
21862
|
id,
|
|
20033
21863
|
error: err3,
|
|
20034
21864
|
message: err3.message
|
|
20035
21865
|
});
|
|
20036
|
-
}
|
|
20037
|
-
}
|
|
21866
|
+
}
|
|
21867
|
+
}
|
|
20038
21868
|
const nonPartitionHooks = this.hooks.afterDelete.filter(
|
|
20039
21869
|
(hook) => !hook.toString().includes("deletePartitionReferences")
|
|
20040
21870
|
);
|
|
@@ -21405,10 +23235,13 @@ function validateResourceConfig(config) {
|
|
|
21405
23235
|
class Database extends EventEmitter {
|
|
21406
23236
|
constructor(options) {
|
|
21407
23237
|
super();
|
|
21408
|
-
this.id =
|
|
23238
|
+
this.id = (() => {
|
|
23239
|
+
const [ok, err, id] = tryFn(() => idGenerator(7));
|
|
23240
|
+
return ok && id ? id : `db-${Date.now()}-${Math.random().toString(36).substr(2, 9)}`;
|
|
23241
|
+
})();
|
|
21409
23242
|
this.version = "1";
|
|
21410
23243
|
this.s3dbVersion = (() => {
|
|
21411
|
-
const [ok, err, version] = tryFn(() => true ? "
|
|
23244
|
+
const [ok, err, version] = tryFn(() => true ? "13.0.0" : "latest");
|
|
21412
23245
|
return ok ? version : "latest";
|
|
21413
23246
|
})();
|
|
21414
23247
|
this._resourcesMap = {};
|
|
@@ -21442,6 +23275,7 @@ class Database extends EventEmitter {
|
|
|
21442
23275
|
this.versioningEnabled = options.versioningEnabled || false;
|
|
21443
23276
|
this.persistHooks = options.persistHooks || false;
|
|
21444
23277
|
this.strictValidation = options.strictValidation !== false;
|
|
23278
|
+
this.strictHooks = options.strictHooks || false;
|
|
21445
23279
|
this._initHooks();
|
|
21446
23280
|
let connectionString = options.connectionString;
|
|
21447
23281
|
if (!connectionString && (options.bucket || options.accessKeyId || options.secretAccessKey)) {
|
|
@@ -21472,18 +23306,25 @@ class Database extends EventEmitter {
|
|
|
21472
23306
|
this.connectionString = connectionString;
|
|
21473
23307
|
this.bucket = this.client.bucket;
|
|
21474
23308
|
this.keyPrefix = this.client.keyPrefix;
|
|
21475
|
-
|
|
23309
|
+
this._registerExitListener();
|
|
23310
|
+
}
|
|
23311
|
+
/**
|
|
23312
|
+
* Register process exit listener for automatic cleanup
|
|
23313
|
+
* @private
|
|
23314
|
+
*/
|
|
23315
|
+
_registerExitListener() {
|
|
23316
|
+
if (!this._exitListenerRegistered && typeof process !== "undefined") {
|
|
21476
23317
|
this._exitListenerRegistered = true;
|
|
21477
|
-
|
|
21478
|
-
|
|
21479
|
-
|
|
21480
|
-
|
|
21481
|
-
|
|
21482
|
-
|
|
21483
|
-
}
|
|
23318
|
+
this._exitListener = async () => {
|
|
23319
|
+
if (this.isConnected()) {
|
|
23320
|
+
await tryFn(() => this.disconnect());
|
|
23321
|
+
}
|
|
23322
|
+
};
|
|
23323
|
+
process.on("exit", this._exitListener);
|
|
21484
23324
|
}
|
|
21485
23325
|
}
|
|
21486
23326
|
async connect() {
|
|
23327
|
+
this._registerExitListener();
|
|
21487
23328
|
await this.startPlugins();
|
|
21488
23329
|
let metadata = null;
|
|
21489
23330
|
let needsHealing = false;
|
|
@@ -22446,11 +24287,16 @@ class Database extends EventEmitter {
|
|
|
22446
24287
|
if (this.client && typeof this.client.removeAllListeners === "function") {
|
|
22447
24288
|
this.client.removeAllListeners();
|
|
22448
24289
|
}
|
|
24290
|
+
await this.emit("disconnected", /* @__PURE__ */ new Date());
|
|
22449
24291
|
this.removeAllListeners();
|
|
24292
|
+
if (this._exitListener && typeof process !== "undefined") {
|
|
24293
|
+
process.off("exit", this._exitListener);
|
|
24294
|
+
this._exitListener = null;
|
|
24295
|
+
this._exitListenerRegistered = false;
|
|
24296
|
+
}
|
|
22450
24297
|
this.savedMetadata = null;
|
|
22451
24298
|
this.plugins = {};
|
|
22452
24299
|
this.pluginList = [];
|
|
22453
|
-
this.emit("disconnected", /* @__PURE__ */ new Date());
|
|
22454
24300
|
});
|
|
22455
24301
|
}
|
|
22456
24302
|
/**
|
|
@@ -22554,6 +24400,13 @@ class Database extends EventEmitter {
|
|
|
22554
24400
|
const [ok, error] = await tryFn(() => hook({ database: this, ...context }));
|
|
22555
24401
|
if (!ok) {
|
|
22556
24402
|
this.emit("hookError", { event, error, context });
|
|
24403
|
+
if (this.strictHooks) {
|
|
24404
|
+
throw new DatabaseError(`Hook execution failed for event '${event}': ${error.message}`, {
|
|
24405
|
+
event,
|
|
24406
|
+
originalError: error,
|
|
24407
|
+
context
|
|
24408
|
+
});
|
|
24409
|
+
}
|
|
22557
24410
|
}
|
|
22558
24411
|
}
|
|
22559
24412
|
}
|
|
@@ -38881,30 +40734,42 @@ class MemoryClient extends EventEmitter {
|
|
|
38881
40734
|
const resourceStats = {};
|
|
38882
40735
|
for (const [resourceName, keys] of resourceMap.entries()) {
|
|
38883
40736
|
const records = [];
|
|
40737
|
+
const resource = database && database.resources && database.resources[resourceName];
|
|
38884
40738
|
for (const key of keys) {
|
|
38885
|
-
const obj = await this.getObject(key);
|
|
38886
40739
|
const idMatch = key.match(/\/id=([^/]+)/);
|
|
38887
40740
|
const recordId = idMatch ? idMatch[1] : null;
|
|
38888
|
-
|
|
38889
|
-
if (
|
|
38890
|
-
|
|
38891
|
-
|
|
38892
|
-
|
|
38893
|
-
|
|
38894
|
-
|
|
38895
|
-
chunks.push(chunk2);
|
|
40741
|
+
let record;
|
|
40742
|
+
if (resource && recordId) {
|
|
40743
|
+
try {
|
|
40744
|
+
record = await resource.get(recordId);
|
|
40745
|
+
} catch (err) {
|
|
40746
|
+
console.warn(`Failed to get record ${recordId} from resource ${resourceName}, using fallback`);
|
|
40747
|
+
record = null;
|
|
38896
40748
|
}
|
|
38897
|
-
|
|
38898
|
-
|
|
38899
|
-
|
|
38900
|
-
|
|
38901
|
-
|
|
38902
|
-
|
|
38903
|
-
|
|
40749
|
+
}
|
|
40750
|
+
if (!record) {
|
|
40751
|
+
const obj = await this.getObject(key);
|
|
40752
|
+
record = { ...obj.Metadata };
|
|
40753
|
+
if (recordId && !record.id) {
|
|
40754
|
+
record.id = recordId;
|
|
40755
|
+
}
|
|
40756
|
+
if (obj.Body) {
|
|
40757
|
+
const chunks = [];
|
|
40758
|
+
for await (const chunk2 of obj.Body) {
|
|
40759
|
+
chunks.push(chunk2);
|
|
40760
|
+
}
|
|
40761
|
+
const bodyBuffer = Buffer.concat(chunks);
|
|
40762
|
+
const bodyStr = bodyBuffer.toString("utf-8");
|
|
40763
|
+
if (bodyStr.startsWith("{") || bodyStr.startsWith("[")) {
|
|
40764
|
+
try {
|
|
40765
|
+
const bodyData = JSON.parse(bodyStr);
|
|
40766
|
+
Object.assign(record, bodyData);
|
|
40767
|
+
} catch {
|
|
40768
|
+
record._body = bodyStr;
|
|
40769
|
+
}
|
|
40770
|
+
} else if (bodyStr) {
|
|
38904
40771
|
record._body = bodyStr;
|
|
38905
40772
|
}
|
|
38906
|
-
} else if (bodyStr) {
|
|
38907
|
-
record._body = bodyStr;
|
|
38908
40773
|
}
|
|
38909
40774
|
}
|
|
38910
40775
|
records.push(record);
|
|
@@ -39998,6 +41863,7 @@ exports.FilesystemCache = FilesystemCache;
|
|
|
39998
41863
|
exports.FullTextPlugin = FullTextPlugin;
|
|
39999
41864
|
exports.GeoPlugin = GeoPlugin;
|
|
40000
41865
|
exports.InvalidResourceItem = InvalidResourceItem;
|
|
41866
|
+
exports.MLPlugin = MLPlugin;
|
|
40001
41867
|
exports.MemoryCache = MemoryCache;
|
|
40002
41868
|
exports.MemoryClient = MemoryClient;
|
|
40003
41869
|
exports.MemoryStorage = MemoryStorage;
|