ruvector 0.1.57 → 0.1.59
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/bin/cli.js +107 -61
- package/bin/mcp-server.js +1 -1
- package/dist/core/onnx/pkg/ruvector_onnx_embeddings_wasm.d.ts +1 -54
- package/dist/core/onnx/pkg/ruvector_onnx_embeddings_wasm.js +5 -694
- package/dist/core/onnx/pkg/ruvector_onnx_embeddings_wasm_bg.js +1 -0
- package/dist/core/onnx/pkg/ruvector_onnx_embeddings_wasm_bg.wasm +0 -0
- package/package.json +1 -1
- package/ruvector.db +0 -0
- package/dist/core/onnx/pkg/README.md +0 -295
- package/dist/core/onnx/pkg/ruvector.db +0 -0
package/package.json
CHANGED
package/ruvector.db
CHANGED
|
Binary file
|
|
@@ -1,295 +0,0 @@
|
|
|
1
|
-
# RuVector ONNX Embeddings WASM
|
|
2
|
-
|
|
3
|
-
[](https://www.npmjs.com/package/ruvector-onnx-embeddings-wasm)
|
|
4
|
-
[](https://crates.io/crates/ruvector-onnx-embeddings-wasm)
|
|
5
|
-
[](https://opensource.org/licenses/MIT)
|
|
6
|
-
[](https://webassembly.org/)
|
|
7
|
-
|
|
8
|
-
> **Portable embedding generation that runs anywhere WebAssembly runs**
|
|
9
|
-
|
|
10
|
-
Generate text embeddings directly in browsers, Cloudflare Workers, Deno, and any WASM runtime. Built with [Tract](https://github.com/sonos/tract) for pure Rust ONNX inference.
|
|
11
|
-
|
|
12
|
-
## Features
|
|
13
|
-
|
|
14
|
-
| Feature | Description |
|
|
15
|
-
|---------|-------------|
|
|
16
|
-
| 🌐 **Browser Support** | Generate embeddings client-side, no server needed |
|
|
17
|
-
| ⚡ **Edge Computing** | Deploy to Cloudflare Workers, Vercel Edge, Deno Deploy |
|
|
18
|
-
| 📦 **Zero Dependencies** | Single WASM binary, no native modules |
|
|
19
|
-
| 🤗 **HuggingFace Models** | Pre-configured URLs for popular models |
|
|
20
|
-
| 🔄 **Auto Caching** | Browser Cache API for instant reloads |
|
|
21
|
-
| 🎯 **Same API** | Compatible with native `ruvector-onnx-embeddings` |
|
|
22
|
-
|
|
23
|
-
## Quick Start
|
|
24
|
-
|
|
25
|
-
### Browser (ES Modules)
|
|
26
|
-
|
|
27
|
-
```html
|
|
28
|
-
<script type="module">
|
|
29
|
-
import init, { WasmEmbedder } from 'https://unpkg.com/ruvector-onnx-embeddings-wasm/ruvector_onnx_embeddings_wasm.js';
|
|
30
|
-
import { createEmbedder } from 'https://unpkg.com/ruvector-onnx-embeddings-wasm/loader.js';
|
|
31
|
-
|
|
32
|
-
// Initialize WASM
|
|
33
|
-
await init();
|
|
34
|
-
|
|
35
|
-
// Create embedder (downloads model automatically)
|
|
36
|
-
const embedder = await createEmbedder('all-MiniLM-L6-v2');
|
|
37
|
-
|
|
38
|
-
// Generate embeddings
|
|
39
|
-
const embedding = embedder.embedOne("Hello, world!");
|
|
40
|
-
console.log("Dimension:", embedding.length); // 384
|
|
41
|
-
|
|
42
|
-
// Compute similarity
|
|
43
|
-
const sim = embedder.similarity("I love Rust", "Rust is great");
|
|
44
|
-
console.log("Similarity:", sim.toFixed(4)); // ~0.85
|
|
45
|
-
</script>
|
|
46
|
-
```
|
|
47
|
-
|
|
48
|
-
### Node.js
|
|
49
|
-
|
|
50
|
-
```bash
|
|
51
|
-
npm install ruvector-onnx-embeddings-wasm
|
|
52
|
-
```
|
|
53
|
-
|
|
54
|
-
```javascript
|
|
55
|
-
import { createEmbedder, similarity, embed } from 'ruvector-onnx-embeddings-wasm/loader.js';
|
|
56
|
-
|
|
57
|
-
// One-liner similarity
|
|
58
|
-
const score = await similarity("I love dogs", "I adore puppies");
|
|
59
|
-
console.log(score); // ~0.85
|
|
60
|
-
|
|
61
|
-
// One-liner embedding
|
|
62
|
-
const embedding = await embed("Hello world");
|
|
63
|
-
console.log(embedding.length); // 384
|
|
64
|
-
|
|
65
|
-
// Full control
|
|
66
|
-
const embedder = await createEmbedder('bge-small-en-v1.5');
|
|
67
|
-
const emb1 = embedder.embedOne("First text");
|
|
68
|
-
const emb2 = embedder.embedOne("Second text");
|
|
69
|
-
```
|
|
70
|
-
|
|
71
|
-
### Cloudflare Workers
|
|
72
|
-
|
|
73
|
-
```javascript
|
|
74
|
-
import { WasmEmbedder, WasmEmbedderConfig } from 'ruvector-onnx-embeddings-wasm';
|
|
75
|
-
|
|
76
|
-
export default {
|
|
77
|
-
async fetch(request, env) {
|
|
78
|
-
// Load model from R2 or KV
|
|
79
|
-
const modelBytes = await env.MODELS.get('model.onnx', 'arrayBuffer');
|
|
80
|
-
const tokenizerJson = await env.MODELS.get('tokenizer.json', 'text');
|
|
81
|
-
|
|
82
|
-
const embedder = new WasmEmbedder(
|
|
83
|
-
new Uint8Array(modelBytes),
|
|
84
|
-
tokenizerJson
|
|
85
|
-
);
|
|
86
|
-
|
|
87
|
-
const { text } = await request.json();
|
|
88
|
-
const embedding = embedder.embedOne(text);
|
|
89
|
-
|
|
90
|
-
return Response.json({
|
|
91
|
-
embedding: Array.from(embedding),
|
|
92
|
-
dimension: embedding.length
|
|
93
|
-
});
|
|
94
|
-
}
|
|
95
|
-
};
|
|
96
|
-
```
|
|
97
|
-
|
|
98
|
-
## Available Models
|
|
99
|
-
|
|
100
|
-
| Model | Dimension | Size | Speed | Quality | Best For |
|
|
101
|
-
|-------|-----------|------|-------|---------|----------|
|
|
102
|
-
| **all-MiniLM-L6-v2** ⭐ | 384 | 23MB | ⚡⚡⚡ | ⭐⭐⭐ | Default, fast |
|
|
103
|
-
| **all-MiniLM-L12-v2** | 384 | 33MB | ⚡⚡ | ⭐⭐⭐⭐ | Better quality |
|
|
104
|
-
| **bge-small-en-v1.5** | 384 | 33MB | ⚡⚡⚡ | ⭐⭐⭐⭐ | State-of-the-art |
|
|
105
|
-
| **bge-base-en-v1.5** | 768 | 110MB | ⚡ | ⭐⭐⭐⭐⭐ | Best quality |
|
|
106
|
-
| **e5-small-v2** | 384 | 33MB | ⚡⚡⚡ | ⭐⭐⭐⭐ | Search/retrieval |
|
|
107
|
-
| **gte-small** | 384 | 33MB | ⚡⚡⚡ | ⭐⭐⭐⭐ | Multilingual |
|
|
108
|
-
|
|
109
|
-
## API Reference
|
|
110
|
-
|
|
111
|
-
### ModelLoader
|
|
112
|
-
|
|
113
|
-
```javascript
|
|
114
|
-
import { ModelLoader, MODELS, DEFAULT_MODEL } from './loader.js';
|
|
115
|
-
|
|
116
|
-
// List available models
|
|
117
|
-
console.log(ModelLoader.listModels());
|
|
118
|
-
|
|
119
|
-
// Load with progress
|
|
120
|
-
const loader = new ModelLoader({
|
|
121
|
-
cache: true,
|
|
122
|
-
onProgress: ({ percent }) => console.log(`${percent}%`)
|
|
123
|
-
});
|
|
124
|
-
|
|
125
|
-
const { modelBytes, tokenizerJson, config } = await loader.loadModel('all-MiniLM-L6-v2');
|
|
126
|
-
```
|
|
127
|
-
|
|
128
|
-
### WasmEmbedder
|
|
129
|
-
|
|
130
|
-
```typescript
|
|
131
|
-
class WasmEmbedder {
|
|
132
|
-
constructor(modelBytes: Uint8Array, tokenizerJson: string);
|
|
133
|
-
|
|
134
|
-
static withConfig(
|
|
135
|
-
modelBytes: Uint8Array,
|
|
136
|
-
tokenizerJson: string,
|
|
137
|
-
config: WasmEmbedderConfig
|
|
138
|
-
): WasmEmbedder;
|
|
139
|
-
|
|
140
|
-
embedOne(text: string): Float32Array;
|
|
141
|
-
embedBatch(texts: string[]): Float32Array;
|
|
142
|
-
similarity(text1: string, text2: string): number;
|
|
143
|
-
|
|
144
|
-
dimension(): number;
|
|
145
|
-
maxLength(): number;
|
|
146
|
-
}
|
|
147
|
-
```
|
|
148
|
-
|
|
149
|
-
### WasmEmbedderConfig
|
|
150
|
-
|
|
151
|
-
```typescript
|
|
152
|
-
class WasmEmbedderConfig {
|
|
153
|
-
constructor();
|
|
154
|
-
setMaxLength(length: number): WasmEmbedderConfig;
|
|
155
|
-
setNormalize(normalize: boolean): WasmEmbedderConfig;
|
|
156
|
-
setPooling(strategy: number): WasmEmbedderConfig;
|
|
157
|
-
// 0=Mean, 1=Cls, 2=Max, 3=MeanSqrtLen, 4=LastToken
|
|
158
|
-
}
|
|
159
|
-
```
|
|
160
|
-
|
|
161
|
-
### Utility Functions
|
|
162
|
-
|
|
163
|
-
```typescript
|
|
164
|
-
function cosineSimilarity(a: Float32Array, b: Float32Array): number;
|
|
165
|
-
function normalizeL2(embedding: Float32Array): Float32Array;
|
|
166
|
-
function version(): string;
|
|
167
|
-
function simd_available(): boolean;
|
|
168
|
-
```
|
|
169
|
-
|
|
170
|
-
## Pooling Strategies
|
|
171
|
-
|
|
172
|
-
| Value | Strategy | Description |
|
|
173
|
-
|-------|----------|-------------|
|
|
174
|
-
| 0 | **Mean** | Average all tokens (default, recommended) |
|
|
175
|
-
| 1 | **Cls** | Use [CLS] token only (BERT-style) |
|
|
176
|
-
| 2 | **Max** | Max pooling across tokens |
|
|
177
|
-
| 3 | **MeanSqrtLen** | Mean normalized by sqrt(length) |
|
|
178
|
-
| 4 | **LastToken** | Last token (decoder models) |
|
|
179
|
-
|
|
180
|
-
## Performance
|
|
181
|
-
|
|
182
|
-
| Environment | Throughput | Latency |
|
|
183
|
-
|-------------|------------|---------|
|
|
184
|
-
| Chrome (M1 Mac) | ~50 texts/sec | ~20ms |
|
|
185
|
-
| Firefox (M1 Mac) | ~45 texts/sec | ~22ms |
|
|
186
|
-
| Node.js 20 | ~80 texts/sec | ~12ms |
|
|
187
|
-
| Cloudflare Workers | ~30 texts/sec | ~33ms |
|
|
188
|
-
| Deno | ~75 texts/sec | ~13ms |
|
|
189
|
-
|
|
190
|
-
*Tested with all-MiniLM-L6-v2, 128 token inputs*
|
|
191
|
-
|
|
192
|
-
## Comparison: Native vs WASM
|
|
193
|
-
|
|
194
|
-
| Aspect | Native (`ort`) | WASM (`tract`) |
|
|
195
|
-
|--------|----------------|----------------|
|
|
196
|
-
| Speed | ⚡⚡⚡ Native | ⚡⚡ ~2-3x slower |
|
|
197
|
-
| Browser | ❌ | ✅ |
|
|
198
|
-
| Edge Workers | ❌ | ✅ |
|
|
199
|
-
| GPU | CUDA, TensorRT | ❌ |
|
|
200
|
-
| Bundle Size | ~50MB | ~8MB |
|
|
201
|
-
| Portability | Platform-specific | Universal |
|
|
202
|
-
|
|
203
|
-
**Use native** for: servers, high throughput, GPU acceleration
|
|
204
|
-
**Use WASM** for: browsers, edge, portability
|
|
205
|
-
|
|
206
|
-
## Building from Source
|
|
207
|
-
|
|
208
|
-
```bash
|
|
209
|
-
# Install wasm-pack
|
|
210
|
-
cargo install wasm-pack
|
|
211
|
-
|
|
212
|
-
# Build for web
|
|
213
|
-
wasm-pack build --target web
|
|
214
|
-
|
|
215
|
-
# Build for Node.js
|
|
216
|
-
wasm-pack build --target nodejs
|
|
217
|
-
|
|
218
|
-
# Build for bundlers (webpack, vite)
|
|
219
|
-
wasm-pack build --target bundler
|
|
220
|
-
```
|
|
221
|
-
|
|
222
|
-
## Use Cases
|
|
223
|
-
|
|
224
|
-
### Semantic Search
|
|
225
|
-
|
|
226
|
-
```javascript
|
|
227
|
-
const embedder = await createEmbedder();
|
|
228
|
-
|
|
229
|
-
// Index documents
|
|
230
|
-
const docs = ["Rust is fast", "Python is easy", "JavaScript runs everywhere"];
|
|
231
|
-
const embeddings = docs.map(d => embedder.embedOne(d));
|
|
232
|
-
|
|
233
|
-
// Search
|
|
234
|
-
const query = embedder.embedOne("Which language is performant?");
|
|
235
|
-
const scores = embeddings.map((e, i) => ({
|
|
236
|
-
doc: docs[i],
|
|
237
|
-
score: cosineSimilarity(query, e)
|
|
238
|
-
}));
|
|
239
|
-
scores.sort((a, b) => b.score - a.score);
|
|
240
|
-
console.log(scores[0]); // { doc: "Rust is fast", score: 0.82 }
|
|
241
|
-
```
|
|
242
|
-
|
|
243
|
-
### Text Clustering
|
|
244
|
-
|
|
245
|
-
```javascript
|
|
246
|
-
const texts = [
|
|
247
|
-
"Machine learning is amazing",
|
|
248
|
-
"Deep learning uses neural networks",
|
|
249
|
-
"I love pizza",
|
|
250
|
-
"Italian food is delicious"
|
|
251
|
-
];
|
|
252
|
-
|
|
253
|
-
const embeddings = texts.map(t => embedder.embedOne(t));
|
|
254
|
-
// Use k-means or hierarchical clustering on embeddings
|
|
255
|
-
```
|
|
256
|
-
|
|
257
|
-
### RAG (Retrieval-Augmented Generation)
|
|
258
|
-
|
|
259
|
-
```javascript
|
|
260
|
-
// Build knowledge base
|
|
261
|
-
const knowledge = [
|
|
262
|
-
"RuVector is a vector database",
|
|
263
|
-
"Embeddings capture semantic meaning",
|
|
264
|
-
// ... more docs
|
|
265
|
-
];
|
|
266
|
-
const knowledgeEmbeddings = knowledge.map(k => embedder.embedOne(k));
|
|
267
|
-
|
|
268
|
-
// Retrieve relevant context for LLM
|
|
269
|
-
function getContext(query, topK = 3) {
|
|
270
|
-
const queryEmb = embedder.embedOne(query);
|
|
271
|
-
const scores = knowledgeEmbeddings.map((e, i) => ({
|
|
272
|
-
text: knowledge[i],
|
|
273
|
-
score: cosineSimilarity(queryEmb, e)
|
|
274
|
-
}));
|
|
275
|
-
return scores.sort((a, b) => b.score - a.score).slice(0, topK);
|
|
276
|
-
}
|
|
277
|
-
```
|
|
278
|
-
|
|
279
|
-
## Related Packages
|
|
280
|
-
|
|
281
|
-
| Package | Runtime | Use Case |
|
|
282
|
-
|---------|---------|----------|
|
|
283
|
-
| [ruvector-onnx-embeddings](https://crates.io/crates/ruvector-onnx-embeddings) | Native | High-performance servers |
|
|
284
|
-
| **ruvector-onnx-embeddings-wasm** | WASM | Browsers, edge, portable |
|
|
285
|
-
|
|
286
|
-
## License
|
|
287
|
-
|
|
288
|
-
MIT License - See [LICENSE](../../LICENSE) for details.
|
|
289
|
-
|
|
290
|
-
---
|
|
291
|
-
|
|
292
|
-
<p align="center">
|
|
293
|
-
<b>Part of the RuVector ecosystem</b><br>
|
|
294
|
-
High-performance vector operations in Rust
|
|
295
|
-
</p>
|
|
Binary file
|