ruvector 0.1.57 → 0.1.59

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "ruvector",
3
- "version": "0.1.57",
3
+ "version": "0.1.59",
4
4
  "description": "High-performance vector database for Node.js with automatic native/WASM fallback",
5
5
  "main": "dist/index.js",
6
6
  "types": "dist/index.d.ts",
package/ruvector.db CHANGED
Binary file
@@ -1,295 +0,0 @@
1
- # RuVector ONNX Embeddings WASM
2
-
3
- [![npm version](https://img.shields.io/npm/v/ruvector-onnx-embeddings-wasm.svg)](https://www.npmjs.com/package/ruvector-onnx-embeddings-wasm)
4
- [![crates.io](https://img.shields.io/crates/v/ruvector-onnx-embeddings-wasm.svg)](https://crates.io/crates/ruvector-onnx-embeddings-wasm)
5
- [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
6
- [![WebAssembly](https://img.shields.io/badge/WebAssembly-654FF0?logo=webassembly&logoColor=white)](https://webassembly.org/)
7
-
8
- > **Portable embedding generation that runs anywhere WebAssembly runs**
9
-
10
- Generate text embeddings directly in browsers, Cloudflare Workers, Deno, and any WASM runtime. Built with [Tract](https://github.com/sonos/tract) for pure Rust ONNX inference.
11
-
12
- ## Features
13
-
14
- | Feature | Description |
15
- |---------|-------------|
16
- | 🌐 **Browser Support** | Generate embeddings client-side, no server needed |
17
- | ⚡ **Edge Computing** | Deploy to Cloudflare Workers, Vercel Edge, Deno Deploy |
18
- | 📦 **Zero Dependencies** | Single WASM binary, no native modules |
19
- | 🤗 **HuggingFace Models** | Pre-configured URLs for popular models |
20
- | 🔄 **Auto Caching** | Browser Cache API for instant reloads |
21
- | 🎯 **Same API** | Compatible with native `ruvector-onnx-embeddings` |
22
-
23
- ## Quick Start
24
-
25
- ### Browser (ES Modules)
26
-
27
- ```html
28
- <script type="module">
29
- import init, { WasmEmbedder } from 'https://unpkg.com/ruvector-onnx-embeddings-wasm/ruvector_onnx_embeddings_wasm.js';
30
- import { createEmbedder } from 'https://unpkg.com/ruvector-onnx-embeddings-wasm/loader.js';
31
-
32
- // Initialize WASM
33
- await init();
34
-
35
- // Create embedder (downloads model automatically)
36
- const embedder = await createEmbedder('all-MiniLM-L6-v2');
37
-
38
- // Generate embeddings
39
- const embedding = embedder.embedOne("Hello, world!");
40
- console.log("Dimension:", embedding.length); // 384
41
-
42
- // Compute similarity
43
- const sim = embedder.similarity("I love Rust", "Rust is great");
44
- console.log("Similarity:", sim.toFixed(4)); // ~0.85
45
- </script>
46
- ```
47
-
48
- ### Node.js
49
-
50
- ```bash
51
- npm install ruvector-onnx-embeddings-wasm
52
- ```
53
-
54
- ```javascript
55
- import { createEmbedder, similarity, embed } from 'ruvector-onnx-embeddings-wasm/loader.js';
56
-
57
- // One-liner similarity
58
- const score = await similarity("I love dogs", "I adore puppies");
59
- console.log(score); // ~0.85
60
-
61
- // One-liner embedding
62
- const embedding = await embed("Hello world");
63
- console.log(embedding.length); // 384
64
-
65
- // Full control
66
- const embedder = await createEmbedder('bge-small-en-v1.5');
67
- const emb1 = embedder.embedOne("First text");
68
- const emb2 = embedder.embedOne("Second text");
69
- ```
70
-
71
- ### Cloudflare Workers
72
-
73
- ```javascript
74
- import { WasmEmbedder, WasmEmbedderConfig } from 'ruvector-onnx-embeddings-wasm';
75
-
76
- export default {
77
- async fetch(request, env) {
78
- // Load model from R2 or KV
79
- const modelBytes = await env.MODELS.get('model.onnx', 'arrayBuffer');
80
- const tokenizerJson = await env.MODELS.get('tokenizer.json', 'text');
81
-
82
- const embedder = new WasmEmbedder(
83
- new Uint8Array(modelBytes),
84
- tokenizerJson
85
- );
86
-
87
- const { text } = await request.json();
88
- const embedding = embedder.embedOne(text);
89
-
90
- return Response.json({
91
- embedding: Array.from(embedding),
92
- dimension: embedding.length
93
- });
94
- }
95
- };
96
- ```
97
-
98
- ## Available Models
99
-
100
- | Model | Dimension | Size | Speed | Quality | Best For |
101
- |-------|-----------|------|-------|---------|----------|
102
- | **all-MiniLM-L6-v2** ⭐ | 384 | 23MB | ⚡⚡⚡ | ⭐⭐⭐ | Default, fast |
103
- | **all-MiniLM-L12-v2** | 384 | 33MB | ⚡⚡ | ⭐⭐⭐⭐ | Better quality |
104
- | **bge-small-en-v1.5** | 384 | 33MB | ⚡⚡⚡ | ⭐⭐⭐⭐ | State-of-the-art |
105
- | **bge-base-en-v1.5** | 768 | 110MB | ⚡ | ⭐⭐⭐⭐⭐ | Best quality |
106
- | **e5-small-v2** | 384 | 33MB | ⚡⚡⚡ | ⭐⭐⭐⭐ | Search/retrieval |
107
- | **gte-small** | 384 | 33MB | ⚡⚡⚡ | ⭐⭐⭐⭐ | Multilingual |
108
-
109
- ## API Reference
110
-
111
- ### ModelLoader
112
-
113
- ```javascript
114
- import { ModelLoader, MODELS, DEFAULT_MODEL } from './loader.js';
115
-
116
- // List available models
117
- console.log(ModelLoader.listModels());
118
-
119
- // Load with progress
120
- const loader = new ModelLoader({
121
- cache: true,
122
- onProgress: ({ percent }) => console.log(`${percent}%`)
123
- });
124
-
125
- const { modelBytes, tokenizerJson, config } = await loader.loadModel('all-MiniLM-L6-v2');
126
- ```
127
-
128
- ### WasmEmbedder
129
-
130
- ```typescript
131
- class WasmEmbedder {
132
- constructor(modelBytes: Uint8Array, tokenizerJson: string);
133
-
134
- static withConfig(
135
- modelBytes: Uint8Array,
136
- tokenizerJson: string,
137
- config: WasmEmbedderConfig
138
- ): WasmEmbedder;
139
-
140
- embedOne(text: string): Float32Array;
141
- embedBatch(texts: string[]): Float32Array;
142
- similarity(text1: string, text2: string): number;
143
-
144
- dimension(): number;
145
- maxLength(): number;
146
- }
147
- ```
148
-
149
- ### WasmEmbedderConfig
150
-
151
- ```typescript
152
- class WasmEmbedderConfig {
153
- constructor();
154
- setMaxLength(length: number): WasmEmbedderConfig;
155
- setNormalize(normalize: boolean): WasmEmbedderConfig;
156
- setPooling(strategy: number): WasmEmbedderConfig;
157
- // 0=Mean, 1=Cls, 2=Max, 3=MeanSqrtLen, 4=LastToken
158
- }
159
- ```
160
-
161
- ### Utility Functions
162
-
163
- ```typescript
164
- function cosineSimilarity(a: Float32Array, b: Float32Array): number;
165
- function normalizeL2(embedding: Float32Array): Float32Array;
166
- function version(): string;
167
- function simd_available(): boolean;
168
- ```
169
-
170
- ## Pooling Strategies
171
-
172
- | Value | Strategy | Description |
173
- |-------|----------|-------------|
174
- | 0 | **Mean** | Average all tokens (default, recommended) |
175
- | 1 | **Cls** | Use [CLS] token only (BERT-style) |
176
- | 2 | **Max** | Max pooling across tokens |
177
- | 3 | **MeanSqrtLen** | Mean normalized by sqrt(length) |
178
- | 4 | **LastToken** | Last token (decoder models) |
179
-
180
- ## Performance
181
-
182
- | Environment | Throughput | Latency |
183
- |-------------|------------|---------|
184
- | Chrome (M1 Mac) | ~50 texts/sec | ~20ms |
185
- | Firefox (M1 Mac) | ~45 texts/sec | ~22ms |
186
- | Node.js 20 | ~80 texts/sec | ~12ms |
187
- | Cloudflare Workers | ~30 texts/sec | ~33ms |
188
- | Deno | ~75 texts/sec | ~13ms |
189
-
190
- *Tested with all-MiniLM-L6-v2, 128 token inputs*
191
-
192
- ## Comparison: Native vs WASM
193
-
194
- | Aspect | Native (`ort`) | WASM (`tract`) |
195
- |--------|----------------|----------------|
196
- | Speed | ⚡⚡⚡ Native | ⚡⚡ ~2-3x slower |
197
- | Browser | ❌ | ✅ |
198
- | Edge Workers | ❌ | ✅ |
199
- | GPU | CUDA, TensorRT | ❌ |
200
- | Bundle Size | ~50MB | ~8MB |
201
- | Portability | Platform-specific | Universal |
202
-
203
- **Use native** for: servers, high throughput, GPU acceleration
204
- **Use WASM** for: browsers, edge, portability
205
-
206
- ## Building from Source
207
-
208
- ```bash
209
- # Install wasm-pack
210
- cargo install wasm-pack
211
-
212
- # Build for web
213
- wasm-pack build --target web
214
-
215
- # Build for Node.js
216
- wasm-pack build --target nodejs
217
-
218
- # Build for bundlers (webpack, vite)
219
- wasm-pack build --target bundler
220
- ```
221
-
222
- ## Use Cases
223
-
224
- ### Semantic Search
225
-
226
- ```javascript
227
- const embedder = await createEmbedder();
228
-
229
- // Index documents
230
- const docs = ["Rust is fast", "Python is easy", "JavaScript runs everywhere"];
231
- const embeddings = docs.map(d => embedder.embedOne(d));
232
-
233
- // Search
234
- const query = embedder.embedOne("Which language is performant?");
235
- const scores = embeddings.map((e, i) => ({
236
- doc: docs[i],
237
- score: cosineSimilarity(query, e)
238
- }));
239
- scores.sort((a, b) => b.score - a.score);
240
- console.log(scores[0]); // { doc: "Rust is fast", score: 0.82 }
241
- ```
242
-
243
- ### Text Clustering
244
-
245
- ```javascript
246
- const texts = [
247
- "Machine learning is amazing",
248
- "Deep learning uses neural networks",
249
- "I love pizza",
250
- "Italian food is delicious"
251
- ];
252
-
253
- const embeddings = texts.map(t => embedder.embedOne(t));
254
- // Use k-means or hierarchical clustering on embeddings
255
- ```
256
-
257
- ### RAG (Retrieval-Augmented Generation)
258
-
259
- ```javascript
260
- // Build knowledge base
261
- const knowledge = [
262
- "RuVector is a vector database",
263
- "Embeddings capture semantic meaning",
264
- // ... more docs
265
- ];
266
- const knowledgeEmbeddings = knowledge.map(k => embedder.embedOne(k));
267
-
268
- // Retrieve relevant context for LLM
269
- function getContext(query, topK = 3) {
270
- const queryEmb = embedder.embedOne(query);
271
- const scores = knowledgeEmbeddings.map((e, i) => ({
272
- text: knowledge[i],
273
- score: cosineSimilarity(queryEmb, e)
274
- }));
275
- return scores.sort((a, b) => b.score - a.score).slice(0, topK);
276
- }
277
- ```
278
-
279
- ## Related Packages
280
-
281
- | Package | Runtime | Use Case |
282
- |---------|---------|----------|
283
- | [ruvector-onnx-embeddings](https://crates.io/crates/ruvector-onnx-embeddings) | Native | High-performance servers |
284
- | **ruvector-onnx-embeddings-wasm** | WASM | Browsers, edge, portable |
285
-
286
- ## License
287
-
288
- MIT License - See [LICENSE](../../LICENSE) for details.
289
-
290
- ---
291
-
292
- <p align="center">
293
- <b>Part of the RuVector ecosystem</b><br>
294
- High-performance vector operations in Rust
295
- </p>
Binary file