ruvector 0.1.20 β 0.1.22
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +462 -1358
- package/bin/ruvector.js +805 -0
- package/dist/index.d.mts +95 -0
- package/dist/index.d.ts +84 -20
- package/dist/index.js +375 -77
- package/dist/index.mjs +351 -0
- package/package.json +92 -28
- package/.claude-flow/metrics/agent-metrics.json +0 -1
- package/.claude-flow/metrics/performance.json +0 -87
- package/.claude-flow/metrics/task-metrics.json +0 -10
- package/PACKAGE_SUMMARY.md +0 -409
- package/bin/cli.js +0 -287
- package/dist/index.d.ts.map +0 -1
- package/dist/types.d.ts +0 -145
- package/dist/types.d.ts.map +0 -1
- package/dist/types.js +0 -2
- package/examples/api-usage.js +0 -211
- package/examples/cli-demo.sh +0 -85
package/README.md
CHANGED
|
@@ -1,1523 +1,627 @@
|
|
|
1
|
-
#
|
|
1
|
+
# RuVector
|
|
2
2
|
|
|
3
|
-
[](https://github.com/ruvnet/ruvector)
|
|
9
|
-
[](https://github.com/ruvnet/ruvector)
|
|
10
|
-
|
|
11
|
-
**The fastest vector database for Node.jsβbuilt in Rust, runs everywhere**
|
|
12
|
-
|
|
13
|
-
Ruvector is a next-generation vector database that brings **enterprise-grade semantic search** to Node.js applications. Unlike cloud-only solutions or Python-first databases, Ruvector is designed specifically for JavaScript/TypeScript developers who need **blazing-fast vector similarity search** without the complexity of external services.
|
|
14
|
-
|
|
15
|
-
> π **Sub-millisecond queries** β’ π― **52,000+ inserts/sec** β’ πΎ **~50 bytes per vector** β’ π **Runs anywhere**
|
|
16
|
-
|
|
17
|
-
Built by [rUv](https://ruv.io) with production-grade Rust performance and intelligent platform detectionβ**automatically uses native bindings when available, falls back to WebAssembly when needed**.
|
|
18
|
-
|
|
19
|
-
π **[Visit ruv.io](https://ruv.io)** | π¦ **[GitHub](https://github.com/ruvnet/ruvector)** | π **[Documentation](https://github.com/ruvnet/ruvector/tree/main/docs)**
|
|
20
|
-
|
|
21
|
-
---
|
|
22
|
-
|
|
23
|
-
## π Why Ruvector?
|
|
24
|
-
|
|
25
|
-
### The Problem with Existing Vector Databases
|
|
26
|
-
|
|
27
|
-
Most vector databases force you to choose between three painful trade-offs:
|
|
28
|
-
|
|
29
|
-
1. **Cloud-Only Services** (Pinecone, Weaviate Cloud) - Expensive, vendor lock-in, latency issues, API rate limits
|
|
30
|
-
2. **Python-First Solutions** (ChromaDB, Faiss) - Poor Node.js support, require separate Python processes
|
|
31
|
-
3. **Self-Hosted Complexity** (Milvus, Qdrant) - Heavy infrastructure, Docker orchestration, operational overhead
|
|
32
|
-
|
|
33
|
-
**Ruvector eliminates these trade-offs.**
|
|
34
|
-
|
|
35
|
-
### The Ruvector Advantage
|
|
36
|
-
|
|
37
|
-
Ruvector is purpose-built for **modern JavaScript/TypeScript applications** that need vector search:
|
|
38
|
-
|
|
39
|
-
π― **Native Node.js Integration**
|
|
40
|
-
- Drop-in npm packageβno Docker, no Python, no external services
|
|
41
|
-
- Full TypeScript support with complete type definitions
|
|
42
|
-
- Automatic platform detection with native Rust bindings
|
|
43
|
-
- Seamless WebAssembly fallback for universal compatibility
|
|
3
|
+
[](https://opensource.org/licenses/MIT)
|
|
4
|
+
[](https://www.npmjs.com/package/ruvector)
|
|
5
|
+
[](https://www.npmjs.com/package/ruvector)
|
|
6
|
+
[](https://www.typescriptlang.org/)
|
|
7
|
+
[](https://nodejs.org/)
|
|
44
8
|
|
|
45
|
-
|
|
46
|
-
- **52,000+ inserts/second** with native Rust (10x faster than Python alternatives)
|
|
47
|
-
- **<0.5ms query latency** with HNSW indexing and SIMD optimizations
|
|
48
|
-
- **~50 bytes per vector** with advanced memory optimization
|
|
49
|
-
- Scales from edge devices to millions of vectors
|
|
9
|
+
**A distributed vector database that learns.** Store embeddings, query with Cypher, scale horizontally, and let the index improve itself through Graph Neural Networks.
|
|
50
10
|
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
- Agent memory and semantic caching
|
|
55
|
-
- Real-time recommendation engines
|
|
11
|
+
```bash
|
|
12
|
+
npx ruvector
|
|
13
|
+
```
|
|
56
14
|
|
|
57
|
-
|
|
58
|
-
- **Linux, macOS, Windows** with native performance
|
|
59
|
-
- **Browser support** via WebAssembly (experimental)
|
|
60
|
-
- **Edge computing** and serverless environments
|
|
61
|
-
- **Alpine Linux** and non-glibc systems supported
|
|
15
|
+
> **All-in-One Package**: The `ruvector` package includes everything β vector search, graph queries, GNN layers, AI agent routing, and WASM support. No additional packages needed.
|
|
62
16
|
|
|
63
|
-
|
|
64
|
-
- No cloud API fees or usage limits
|
|
65
|
-
- No infrastructure to manage
|
|
66
|
-
- No separate database servers
|
|
67
|
-
- Open source MIT license
|
|
17
|
+
## Why RuVector?
|
|
68
18
|
|
|
69
|
-
|
|
19
|
+
Traditional vector databases just store and search. When you ask "find similar items," they return results but never get smarter. They can't handle complex relationships. They don't optimize your AI costs.
|
|
70
20
|
|
|
71
|
-
|
|
72
|
-
- π― **Automatic Platform Detection**: Uses native when available, falls back to WASM seamlessly
|
|
73
|
-
- π§ **AI-Native**: Built specifically for embeddings, RAG, semantic search, and agent memory
|
|
74
|
-
- π§ **CLI Tools Included**: Full command-line interface for database management
|
|
75
|
-
- π **Universal Deployment**: Works on all platformsβLinux, macOS, Windows, even browsers
|
|
76
|
-
- πΎ **Memory Efficient**: ~50 bytes per vector with advanced quantization
|
|
77
|
-
- π **Production Ready**: Battle-tested algorithms with comprehensive benchmarks
|
|
78
|
-
- π **Open Source**: MIT licensed, community-driven
|
|
21
|
+
**RuVector is built for the agentic AI era:**
|
|
79
22
|
|
|
80
|
-
|
|
23
|
+
| Challenge | RuVector Solution |
|
|
24
|
+
|-----------|-------------------|
|
|
25
|
+
| RAG retrieval quality plateaus | **Self-learning GNN** improves results over time |
|
|
26
|
+
| Knowledge graphs need separate DB | **Cypher queries** built-in (Neo4j syntax) |
|
|
27
|
+
| LLM costs spiral out of control | **AI Router** sends simple queries to cheaper models |
|
|
28
|
+
| Memory usage explodes at scale | **Adaptive compression** (2-32x reduction) |
|
|
29
|
+
| Can't run AI in the browser | **Full WASM support** for client-side inference |
|
|
81
30
|
|
|
82
|
-
|
|
31
|
+
## Quick Start
|
|
83
32
|
|
|
84
|
-
|
|
33
|
+
### Installation
|
|
85
34
|
|
|
86
35
|
```bash
|
|
36
|
+
# Install the package
|
|
87
37
|
npm install ruvector
|
|
88
|
-
```
|
|
89
|
-
|
|
90
|
-
**What happens during installation:**
|
|
91
|
-
- npm automatically detects your platform (Linux, macOS, Windows)
|
|
92
|
-
- Downloads the correct native binary for maximum performance
|
|
93
|
-
- Falls back to WebAssembly if native binaries aren't available
|
|
94
|
-
- No additional setup, Docker, or external services required
|
|
95
38
|
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
npx ruvector info
|
|
99
|
-
```
|
|
39
|
+
# Or try instantly without installing
|
|
40
|
+
npx ruvector
|
|
100
41
|
|
|
101
|
-
|
|
42
|
+
# With yarn
|
|
43
|
+
yarn add ruvector
|
|
102
44
|
|
|
103
|
-
|
|
45
|
+
# With pnpm
|
|
46
|
+
pnpm add ruvector
|
|
47
|
+
```
|
|
104
48
|
|
|
105
|
-
|
|
49
|
+
### Basic Vector Search
|
|
106
50
|
|
|
107
51
|
```javascript
|
|
108
|
-
const {
|
|
109
|
-
|
|
110
|
-
async function tutorial() {
|
|
111
|
-
// Step 2.1: Create a new vector database
|
|
112
|
-
// The 'dimensions' parameter must match your embedding model
|
|
113
|
-
// Common sizes: 128, 384 (sentence-transformers), 768 (BERT), 1536 (OpenAI)
|
|
114
|
-
const db = new VectorDb({
|
|
115
|
-
dimensions: 128, // Vector size - MUST match your embeddings
|
|
116
|
-
maxElements: 10000, // Maximum vectors (can grow automatically)
|
|
117
|
-
storagePath: './my-vectors.db' // Persist to disk (omit for in-memory)
|
|
118
|
-
});
|
|
119
|
-
|
|
120
|
-
console.log('β
Database created successfully');
|
|
121
|
-
|
|
122
|
-
// Step 2.2: Insert vectors
|
|
123
|
-
// In real applications, these would come from an embedding model
|
|
124
|
-
const documents = [
|
|
125
|
-
{ id: 'doc1', text: 'Artificial intelligence and machine learning' },
|
|
126
|
-
{ id: 'doc2', text: 'Deep learning neural networks' },
|
|
127
|
-
{ id: 'doc3', text: 'Natural language processing' },
|
|
128
|
-
];
|
|
129
|
-
|
|
130
|
-
for (const doc of documents) {
|
|
131
|
-
// Generate random vector for demonstration
|
|
132
|
-
// In production: use OpenAI, Cohere, or sentence-transformers
|
|
133
|
-
const vector = new Float32Array(128).map(() => Math.random());
|
|
134
|
-
|
|
135
|
-
await db.insert({
|
|
136
|
-
id: doc.id,
|
|
137
|
-
vector: vector,
|
|
138
|
-
metadata: {
|
|
139
|
-
text: doc.text,
|
|
140
|
-
timestamp: Date.now(),
|
|
141
|
-
category: 'AI'
|
|
142
|
-
}
|
|
143
|
-
});
|
|
144
|
-
|
|
145
|
-
console.log(`β
Inserted: ${doc.id}`);
|
|
146
|
-
}
|
|
52
|
+
const { VectorDB } = require('ruvector');
|
|
147
53
|
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
const queryVector = new Float32Array(128).map(() => Math.random());
|
|
54
|
+
// Create a vector database (384 = OpenAI ada-002 dimensions)
|
|
55
|
+
const db = new VectorDB(384);
|
|
151
56
|
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
console.log('\nπ Search Results:');
|
|
159
|
-
results.forEach((result, index) => {
|
|
160
|
-
console.log(`${index + 1}. ${result.id} - Score: ${result.score.toFixed(3)}`);
|
|
161
|
-
console.log(` Text: ${result.metadata.text}`);
|
|
162
|
-
});
|
|
163
|
-
|
|
164
|
-
// Step 2.4: Retrieve a specific vector
|
|
165
|
-
const retrieved = await db.get('doc1');
|
|
166
|
-
if (retrieved) {
|
|
167
|
-
console.log('\nπ Retrieved document:', retrieved.metadata.text);
|
|
168
|
-
}
|
|
169
|
-
|
|
170
|
-
// Step 2.5: Get database statistics
|
|
171
|
-
const count = await db.len();
|
|
172
|
-
console.log(`\nπ Total vectors in database: ${count}`);
|
|
173
|
-
|
|
174
|
-
// Step 2.6: Delete a vector
|
|
175
|
-
const deleted = await db.delete('doc1');
|
|
176
|
-
console.log(`\nποΈ Deleted doc1: ${deleted ? 'Success' : 'Not found'}`);
|
|
177
|
-
|
|
178
|
-
// Final count
|
|
179
|
-
const finalCount = await db.len();
|
|
180
|
-
console.log(`π Final count: ${finalCount}`);
|
|
181
|
-
}
|
|
57
|
+
// Insert vectors with metadata
|
|
58
|
+
await db.insert('doc1', embedding1, {
|
|
59
|
+
title: 'Introduction to AI',
|
|
60
|
+
category: 'tech',
|
|
61
|
+
date: '2024-01-15'
|
|
62
|
+
});
|
|
182
63
|
|
|
183
|
-
//
|
|
184
|
-
|
|
185
|
-
```
|
|
64
|
+
// Semantic search
|
|
65
|
+
const results = await db.search(queryEmbedding, 10);
|
|
186
66
|
|
|
187
|
-
|
|
67
|
+
// Filter by metadata
|
|
68
|
+
const filtered = await db.search(queryEmbedding, 10, {
|
|
69
|
+
category: 'tech',
|
|
70
|
+
date: { $gte: '2024-01-01' }
|
|
71
|
+
});
|
|
188
72
|
```
|
|
189
|
-
β
Database created successfully
|
|
190
|
-
β
Inserted: doc1
|
|
191
|
-
β
Inserted: doc2
|
|
192
|
-
β
Inserted: doc3
|
|
193
|
-
|
|
194
|
-
π Search Results:
|
|
195
|
-
1. doc2 - Score: 0.892
|
|
196
|
-
Text: Deep learning neural networks
|
|
197
|
-
2. doc1 - Score: 0.856
|
|
198
|
-
Text: Artificial intelligence and machine learning
|
|
199
|
-
3. doc3 - Score: 0.801
|
|
200
|
-
Text: Natural language processing
|
|
201
|
-
|
|
202
|
-
π Retrieved document: Artificial intelligence and machine learning
|
|
203
73
|
|
|
204
|
-
|
|
74
|
+
### RAG (Retrieval-Augmented Generation)
|
|
205
75
|
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
|
|
210
|
-
### Step 3: TypeScript Tutorial
|
|
76
|
+
```javascript
|
|
77
|
+
const { VectorDB } = require('ruvector');
|
|
78
|
+
const OpenAI = require('openai');
|
|
211
79
|
|
|
212
|
-
|
|
80
|
+
const db = new VectorDB(1536); // text-embedding-3-small dimensions
|
|
81
|
+
const openai = new OpenAI();
|
|
213
82
|
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
83
|
+
// Index your documents
|
|
84
|
+
async function indexDocument(doc) {
|
|
85
|
+
const embedding = await openai.embeddings.create({
|
|
86
|
+
model: 'text-embedding-3-small',
|
|
87
|
+
input: doc.content
|
|
88
|
+
});
|
|
89
|
+
await db.insert(doc.id, embedding.data[0].embedding, {
|
|
90
|
+
title: doc.title,
|
|
91
|
+
content: doc.content
|
|
92
|
+
});
|
|
224
93
|
}
|
|
225
94
|
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
95
|
+
// RAG query
|
|
96
|
+
async function ragQuery(question) {
|
|
97
|
+
// 1. Embed the question
|
|
98
|
+
const questionEmb = await openai.embeddings.create({
|
|
99
|
+
model: 'text-embedding-3-small',
|
|
100
|
+
input: question
|
|
232
101
|
});
|
|
233
102
|
|
|
234
|
-
//
|
|
235
|
-
const
|
|
236
|
-
id: 'article-001',
|
|
237
|
-
vector: new Float32Array(384), // Your embedding here
|
|
238
|
-
metadata: {
|
|
239
|
-
title: 'Introduction to Vector Databases',
|
|
240
|
-
content: 'Vector databases enable semantic search...',
|
|
241
|
-
author: 'Jane Doe',
|
|
242
|
-
date: new Date('2024-01-15'),
|
|
243
|
-
tags: ['database', 'AI', 'search']
|
|
244
|
-
}
|
|
245
|
-
};
|
|
103
|
+
// 2. Retrieve relevant context
|
|
104
|
+
const context = await db.search(questionEmb.data[0].embedding, 5);
|
|
246
105
|
|
|
247
|
-
//
|
|
248
|
-
await
|
|
249
|
-
|
|
106
|
+
// 3. Generate answer with context
|
|
107
|
+
const response = await openai.chat.completions.create({
|
|
108
|
+
model: 'gpt-4-turbo',
|
|
109
|
+
messages: [{
|
|
110
|
+
role: 'user',
|
|
111
|
+
content: `Context:\n${context.map(c => c.metadata.content).join('\n\n')}
|
|
250
112
|
|
|
251
|
-
|
|
252
|
-
|
|
253
|
-
|
|
254
|
-
k: 10,
|
|
255
|
-
threshold: 0.8
|
|
256
|
-
};
|
|
257
|
-
|
|
258
|
-
// Step 3.6: Fully typed results
|
|
259
|
-
const results: SearchResult<DocumentMetadata>[] = await db.search(query);
|
|
260
|
-
|
|
261
|
-
// TypeScript knows the exact shape of metadata
|
|
262
|
-
results.forEach(result => {
|
|
263
|
-
console.log(`Title: ${result.metadata.title}`);
|
|
264
|
-
console.log(`Author: ${result.metadata.author}`);
|
|
265
|
-
console.log(`Tags: ${result.metadata.tags.join(', ')}`);
|
|
266
|
-
console.log(`Similarity: ${result.score.toFixed(3)}\n`);
|
|
113
|
+
Question: ${question}
|
|
114
|
+
Answer based only on the context above:`
|
|
115
|
+
}]
|
|
267
116
|
});
|
|
268
117
|
|
|
269
|
-
|
|
270
|
-
const doc = await db.get('article-001');
|
|
271
|
-
if (doc) {
|
|
272
|
-
// TypeScript autocomplete works perfectly here
|
|
273
|
-
const publishYear = doc.metadata.date.getFullYear();
|
|
274
|
-
console.log(`Published in ${publishYear}`);
|
|
275
|
-
}
|
|
118
|
+
return response.choices[0].message.content;
|
|
276
119
|
}
|
|
277
|
-
|
|
278
|
-
typescriptTutorial().catch(console.error);
|
|
279
120
|
```
|
|
280
121
|
|
|
281
|
-
|
|
282
|
-
- β
Full autocomplete for all methods and properties
|
|
283
|
-
- β
Compile-time type checking prevents errors
|
|
284
|
-
- β
IDE IntelliSense shows documentation
|
|
285
|
-
- β
Custom metadata types for your use case
|
|
286
|
-
- β
No `any` types - fully typed throughout
|
|
287
|
-
|
|
288
|
-
## π― Platform Detection
|
|
289
|
-
|
|
290
|
-
Ruvector automatically detects the best implementation for your platform:
|
|
122
|
+
### Knowledge Graphs (Cypher)
|
|
291
123
|
|
|
292
124
|
```javascript
|
|
293
|
-
const {
|
|
294
|
-
|
|
295
|
-
|
|
296
|
-
|
|
297
|
-
|
|
298
|
-
|
|
299
|
-
|
|
300
|
-
|
|
301
|
-
|
|
302
|
-
|
|
303
|
-
|
|
304
|
-
|
|
305
|
-
|
|
306
|
-
|
|
307
|
-
|
|
308
|
-
|
|
309
|
-
|
|
310
|
-
|
|
311
|
-
|
|
312
|
-
|
|
313
|
-
|
|
314
|
-
|
|
315
|
-
|
|
316
|
-
|
|
317
|
-
|
|
318
|
-
|
|
319
|
-
|
|
320
|
-
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
|
|
326
|
-
|
|
327
|
-
|
|
328
|
-
|
|
329
|
-
# { "id": "doc2", "vector": [0.3, 0.4, ...], "metadata": {...} }
|
|
330
|
-
# ]
|
|
331
|
-
```
|
|
332
|
-
|
|
333
|
-
### Search Vectors
|
|
125
|
+
const { GraphDB } = require('ruvector');
|
|
126
|
+
|
|
127
|
+
const graph = new GraphDB();
|
|
128
|
+
|
|
129
|
+
// Create entities and relationships
|
|
130
|
+
graph.execute(`
|
|
131
|
+
CREATE (alice:Person {name: 'Alice', role: 'Engineer'})
|
|
132
|
+
CREATE (bob:Person {name: 'Bob', role: 'Manager'})
|
|
133
|
+
CREATE (techcorp:Company {name: 'TechCorp', industry: 'AI'})
|
|
134
|
+
CREATE (alice)-[:WORKS_AT {since: 2022}]->(techcorp)
|
|
135
|
+
CREATE (bob)-[:WORKS_AT {since: 2020}]->(techcorp)
|
|
136
|
+
CREATE (alice)-[:REPORTS_TO]->(bob)
|
|
137
|
+
`);
|
|
138
|
+
|
|
139
|
+
// Query relationships
|
|
140
|
+
const team = graph.execute(`
|
|
141
|
+
MATCH (p:Person)-[:WORKS_AT]->(c:Company {name: 'TechCorp'})
|
|
142
|
+
RETURN p.name, p.role
|
|
143
|
+
`);
|
|
144
|
+
|
|
145
|
+
// Find paths
|
|
146
|
+
const chain = graph.execute(`
|
|
147
|
+
MATCH path = (a:Person {name: 'Alice'})-[:REPORTS_TO*1..3]->(manager)
|
|
148
|
+
RETURN path
|
|
149
|
+
`);
|
|
150
|
+
|
|
151
|
+
// Combine with vector search
|
|
152
|
+
const similarPeople = graph.execute(`
|
|
153
|
+
MATCH (p:Person)
|
|
154
|
+
WHERE vector.similarity(p.embedding, $queryEmbedding) > 0.8
|
|
155
|
+
RETURN p ORDER BY vector.similarity(p.embedding, $queryEmbedding) DESC
|
|
156
|
+
LIMIT 10
|
|
157
|
+
`);
|
|
158
|
+
```
|
|
159
|
+
|
|
160
|
+
### GNN-Enhanced Search (Self-Learning)
|
|
334
161
|
|
|
335
|
-
```
|
|
336
|
-
|
|
337
|
-
npx ruvector search mydb.vec --vector "[0.1,0.2,0.3,...]" --top-k 10
|
|
338
|
-
|
|
339
|
-
# Options:
|
|
340
|
-
# --vector, -v Query vector (JSON array)
|
|
341
|
-
# --top-k, -k Number of results (default: 10)
|
|
342
|
-
# --threshold Minimum similarity score
|
|
343
|
-
```
|
|
344
|
-
|
|
345
|
-
### Database Statistics
|
|
346
|
-
|
|
347
|
-
```bash
|
|
348
|
-
# Show database statistics
|
|
349
|
-
npx ruvector stats mydb.vec
|
|
350
|
-
|
|
351
|
-
# Output:
|
|
352
|
-
# Total vectors: 10,000
|
|
353
|
-
# Dimensions: 384
|
|
354
|
-
# Metric: cosine
|
|
355
|
-
# Memory usage: ~500 KB
|
|
356
|
-
# Index type: HNSW
|
|
357
|
-
```
|
|
162
|
+
```javascript
|
|
163
|
+
const { GNNLayer, VectorDB } = require('ruvector');
|
|
358
164
|
|
|
359
|
-
|
|
165
|
+
// Create GNN layer for query enhancement
|
|
166
|
+
const gnn = new GNNLayer(384, 512, 4); // input_dim, output_dim, num_heads
|
|
360
167
|
|
|
361
|
-
|
|
362
|
-
|
|
363
|
-
|
|
168
|
+
// The GNN learns from your search patterns
|
|
169
|
+
async function enhancedSearch(query) {
|
|
170
|
+
// Get initial results
|
|
171
|
+
const neighbors = await db.search(query, 20);
|
|
364
172
|
|
|
365
|
-
|
|
366
|
-
|
|
367
|
-
# --num-queries Number of search queries
|
|
368
|
-
# --dimensions Vector dimensionality (default: 128)
|
|
369
|
-
```
|
|
173
|
+
// Compute attention weights based on user clicks/relevance
|
|
174
|
+
const weights = computeRelevanceWeights(neighbors);
|
|
370
175
|
|
|
371
|
-
|
|
176
|
+
// GNN enhances the query using graph structure
|
|
177
|
+
const enhancedQuery = gnn.forward(query,
|
|
178
|
+
neighbors.map(n => n.embedding),
|
|
179
|
+
weights
|
|
180
|
+
);
|
|
372
181
|
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
|
|
182
|
+
// Re-rank with enhanced understanding
|
|
183
|
+
return db.search(enhancedQuery, 10);
|
|
184
|
+
}
|
|
376
185
|
|
|
377
|
-
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
|
|
186
|
+
// Train on user feedback
|
|
187
|
+
gnn.train({
|
|
188
|
+
queries: historicalQueries,
|
|
189
|
+
clicks: userClickData,
|
|
190
|
+
relevance: expertLabels
|
|
191
|
+
}, { epochs: 100 });
|
|
382
192
|
```
|
|
383
193
|
|
|
384
|
-
|
|
385
|
-
|
|
386
|
-
Tested on AMD Ryzen 9 5950X, 128-dimensional vectors:
|
|
387
|
-
|
|
388
|
-
### Native Performance (Rust)
|
|
389
|
-
|
|
390
|
-
| Operation | Throughput | Latency (p50) | Latency (p99) |
|
|
391
|
-
|-----------|------------|---------------|---------------|
|
|
392
|
-
| Insert | 52,341 ops/sec | 0.019 ms | 0.045 ms |
|
|
393
|
-
| Search (k=10) | 11,234 ops/sec | 0.089 ms | 0.156 ms |
|
|
394
|
-
| Search (k=100) | 8,932 ops/sec | 0.112 ms | 0.203 ms |
|
|
395
|
-
| Delete | 45,678 ops/sec | 0.022 ms | 0.051 ms |
|
|
396
|
-
|
|
397
|
-
**Memory Usage**: ~50 bytes per 128-dim vector (including index)
|
|
398
|
-
|
|
399
|
-
### Comparison with Alternatives
|
|
400
|
-
|
|
401
|
-
| Database | Insert (ops/sec) | Search (ops/sec) | Memory per Vector | Node.js | Browser |
|
|
402
|
-
|----------|------------------|------------------|-------------------|---------|---------|
|
|
403
|
-
| **Ruvector (Native)** | **52,341** | **11,234** | **50 bytes** | β
| β |
|
|
404
|
-
| **Ruvector (WASM)** | **~1,000** | **~100** | **50 bytes** | β
| β
|
|
|
405
|
-
| Faiss (HNSW) | 38,200 | 9,800 | 68 bytes | β | β |
|
|
406
|
-
| Hnswlib | 41,500 | 10,200 | 62 bytes | β
| β |
|
|
407
|
-
| ChromaDB | ~1,000 | ~20 | 150 bytes | β
| β |
|
|
408
|
-
|
|
409
|
-
*Benchmarks measured with 100K vectors, 128 dimensions, k=10*
|
|
410
|
-
|
|
411
|
-
## π Comparison with Other Vector Databases
|
|
412
|
-
|
|
413
|
-
Comprehensive comparison of Ruvector against popular vector database solutions:
|
|
414
|
-
|
|
415
|
-
| Feature | Ruvector | Pinecone | Qdrant | Weaviate | Milvus | ChromaDB | Faiss |
|
|
416
|
-
|---------|----------|----------|--------|----------|--------|----------|-------|
|
|
417
|
-
| **Deployment** |
|
|
418
|
-
| Installation | `npm install` β
| Cloud API βοΈ | Docker π³ | Docker π³ | Docker/K8s π³ | `pip install` π | `pip install` π |
|
|
419
|
-
| Node.js Native | β
First-class | β API only | β οΈ HTTP API | β οΈ HTTP API | β οΈ HTTP API | β Python | β Python |
|
|
420
|
-
| Setup Time | < 1 minute | 5-10 minutes | 10-30 minutes | 15-30 minutes | 30-60 minutes | 5 minutes | 5 minutes |
|
|
421
|
-
| Infrastructure | None required | Managed cloud | Self-hosted | Self-hosted | Self-hosted | Embedded | Embedded |
|
|
422
|
-
| **Performance** |
|
|
423
|
-
| Query Latency (p50) | **<0.5ms** | ~2-5ms | ~1-2ms | ~2-3ms | ~3-5ms | ~50ms | ~1ms |
|
|
424
|
-
| Insert Throughput | **52,341 ops/sec** | ~10,000 ops/sec | ~20,000 ops/sec | ~15,000 ops/sec | ~25,000 ops/sec | ~1,000 ops/sec | ~40,000 ops/sec |
|
|
425
|
-
| Memory per Vector (128d) | **50 bytes** | ~80 bytes | 62 bytes | ~100 bytes | ~70 bytes | 150 bytes | 68 bytes |
|
|
426
|
-
| Recall @ k=10 | 95%+ | 93% | 94% | 92% | 96% | 85% | 97% |
|
|
427
|
-
| **Platform Support** |
|
|
428
|
-
| Linux | β
Native | βοΈ API | β
Docker | β
Docker | β
Docker | β
Python | β
Python |
|
|
429
|
-
| macOS | β
Native | βοΈ API | β
Docker | β
Docker | β
Docker | β
Python | β
Python |
|
|
430
|
-
| Windows | β
Native | βοΈ API | β
Docker | β
Docker | β οΈ WSL2 | β
Python | β
Python |
|
|
431
|
-
| Browser/WASM | β
Yes | β No | β No | β No | β No | β No | β No |
|
|
432
|
-
| ARM64 | β
Native | βοΈ API | β
Yes | β
Yes | β οΈ Limited | β
Yes | β
Yes |
|
|
433
|
-
| Alpine Linux | β
WASM | βοΈ API | β οΈ Build from source | β οΈ Build from source | β No | β
Yes | β
Yes |
|
|
434
|
-
| **Features** |
|
|
435
|
-
| Distance Metrics | Cosine, L2, Dot | Cosine, L2, Dot | 11 metrics | 10 metrics | 8 metrics | L2, Cosine, IP | L2, IP, Cosine |
|
|
436
|
-
| Filtering | β
Metadata | β
Advanced | β
Advanced | β
Advanced | β
Advanced | β
Basic | β Limited |
|
|
437
|
-
| Persistence | β
File-based | βοΈ Managed | β
Disk | β
Disk | β
Disk | β
DuckDB | β Memory |
|
|
438
|
-
| Indexing | HNSW | Proprietary | HNSW | HNSW | IVF/HNSW | HNSW | IVF/HNSW |
|
|
439
|
-
| Quantization | β
PQ | β
Yes | β
Scalar | β
PQ | β
PQ/SQ | β No | β
PQ |
|
|
440
|
-
| Batch Operations | β
Yes | β
Yes | β
Yes | β
Yes | β
Yes | β
Yes | β
Yes |
|
|
441
|
-
| **Developer Experience** |
|
|
442
|
-
| TypeScript Types | β
Full | β
Generated | β οΈ Community | β οΈ Community | β οΈ Community | β οΈ Partial | β No |
|
|
443
|
-
| Documentation | β
Excellent | β
Excellent | β
Good | β
Good | β
Good | β
Good | β οΈ Technical |
|
|
444
|
-
| Examples | β
Many | β
Many | β
Good | β
Good | β
Many | β
Good | β οΈ Limited |
|
|
445
|
-
| CLI Tools | β
Included | β οΈ Limited | β
Yes | β
Yes | β
Yes | β οΈ Basic | β No |
|
|
446
|
-
| **Operations** |
|
|
447
|
-
| Monitoring | β
Metrics | β
Dashboard | β
Prometheus | β
Prometheus | β
Prometheus | β οΈ Basic | β No |
|
|
448
|
-
| Backups | β
File copy | βοΈ Automatic | β
Snapshots | β
Snapshots | β
Snapshots | β
File copy | β Manual |
|
|
449
|
-
| High Availability | β οΈ App-level | β
Built-in | β
Clustering | β
Clustering | β
Clustering | β No | β No |
|
|
450
|
-
| Auto-Scaling | β οΈ App-level | β
Automatic | β οΈ Manual | β οΈ Manual | β οΈ K8s HPA | β No | β No |
|
|
451
|
-
| **Cost** |
|
|
452
|
-
| Pricing Model | Free (MIT) | Pay-per-use | Free (Apache) | Free (BSD) | Free (Apache) | Free (Apache) | Free (MIT) |
|
|
453
|
-
| Monthly Cost (1M vectors) | **$0** | ~$70-200 | ~$20-50 (infra) | ~$30-60 (infra) | ~$50-100 (infra) | $0 | $0 |
|
|
454
|
-
| Monthly Cost (10M vectors) | **$0** | ~$500-1000 | ~$100-200 (infra) | ~$150-300 (infra) | ~$200-400 (infra) | $0 | $0 |
|
|
455
|
-
| API Rate Limits | None | Yes | None | None | None | None | None |
|
|
456
|
-
| **Use Cases** |
|
|
457
|
-
| RAG Systems | β
Excellent | β
Excellent | β
Excellent | β
Excellent | β
Excellent | β
Good | β οΈ Limited |
|
|
458
|
-
| Serverless | β
Perfect | β
Good | β No | β No | β No | β οΈ Possible | β οΈ Possible |
|
|
459
|
-
| Edge Computing | β
Excellent | β No | β No | β No | β No | β No | β οΈ Possible |
|
|
460
|
-
| Production Scale (100M+) | β οΈ Single node | β
Yes | β
Yes | β
Yes | β
Excellent | β οΈ Limited | β οΈ Manual |
|
|
461
|
-
| Embedded Apps | β
Excellent | β No | β No | β No | β No | β οΈ Possible | β
Good |
|
|
462
|
-
|
|
463
|
-
### When to Choose Ruvector
|
|
464
|
-
|
|
465
|
-
β
**Perfect for:**
|
|
466
|
-
- **Node.js/TypeScript applications** needing embedded vector search
|
|
467
|
-
- **Serverless and edge computing** where external services aren't practical
|
|
468
|
-
- **Rapid prototyping and development** with minimal setup time
|
|
469
|
-
- **RAG systems** with LangChain, LlamaIndex, or custom implementations
|
|
470
|
-
- **Cost-sensitive projects** that can't afford cloud API pricing
|
|
471
|
-
- **Offline-first applications** requiring local vector search
|
|
472
|
-
- **Browser-based AI** with WebAssembly fallback
|
|
473
|
-
- **Small to medium scale** (up to 10M vectors per instance)
|
|
474
|
-
|
|
475
|
-
β οΈ **Consider alternatives for:**
|
|
476
|
-
- **Massive scale (100M+ vectors)** - Consider Pinecone, Milvus, or Qdrant clusters
|
|
477
|
-
- **Multi-tenancy requirements** - Weaviate or Qdrant offer better isolation
|
|
478
|
-
- **Distributed systems** - Milvus provides better horizontal scaling
|
|
479
|
-
- **Zero-ops cloud solution** - Pinecone handles all infrastructure
|
|
480
|
-
|
|
481
|
-
### Why Choose Ruvector Over...
|
|
482
|
-
|
|
483
|
-
**vs Pinecone:**
|
|
484
|
-
- β
No API costs (save $1000s/month)
|
|
485
|
-
- β
No network latency (10x faster queries)
|
|
486
|
-
- β
No vendor lock-in
|
|
487
|
-
- β
Works offline and in restricted environments
|
|
488
|
-
- β No managed multi-region clusters
|
|
489
|
-
|
|
490
|
-
**vs ChromaDB:**
|
|
491
|
-
- β
50x faster queries (native Rust vs Python)
|
|
492
|
-
- β
True Node.js support (not HTTP API)
|
|
493
|
-
- β
Better TypeScript integration
|
|
494
|
-
- β
Lower memory usage
|
|
495
|
-
- β Smaller ecosystem and community
|
|
496
|
-
|
|
497
|
-
**vs Qdrant:**
|
|
498
|
-
- β
Zero infrastructure setup
|
|
499
|
-
- β
Embedded in your app (no Docker)
|
|
500
|
-
- β
Better for serverless environments
|
|
501
|
-
- β
Native Node.js bindings
|
|
502
|
-
- β No built-in clustering or HA
|
|
503
|
-
|
|
504
|
-
**vs Faiss:**
|
|
505
|
-
- β
Full Node.js support (Faiss is Python-only)
|
|
506
|
-
- β
Easier API and better developer experience
|
|
507
|
-
- β
Built-in persistence and metadata
|
|
508
|
-
- β οΈ Slightly lower recall at same performance
|
|
509
|
-
|
|
510
|
-
## π― Real-World Tutorials
|
|
511
|
-
|
|
512
|
-
### Tutorial 1: Building a RAG System with OpenAI
|
|
513
|
-
|
|
514
|
-
**What you'll learn:** Create a production-ready Retrieval-Augmented Generation system that enhances LLM responses with relevant context from your documents.
|
|
515
|
-
|
|
516
|
-
**Prerequisites:**
|
|
517
|
-
```bash
|
|
518
|
-
npm install ruvector openai
|
|
519
|
-
export OPENAI_API_KEY="your-api-key-here"
|
|
520
|
-
```
|
|
194
|
+
### AI Agent Routing (Tiny Dancer)
|
|
521
195
|
|
|
522
|
-
|
|
196
|
+
Route queries to the optimal LLM based on complexity β save 60-80% on API costs:
|
|
523
197
|
|
|
524
198
|
```javascript
|
|
525
|
-
const {
|
|
526
|
-
const OpenAI = require('openai');
|
|
527
|
-
|
|
528
|
-
class RAGSystem {
|
|
529
|
-
constructor() {
|
|
530
|
-
// Initialize OpenAI client
|
|
531
|
-
this.openai = new OpenAI({
|
|
532
|
-
apiKey: process.env.OPENAI_API_KEY
|
|
533
|
-
});
|
|
534
|
-
|
|
535
|
-
// Create vector database for OpenAI embeddings
|
|
536
|
-
// text-embedding-ada-002 produces 1536-dimensional vectors
|
|
537
|
-
this.db = new VectorDb({
|
|
538
|
-
dimensions: 1536,
|
|
539
|
-
maxElements: 100000,
|
|
540
|
-
storagePath: './rag-knowledge-base.db'
|
|
541
|
-
});
|
|
542
|
-
|
|
543
|
-
console.log('β
RAG System initialized');
|
|
544
|
-
}
|
|
199
|
+
const { Router } = require('ruvector');
|
|
545
200
|
|
|
546
|
-
|
|
547
|
-
|
|
548
|
-
|
|
549
|
-
|
|
550
|
-
|
|
551
|
-
const doc = documents[i];
|
|
552
|
-
|
|
553
|
-
// Generate embedding for the document
|
|
554
|
-
const response = await this.openai.embeddings.create({
|
|
555
|
-
model: 'text-embedding-ada-002',
|
|
556
|
-
input: doc.content
|
|
557
|
-
});
|
|
558
|
-
|
|
559
|
-
// Store in vector database
|
|
560
|
-
await this.db.insert({
|
|
561
|
-
id: doc.id || `doc_${i}`,
|
|
562
|
-
vector: new Float32Array(response.data[0].embedding),
|
|
563
|
-
metadata: {
|
|
564
|
-
title: doc.title,
|
|
565
|
-
content: doc.content,
|
|
566
|
-
source: doc.source,
|
|
567
|
-
date: doc.date || new Date().toISOString()
|
|
568
|
-
}
|
|
569
|
-
});
|
|
570
|
-
|
|
571
|
-
console.log(` β
Indexed: ${doc.title}`);
|
|
572
|
-
}
|
|
573
|
-
|
|
574
|
-
const count = await this.db.len();
|
|
575
|
-
console.log(`\nβ
Indexed ${count} documents total`);
|
|
576
|
-
}
|
|
577
|
-
|
|
578
|
-
// Step 2: Retrieve relevant context for a query
|
|
579
|
-
async retrieveContext(query, k = 3) {
|
|
580
|
-
console.log(`π Searching for: "${query}"`);
|
|
581
|
-
|
|
582
|
-
// Generate embedding for the query
|
|
583
|
-
const response = await this.openai.embeddings.create({
|
|
584
|
-
model: 'text-embedding-ada-002',
|
|
585
|
-
input: query
|
|
586
|
-
});
|
|
587
|
-
|
|
588
|
-
// Search for similar documents
|
|
589
|
-
const results = await this.db.search({
|
|
590
|
-
vector: new Float32Array(response.data[0].embedding),
|
|
591
|
-
k: k,
|
|
592
|
-
threshold: 0.7 // Only use highly relevant results
|
|
593
|
-
});
|
|
594
|
-
|
|
595
|
-
console.log(`π Found ${results.length} relevant documents\n`);
|
|
596
|
-
|
|
597
|
-
return results.map(r => ({
|
|
598
|
-
content: r.metadata.content,
|
|
599
|
-
title: r.metadata.title,
|
|
600
|
-
score: r.score
|
|
601
|
-
}));
|
|
602
|
-
}
|
|
603
|
-
|
|
604
|
-
// Step 3: Generate answer with retrieved context
|
|
605
|
-
async answer(question) {
|
|
606
|
-
// Retrieve relevant context
|
|
607
|
-
const context = await this.retrieveContext(question, 3);
|
|
608
|
-
|
|
609
|
-
if (context.length === 0) {
|
|
610
|
-
return "I don't have enough information to answer that question.";
|
|
611
|
-
}
|
|
612
|
-
|
|
613
|
-
// Build prompt with context
|
|
614
|
-
const contextText = context
|
|
615
|
-
.map((doc, i) => `[${i + 1}] ${doc.title}\n${doc.content}`)
|
|
616
|
-
.join('\n\n');
|
|
617
|
-
|
|
618
|
-
const prompt = `Answer the question based on the following context. If the context doesn't contain the answer, say so.
|
|
619
|
-
|
|
620
|
-
Context:
|
|
621
|
-
${contextText}
|
|
622
|
-
|
|
623
|
-
Question: ${question}
|
|
201
|
+
const router = new Router({
|
|
202
|
+
confidenceThreshold: 0.85,
|
|
203
|
+
maxUncertainty: 0.15,
|
|
204
|
+
enableCircuitBreaker: true
|
|
205
|
+
});
|
|
624
206
|
|
|
625
|
-
|
|
207
|
+
// Define your model candidates
|
|
208
|
+
const models = [
|
|
209
|
+
{ id: 'gpt-4-turbo', embedding: gpt4Emb, cost: 0.03, quality: 0.95 },
|
|
210
|
+
{ id: 'gpt-3.5-turbo', embedding: gpt35Emb, cost: 0.002, quality: 0.80 },
|
|
211
|
+
{ id: 'claude-3-haiku', embedding: haikuEmb, cost: 0.001, quality: 0.75 },
|
|
212
|
+
{ id: 'llama-3-8b', embedding: llamaEmb, cost: 0.0005, quality: 0.70 }
|
|
213
|
+
];
|
|
626
214
|
|
|
627
|
-
|
|
215
|
+
async function smartComplete(prompt) {
|
|
216
|
+
const promptEmb = await embed(prompt);
|
|
628
217
|
|
|
629
|
-
|
|
630
|
-
|
|
631
|
-
model: 'gpt-4',
|
|
632
|
-
messages: [
|
|
633
|
-
{ role: 'system', content: 'You are a helpful assistant that answers questions based on provided context.' },
|
|
634
|
-
{ role: 'user', content: prompt }
|
|
635
|
-
],
|
|
636
|
-
temperature: 0.3 // Lower temperature for more factual responses
|
|
637
|
-
});
|
|
218
|
+
// Router decides optimal model
|
|
219
|
+
const decision = router.route(promptEmb, models);
|
|
638
220
|
|
|
639
|
-
|
|
640
|
-
|
|
641
|
-
sources: context.map(c => c.title)
|
|
642
|
-
};
|
|
643
|
-
}
|
|
644
|
-
}
|
|
221
|
+
console.log(`Routing to ${decision.candidateId} (confidence: ${decision.confidence})`);
|
|
222
|
+
// Output: "Routing to gpt-3.5-turbo (confidence: 0.92)"
|
|
645
223
|
|
|
646
|
-
//
|
|
647
|
-
|
|
648
|
-
const rag = new RAGSystem();
|
|
649
|
-
|
|
650
|
-
// Step 1: Index your knowledge base
|
|
651
|
-
const documents = [
|
|
652
|
-
{
|
|
653
|
-
id: 'doc1',
|
|
654
|
-
title: 'Ruvector Introduction',
|
|
655
|
-
content: 'Ruvector is a high-performance vector database for Node.js built in Rust. It provides sub-millisecond query latency and supports over 52,000 inserts per second.',
|
|
656
|
-
source: 'documentation'
|
|
657
|
-
},
|
|
658
|
-
{
|
|
659
|
-
id: 'doc2',
|
|
660
|
-
title: 'Vector Databases Explained',
|
|
661
|
-
content: 'Vector databases store data as high-dimensional vectors, enabling semantic similarity search. They are essential for AI applications like RAG systems and recommendation engines.',
|
|
662
|
-
source: 'blog'
|
|
663
|
-
},
|
|
664
|
-
{
|
|
665
|
-
id: 'doc3',
|
|
666
|
-
title: 'HNSW Algorithm',
|
|
667
|
-
content: 'Hierarchical Navigable Small World (HNSW) is a graph-based algorithm for approximate nearest neighbor search. It provides excellent recall with low latency.',
|
|
668
|
-
source: 'research'
|
|
669
|
-
}
|
|
670
|
-
];
|
|
671
|
-
|
|
672
|
-
await rag.indexDocuments(documents);
|
|
673
|
-
|
|
674
|
-
// Step 2: Ask questions
|
|
675
|
-
console.log('\n' + '='.repeat(60) + '\n');
|
|
676
|
-
|
|
677
|
-
const result = await rag.answer('What is Ruvector and what are its performance characteristics?');
|
|
678
|
-
|
|
679
|
-
console.log('π Answer:', result.answer);
|
|
680
|
-
console.log('\nπ Sources:', result.sources.join(', '));
|
|
224
|
+
// Call the selected model
|
|
225
|
+
return callModel(decision.candidateId, prompt);
|
|
681
226
|
}
|
|
682
|
-
|
|
683
|
-
main().catch(console.error);
|
|
684
|
-
```
|
|
685
|
-
|
|
686
|
-
**Expected Output:**
|
|
687
227
|
```
|
|
688
|
-
β
RAG System initialized
|
|
689
|
-
π Indexing 3 documents...
|
|
690
|
-
β
Indexed: Ruvector Introduction
|
|
691
|
-
β
Indexed: Vector Databases Explained
|
|
692
|
-
β
Indexed: HNSW Algorithm
|
|
693
|
-
|
|
694
|
-
β
Indexed 3 documents total
|
|
695
|
-
|
|
696
|
-
============================================================
|
|
697
228
|
|
|
698
|
-
|
|
699
|
-
π Found 2 relevant documents
|
|
229
|
+
### Compression (2-32x Memory Savings)
|
|
700
230
|
|
|
701
|
-
|
|
702
|
-
|
|
703
|
-
|
|
704
|
-
|
|
705
|
-
|
|
706
|
-
|
|
707
|
-
|
|
708
|
-
|
|
231
|
+
```javascript
|
|
232
|
+
const { compress, decompress, CompressionTier } = require('ruvector');
|
|
233
|
+
|
|
234
|
+
// Automatic tier selection
|
|
235
|
+
const auto = compress(embedding, 0.3); // 30% quality threshold
|
|
236
|
+
|
|
237
|
+
// Explicit tiers
|
|
238
|
+
const f16 = compress(embedding, CompressionTier.F16); // 2x compression
|
|
239
|
+
const pq8 = compress(embedding, CompressionTier.PQ8); // 8x compression
|
|
240
|
+
const pq4 = compress(embedding, CompressionTier.PQ4); // 16x compression
|
|
241
|
+
const binary = compress(embedding, CompressionTier.Binary); // 32x compression
|
|
242
|
+
|
|
243
|
+
// Adaptive tiering based on access frequency
|
|
244
|
+
db.enableAdaptiveCompression({
|
|
245
|
+
hotThreshold: 0.8, // Keep hot data in f32
|
|
246
|
+
warmThreshold: 0.4, // Compress to f16
|
|
247
|
+
coldThreshold: 0.1, // Compress to PQ8
|
|
248
|
+
archiveThreshold: 0.01 // Compress to binary
|
|
249
|
+
});
|
|
709
250
|
```
|
|
710
251
|
|
|
711
|
-
|
|
712
|
-
- β
Use batch embedding for better throughput (OpenAI supports up to 2048 texts)
|
|
713
|
-
- β
Implement caching for frequently asked questions
|
|
714
|
-
- β
Add error handling for API rate limits
|
|
715
|
-
- β
Monitor token usage and costs
|
|
716
|
-
- β
Regularly update your knowledge base
|
|
252
|
+
## CLI Usage
|
|
717
253
|
|
|
718
|
-
---
|
|
719
|
-
|
|
720
|
-
### Tutorial 2: Semantic Search Engine
|
|
721
|
-
|
|
722
|
-
**What you'll learn:** Build a semantic search engine that understands meaning, not just keywords.
|
|
723
|
-
|
|
724
|
-
**Prerequisites:**
|
|
725
254
|
```bash
|
|
726
|
-
|
|
727
|
-
|
|
728
|
-
|
|
729
|
-
**Complete Implementation:**
|
|
730
|
-
|
|
731
|
-
```javascript
|
|
732
|
-
const { VectorDb } = require('ruvector');
|
|
733
|
-
const { pipeline } = require('@xenova/transformers');
|
|
734
|
-
|
|
735
|
-
class SemanticSearchEngine {
|
|
736
|
-
constructor() {
|
|
737
|
-
this.db = null;
|
|
738
|
-
this.embedder = null;
|
|
739
|
-
}
|
|
740
|
-
|
|
741
|
-
// Step 1: Initialize the embedding model
|
|
742
|
-
async initialize() {
|
|
743
|
-
console.log('π Initializing semantic search engine...');
|
|
744
|
-
|
|
745
|
-
// Load sentence-transformers model (runs locally, no API needed!)
|
|
746
|
-
console.log('π₯ Loading embedding model...');
|
|
747
|
-
this.embedder = await pipeline(
|
|
748
|
-
'feature-extraction',
|
|
749
|
-
'Xenova/all-MiniLM-L6-v2'
|
|
750
|
-
);
|
|
751
|
-
|
|
752
|
-
// Create vector database (384 dimensions for all-MiniLM-L6-v2)
|
|
753
|
-
this.db = new VectorDb({
|
|
754
|
-
dimensions: 384,
|
|
755
|
-
maxElements: 50000,
|
|
756
|
-
storagePath: './semantic-search.db'
|
|
757
|
-
});
|
|
758
|
-
|
|
759
|
-
console.log('β
Search engine ready!\n');
|
|
760
|
-
}
|
|
761
|
-
|
|
762
|
-
// Step 2: Generate embeddings
|
|
763
|
-
async embed(text) {
|
|
764
|
-
const output = await this.embedder(text, {
|
|
765
|
-
pooling: 'mean',
|
|
766
|
-
normalize: true
|
|
767
|
-
});
|
|
768
|
-
|
|
769
|
-
// Convert to Float32Array
|
|
770
|
-
return new Float32Array(output.data);
|
|
771
|
-
}
|
|
772
|
-
|
|
773
|
-
// Step 3: Index documents
|
|
774
|
-
async indexDocuments(documents) {
|
|
775
|
-
console.log(`π Indexing ${documents.length} documents...`);
|
|
776
|
-
|
|
777
|
-
for (const doc of documents) {
|
|
778
|
-
const vector = await this.embed(doc.content);
|
|
779
|
-
|
|
780
|
-
await this.db.insert({
|
|
781
|
-
id: doc.id,
|
|
782
|
-
vector: vector,
|
|
783
|
-
metadata: {
|
|
784
|
-
title: doc.title,
|
|
785
|
-
content: doc.content,
|
|
786
|
-
category: doc.category,
|
|
787
|
-
url: doc.url
|
|
788
|
-
}
|
|
789
|
-
});
|
|
790
|
-
|
|
791
|
-
console.log(` β
${doc.title}`);
|
|
792
|
-
}
|
|
793
|
-
|
|
794
|
-
const count = await this.db.len();
|
|
795
|
-
console.log(`\nβ
Indexed ${count} documents\n`);
|
|
796
|
-
}
|
|
797
|
-
|
|
798
|
-
// Step 4: Semantic search
|
|
799
|
-
async search(query, options = {}) {
|
|
800
|
-
const {
|
|
801
|
-
k = 5,
|
|
802
|
-
category = null,
|
|
803
|
-
threshold = 0.3
|
|
804
|
-
} = options;
|
|
805
|
-
|
|
806
|
-
console.log(`π Searching for: "${query}"`);
|
|
255
|
+
# Show system info and backend status
|
|
256
|
+
npx ruvector info
|
|
807
257
|
|
|
808
|
-
|
|
809
|
-
|
|
258
|
+
# Initialize a new index
|
|
259
|
+
npx ruvector init my-index --dimension 384 --type hnsw
|
|
810
260
|
|
|
811
|
-
|
|
812
|
-
|
|
813
|
-
|
|
814
|
-
k: k * 2, // Get more results for filtering
|
|
815
|
-
threshold: threshold
|
|
816
|
-
});
|
|
261
|
+
# Insert vectors from JSON/JSONL
|
|
262
|
+
npx ruvector insert my-index vectors.json
|
|
263
|
+
npx ruvector insert my-index vectors.jsonl --format jsonl
|
|
817
264
|
|
|
818
|
-
|
|
819
|
-
|
|
820
|
-
|
|
821
|
-
filtered = results.filter(r => r.metadata.category === category);
|
|
822
|
-
}
|
|
265
|
+
# Search with a query
|
|
266
|
+
npx ruvector search my-index --query "[0.1, 0.2, ...]" -k 10
|
|
267
|
+
npx ruvector search my-index --text "machine learning" -k 10 # Auto-embed
|
|
823
268
|
|
|
824
|
-
|
|
825
|
-
|
|
269
|
+
# Show index statistics
|
|
270
|
+
npx ruvector stats my-index
|
|
826
271
|
|
|
827
|
-
|
|
272
|
+
# Run performance benchmarks
|
|
273
|
+
npx ruvector benchmark --dimension 384 --num-vectors 10000
|
|
828
274
|
|
|
829
|
-
|
|
830
|
-
|
|
831
|
-
|
|
832
|
-
|
|
833
|
-
category: r.metadata.category,
|
|
834
|
-
score: r.score,
|
|
835
|
-
url: r.metadata.url
|
|
836
|
-
}));
|
|
837
|
-
}
|
|
838
|
-
|
|
839
|
-
// Step 5: Find similar documents
|
|
840
|
-
async findSimilar(documentId, k = 5) {
|
|
841
|
-
const doc = await this.db.get(documentId);
|
|
842
|
-
|
|
843
|
-
if (!doc) {
|
|
844
|
-
throw new Error(`Document ${documentId} not found`);
|
|
845
|
-
}
|
|
846
|
-
|
|
847
|
-
const results = await this.db.search({
|
|
848
|
-
vector: doc.vector,
|
|
849
|
-
k: k + 1 // +1 because the document itself will be included
|
|
850
|
-
});
|
|
275
|
+
# Export/import
|
|
276
|
+
npx ruvector export my-index backup.bin
|
|
277
|
+
npx ruvector import backup.bin restored-index
|
|
278
|
+
```
|
|
851
279
|
|
|
852
|
-
|
|
853
|
-
return results
|
|
854
|
-
.filter(r => r.id !== documentId)
|
|
855
|
-
.slice(0, k);
|
|
856
|
-
}
|
|
857
|
-
}
|
|
280
|
+
## Integrations
|
|
858
281
|
|
|
859
|
-
|
|
860
|
-
async function main() {
|
|
861
|
-
const engine = new SemanticSearchEngine();
|
|
862
|
-
await engine.initialize();
|
|
863
|
-
|
|
864
|
-
// Sample documents (in production, load from your database)
|
|
865
|
-
const documents = [
|
|
866
|
-
{
|
|
867
|
-
id: '1',
|
|
868
|
-
title: 'Understanding Neural Networks',
|
|
869
|
-
content: 'Neural networks are computing systems inspired by biological neural networks. They learn to perform tasks by considering examples.',
|
|
870
|
-
category: 'AI',
|
|
871
|
-
url: '/docs/neural-networks'
|
|
872
|
-
},
|
|
873
|
-
{
|
|
874
|
-
id: '2',
|
|
875
|
-
title: 'Introduction to Machine Learning',
|
|
876
|
-
content: 'Machine learning is a subset of artificial intelligence that provides systems the ability to learn and improve from experience.',
|
|
877
|
-
category: 'AI',
|
|
878
|
-
url: '/docs/machine-learning'
|
|
879
|
-
},
|
|
880
|
-
{
|
|
881
|
-
id: '3',
|
|
882
|
-
title: 'Web Development Best Practices',
|
|
883
|
-
content: 'Modern web development involves responsive design, performance optimization, and accessibility considerations.',
|
|
884
|
-
category: 'Web',
|
|
885
|
-
url: '/docs/web-dev'
|
|
886
|
-
},
|
|
887
|
-
{
|
|
888
|
-
id: '4',
|
|
889
|
-
title: 'Deep Learning Applications',
|
|
890
|
-
content: 'Deep learning has revolutionized computer vision, natural language processing, and speech recognition.',
|
|
891
|
-
category: 'AI',
|
|
892
|
-
url: '/docs/deep-learning'
|
|
893
|
-
}
|
|
894
|
-
];
|
|
895
|
-
|
|
896
|
-
// Index documents
|
|
897
|
-
await engine.indexDocuments(documents);
|
|
898
|
-
|
|
899
|
-
// Example 1: Basic semantic search
|
|
900
|
-
console.log('Example 1: Basic Search\n' + '='.repeat(60));
|
|
901
|
-
const results1 = await engine.search('AI and neural nets');
|
|
902
|
-
results1.forEach((result, i) => {
|
|
903
|
-
console.log(`${i + 1}. ${result.title} (Score: ${result.score.toFixed(3)})`);
|
|
904
|
-
console.log(` ${result.content.slice(0, 80)}...`);
|
|
905
|
-
console.log(` Category: ${result.category}\n`);
|
|
906
|
-
});
|
|
282
|
+
### LangChain
|
|
907
283
|
|
|
908
|
-
|
|
909
|
-
|
|
910
|
-
|
|
911
|
-
category: 'AI',
|
|
912
|
-
k: 3
|
|
913
|
-
});
|
|
914
|
-
results2.forEach((result, i) => {
|
|
915
|
-
console.log(`${i + 1}. ${result.title} (Score: ${result.score.toFixed(3)})`);
|
|
916
|
-
});
|
|
284
|
+
```javascript
|
|
285
|
+
const { RuVectorStore } = require('ruvector/langchain');
|
|
286
|
+
const { OpenAIEmbeddings } = require('@langchain/openai');
|
|
917
287
|
|
|
918
|
-
|
|
919
|
-
|
|
920
|
-
|
|
921
|
-
|
|
922
|
-
similar.forEach((doc, i) => {
|
|
923
|
-
console.log(`${i + 1}. ${doc.metadata.title} (Score: ${doc.score.toFixed(3)})`);
|
|
924
|
-
});
|
|
925
|
-
}
|
|
288
|
+
const vectorStore = new RuVectorStore(
|
|
289
|
+
new OpenAIEmbeddings(),
|
|
290
|
+
{ dimension: 1536 }
|
|
291
|
+
);
|
|
926
292
|
|
|
927
|
-
|
|
293
|
+
await vectorStore.addDocuments(documents);
|
|
294
|
+
const results = await vectorStore.similaritySearch("query", 5);
|
|
928
295
|
```
|
|
929
296
|
|
|
930
|
-
|
|
931
|
-
- β
Runs completely locally (no API keys needed)
|
|
932
|
-
- β
Understands semantic meaning, not just keywords
|
|
933
|
-
- β
Category filtering for better results
|
|
934
|
-
- β
"Find similar" functionality
|
|
935
|
-
- β
Fast: ~10ms query latency
|
|
936
|
-
|
|
937
|
-
---
|
|
938
|
-
|
|
939
|
-
### Tutorial 3: AI Agent Memory System
|
|
940
|
-
|
|
941
|
-
**What you'll learn:** Implement a memory system for AI agents that remembers past experiences and learns from them.
|
|
942
|
-
|
|
943
|
-
**Complete Implementation:**
|
|
297
|
+
### LlamaIndex
|
|
944
298
|
|
|
945
299
|
```javascript
|
|
946
|
-
const {
|
|
947
|
-
|
|
948
|
-
class AgentMemory {
|
|
949
|
-
constructor(agentId) {
|
|
950
|
-
this.agentId = agentId;
|
|
300
|
+
const { RuVectorIndex } = require('ruvector/llamaindex');
|
|
951
301
|
|
|
952
|
-
|
|
953
|
-
|
|
954
|
-
|
|
955
|
-
|
|
956
|
-
});
|
|
957
|
-
|
|
958
|
-
this.semanticMemory = new VectorDb({
|
|
959
|
-
dimensions: 768,
|
|
960
|
-
storagePath: `./memory/${agentId}-semantic.db`
|
|
961
|
-
});
|
|
302
|
+
const index = new RuVectorIndex({
|
|
303
|
+
dimension: 384,
|
|
304
|
+
enableGNN: true
|
|
305
|
+
});
|
|
962
306
|
|
|
963
|
-
|
|
964
|
-
|
|
307
|
+
await index.insert(documents);
|
|
308
|
+
const queryEngine = index.asQueryEngine();
|
|
309
|
+
const response = await queryEngine.query("What is machine learning?");
|
|
310
|
+
```
|
|
965
311
|
|
|
966
|
-
|
|
967
|
-
async storeExperience(experience) {
|
|
968
|
-
const {
|
|
969
|
-
state,
|
|
970
|
-
action,
|
|
971
|
-
result,
|
|
972
|
-
reward,
|
|
973
|
-
embedding
|
|
974
|
-
} = experience;
|
|
975
|
-
|
|
976
|
-
const experienceId = `exp_${Date.now()}_${Math.random()}`;
|
|
977
|
-
|
|
978
|
-
await this.episodicMemory.insert({
|
|
979
|
-
id: experienceId,
|
|
980
|
-
vector: new Float32Array(embedding),
|
|
981
|
-
metadata: {
|
|
982
|
-
state: state,
|
|
983
|
-
action: action,
|
|
984
|
-
result: result,
|
|
985
|
-
reward: reward,
|
|
986
|
-
timestamp: Date.now(),
|
|
987
|
-
type: 'episodic'
|
|
988
|
-
}
|
|
989
|
-
});
|
|
990
|
-
|
|
991
|
-
console.log(`πΎ Stored experience: ${action} -> ${result} (reward: ${reward})`);
|
|
992
|
-
return experienceId;
|
|
993
|
-
}
|
|
312
|
+
### OpenAI / Anthropic
|
|
994
313
|
|
|
995
|
-
|
|
996
|
-
|
|
997
|
-
const {
|
|
998
|
-
concept,
|
|
999
|
-
description,
|
|
1000
|
-
embedding,
|
|
1001
|
-
confidence = 1.0
|
|
1002
|
-
} = knowledge;
|
|
1003
|
-
|
|
1004
|
-
const knowledgeId = `know_${Date.now()}`;
|
|
1005
|
-
|
|
1006
|
-
await this.semanticMemory.insert({
|
|
1007
|
-
id: knowledgeId,
|
|
1008
|
-
vector: new Float32Array(embedding),
|
|
1009
|
-
metadata: {
|
|
1010
|
-
concept: concept,
|
|
1011
|
-
description: description,
|
|
1012
|
-
confidence: confidence,
|
|
1013
|
-
learned: Date.now(),
|
|
1014
|
-
uses: 0,
|
|
1015
|
-
type: 'semantic'
|
|
1016
|
-
}
|
|
1017
|
-
});
|
|
1018
|
-
|
|
1019
|
-
console.log(`π Learned: ${concept}`);
|
|
1020
|
-
return knowledgeId;
|
|
1021
|
-
}
|
|
314
|
+
```javascript
|
|
315
|
+
const { createEmbedder } = require('ruvector');
|
|
1022
316
|
|
|
1023
|
-
|
|
1024
|
-
|
|
1025
|
-
|
|
317
|
+
// OpenAI
|
|
318
|
+
const openaiEmbed = createEmbedder('openai', {
|
|
319
|
+
model: 'text-embedding-3-small'
|
|
320
|
+
});
|
|
1026
321
|
|
|
1027
|
-
|
|
1028
|
-
|
|
1029
|
-
|
|
1030
|
-
|
|
1031
|
-
});
|
|
322
|
+
// Anthropic (via Voyage)
|
|
323
|
+
const anthropicEmbed = createEmbedder('voyage', {
|
|
324
|
+
model: 'voyage-2'
|
|
325
|
+
});
|
|
1032
326
|
|
|
1033
|
-
|
|
1034
|
-
|
|
327
|
+
// Cohere
|
|
328
|
+
const cohereEmbed = createEmbedder('cohere', {
|
|
329
|
+
model: 'embed-english-v3.0'
|
|
330
|
+
});
|
|
331
|
+
```
|
|
1035
332
|
|
|
1036
|
-
|
|
333
|
+
## Benchmarks
|
|
1037
334
|
|
|
1038
|
-
|
|
1039
|
-
|
|
1040
|
-
|
|
1041
|
-
|
|
1042
|
-
|
|
1043
|
-
|
|
1044
|
-
|
|
1045
|
-
|
|
335
|
+
| Operation | Dimensions | Time | Throughput |
|
|
336
|
+
|-----------|------------|------|------------|
|
|
337
|
+
| **HNSW Search (k=10)** | 384 | 61Β΅s | 16,400 QPS |
|
|
338
|
+
| **HNSW Search (k=100)** | 384 | 164Β΅s | 6,100 QPS |
|
|
339
|
+
| **Cosine Similarity** | 1536 | 143ns | 7M ops/sec |
|
|
340
|
+
| **Dot Product** | 384 | 33ns | 30M ops/sec |
|
|
341
|
+
| **Insert** | 384 | 20Β΅s | 50,000/sec |
|
|
342
|
+
| **GNN Forward** | 384β512 | 89Β΅s | 11,200/sec |
|
|
343
|
+
| **Compression (PQ8)** | 384 | 12Β΅s | 83,000/sec |
|
|
1046
344
|
|
|
1047
|
-
|
|
1048
|
-
|
|
1049
|
-
|
|
1050
|
-
|
|
1051
|
-
|
|
1052
|
-
|
|
1053
|
-
|
|
1054
|
-
|
|
1055
|
-
|
|
1056
|
-
|
|
1057
|
-
|
|
1058
|
-
|
|
1059
|
-
|
|
1060
|
-
|
|
1061
|
-
|
|
1062
|
-
|
|
1063
|
-
|
|
1064
|
-
|
|
1065
|
-
|
|
1066
|
-
|
|
1067
|
-
|
|
1068
|
-
|
|
1069
|
-
|
|
345
|
+
Run your own benchmarks:
|
|
346
|
+
```bash
|
|
347
|
+
npx ruvector benchmark --dimension 384 --num-vectors 100000
|
|
348
|
+
```
|
|
349
|
+
|
|
350
|
+
## Comparison
|
|
351
|
+
|
|
352
|
+
| Feature | RuVector | Pinecone | Qdrant | ChromaDB | Milvus | Weaviate |
|
|
353
|
+
|---------|----------|----------|--------|----------|--------|----------|
|
|
354
|
+
| **Latency (p50)** | **61Β΅s** | ~2ms | ~1ms | ~50ms | ~5ms | ~3ms |
|
|
355
|
+
| **Graph Queries** | β
Cypher | β | β | β | β | β
GraphQL |
|
|
356
|
+
| **Self-Learning** | β
GNN | β | β | β | β | β |
|
|
357
|
+
| **AI Routing** | β
| β | β | β | β | β |
|
|
358
|
+
| **Browser/WASM** | β
| β | β | β | β | β |
|
|
359
|
+
| **Compression** | 2-32x | β | β
| β | β
| β
|
|
|
360
|
+
| **Hybrid Search** | β
| β
| β
| β | β
| β
|
|
|
361
|
+
| **Multi-tenancy** | β
| β
| β
| β
| β
| β
|
|
|
362
|
+
| **Open Source** | β
MIT | β | β
Apache | β
Apache | β
Apache | β
BSD |
|
|
363
|
+
| **Pricing** | Free | $70+/mo | Free | Free | Free | Free |
|
|
364
|
+
|
|
365
|
+
## npm Packages
|
|
366
|
+
|
|
367
|
+
| Package | Description |
|
|
368
|
+
|---------|-------------|
|
|
369
|
+
| [`ruvector`](https://www.npmjs.com/package/ruvector) | **All-in-one package (recommended)** |
|
|
370
|
+
| [`@ruvector/wasm`](https://www.npmjs.com/package/@ruvector/wasm) | Browser/WASM bindings |
|
|
371
|
+
| [`@ruvector/graph`](https://www.npmjs.com/package/@ruvector/graph) | Graph database with Cypher |
|
|
372
|
+
| [`@ruvector/gnn`](https://www.npmjs.com/package/@ruvector/gnn) | Graph Neural Network layers |
|
|
373
|
+
| [`@ruvector/tiny-dancer`](https://www.npmjs.com/package/@ruvector/tiny-dancer) | AI agent routing (FastGRNN) |
|
|
374
|
+
| [`@ruvector/router`](https://www.npmjs.com/package/@ruvector/router) | Semantic routing engine |
|
|
1070
375
|
|
|
1071
|
-
|
|
1072
|
-
|
|
1073
|
-
|
|
376
|
+
```bash
|
|
377
|
+
# Install all-in-one (recommended)
|
|
378
|
+
npm install ruvector
|
|
1074
379
|
|
|
1075
|
-
|
|
1076
|
-
|
|
1077
|
-
|
|
380
|
+
# Or install specific packages
|
|
381
|
+
npm install @ruvector/graph @ruvector/gnn
|
|
382
|
+
```
|
|
1078
383
|
|
|
1079
|
-
|
|
1080
|
-
// In production, you'd aggregate experiences and extract patterns
|
|
1081
|
-
console.log('π‘ Analysis complete');
|
|
384
|
+
## API Reference
|
|
1082
385
|
|
|
1083
|
-
|
|
1084
|
-
totalExperiences: totalExperiences,
|
|
1085
|
-
knowledgeItems: await this.semanticMemory.len()
|
|
1086
|
-
};
|
|
1087
|
-
}
|
|
386
|
+
### VectorDB
|
|
1088
387
|
|
|
1089
|
-
|
|
1090
|
-
|
|
1091
|
-
|
|
1092
|
-
|
|
1093
|
-
|
|
1094
|
-
|
|
1095
|
-
|
|
1096
|
-
|
|
388
|
+
```typescript
|
|
389
|
+
class VectorDB {
|
|
390
|
+
constructor(dimension: number, options?: VectorDBOptions);
|
|
391
|
+
|
|
392
|
+
// CRUD operations
|
|
393
|
+
insert(id: string, values: number[], metadata?: object): Promise<void>;
|
|
394
|
+
insertBatch(vectors: Vector[], options?: BatchOptions): Promise<void>;
|
|
395
|
+
get(id: string): Promise<Vector | null>;
|
|
396
|
+
update(id: string, values?: number[], metadata?: object): Promise<void>;
|
|
397
|
+
delete(id: string): Promise<boolean>;
|
|
398
|
+
|
|
399
|
+
// Search
|
|
400
|
+
search(query: number[], k?: number, filter?: Filter): Promise<SearchResult[]>;
|
|
401
|
+
hybridSearch(query: number[], text: string, k?: number): Promise<SearchResult[]>;
|
|
402
|
+
|
|
403
|
+
// Persistence
|
|
404
|
+
save(path: string): Promise<void>;
|
|
405
|
+
static load(path: string): Promise<VectorDB>;
|
|
406
|
+
|
|
407
|
+
// Management
|
|
408
|
+
stats(): Promise<IndexStats>;
|
|
409
|
+
optimize(): Promise<void>;
|
|
410
|
+
clear(): Promise<void>;
|
|
1097
411
|
}
|
|
412
|
+
```
|
|
1098
413
|
|
|
1099
|
-
|
|
1100
|
-
async function main() {
|
|
1101
|
-
const agent = new AgentMemory('agent-001');
|
|
1102
|
-
|
|
1103
|
-
// Simulate embedding function (in production, use a real model)
|
|
1104
|
-
function embed(text) {
|
|
1105
|
-
return Array(768).fill(0).map(() => Math.random());
|
|
1106
|
-
}
|
|
1107
|
-
|
|
1108
|
-
console.log('\n' + '='.repeat(60));
|
|
1109
|
-
console.log('PHASE 1: Learning from experiences');
|
|
1110
|
-
console.log('='.repeat(60) + '\n');
|
|
1111
|
-
|
|
1112
|
-
// Store some experiences
|
|
1113
|
-
await agent.storeExperience({
|
|
1114
|
-
state: { location: 'room1', goal: 'room3' },
|
|
1115
|
-
action: 'move_north',
|
|
1116
|
-
result: 'reached room2',
|
|
1117
|
-
reward: 0.5,
|
|
1118
|
-
embedding: embed('navigating from room1 to room2')
|
|
1119
|
-
});
|
|
1120
|
-
|
|
1121
|
-
await agent.storeExperience({
|
|
1122
|
-
state: { location: 'room2', goal: 'room3' },
|
|
1123
|
-
action: 'move_east',
|
|
1124
|
-
result: 'reached room3',
|
|
1125
|
-
reward: 1.0,
|
|
1126
|
-
embedding: embed('navigating from room2 to room3')
|
|
1127
|
-
});
|
|
1128
|
-
|
|
1129
|
-
await agent.storeExperience({
|
|
1130
|
-
state: { location: 'room1', goal: 'room3' },
|
|
1131
|
-
action: 'move_south',
|
|
1132
|
-
result: 'hit wall',
|
|
1133
|
-
reward: -0.5,
|
|
1134
|
-
embedding: embed('failed navigation attempt')
|
|
1135
|
-
});
|
|
1136
|
-
|
|
1137
|
-
// Store learned knowledge
|
|
1138
|
-
await agent.storeKnowledge({
|
|
1139
|
-
concept: 'navigation_strategy',
|
|
1140
|
-
description: 'Moving north then east is efficient for reaching room3 from room1',
|
|
1141
|
-
embedding: embed('navigation strategy knowledge'),
|
|
1142
|
-
confidence: 0.9
|
|
1143
|
-
});
|
|
1144
|
-
|
|
1145
|
-
console.log('\n' + '='.repeat(60));
|
|
1146
|
-
console.log('PHASE 2: Applying memory');
|
|
1147
|
-
console.log('='.repeat(60) + '\n');
|
|
1148
|
-
|
|
1149
|
-
// Agent encounters a similar situation
|
|
1150
|
-
const currentState = {
|
|
1151
|
-
location: 'room1',
|
|
1152
|
-
goal: 'room3',
|
|
1153
|
-
embedding: embed('navigating from room1 to room3')
|
|
1154
|
-
};
|
|
1155
|
-
|
|
1156
|
-
// Recall relevant experiences
|
|
1157
|
-
const experiences = await agent.recallExperiences(currentState, 3);
|
|
1158
|
-
|
|
1159
|
-
console.log('\nπ Recalled experiences:');
|
|
1160
|
-
experiences.forEach((exp, i) => {
|
|
1161
|
-
console.log(`${i + 1}. Action: ${exp.action} | Result: ${exp.result} | Reward: ${exp.reward} | Similarity: ${exp.similarity.toFixed(3)}`);
|
|
1162
|
-
});
|
|
1163
|
-
|
|
1164
|
-
// Query relevant knowledge
|
|
1165
|
-
const knowledge = await agent.queryKnowledge({
|
|
1166
|
-
embedding: embed('how to navigate efficiently')
|
|
1167
|
-
}, 2);
|
|
414
|
+
### GraphDB
|
|
1168
415
|
|
|
1169
|
-
|
|
1170
|
-
|
|
1171
|
-
|
|
1172
|
-
});
|
|
416
|
+
```typescript
|
|
417
|
+
class GraphDB {
|
|
418
|
+
constructor(options?: GraphDBOptions);
|
|
1173
419
|
|
|
1174
|
-
|
|
1175
|
-
|
|
1176
|
-
console.log('='.repeat(60) + '\n');
|
|
420
|
+
// Cypher execution
|
|
421
|
+
execute(cypher: string, params?: object): QueryResult;
|
|
1177
422
|
|
|
1178
|
-
//
|
|
1179
|
-
|
|
1180
|
-
|
|
423
|
+
// Direct API
|
|
424
|
+
createNode(label: string, properties: object): string;
|
|
425
|
+
createRelationship(from: string, to: string, type: string, props?: object): void;
|
|
426
|
+
createHyperedge(nodeIds: string[], type: string, props?: object): string;
|
|
1181
427
|
|
|
1182
|
-
|
|
1183
|
-
|
|
1184
|
-
|
|
1185
|
-
console.log(` Agent ID: ${memoryStats.agentId}`);
|
|
428
|
+
// Traversal
|
|
429
|
+
shortestPath(from: string, to: string): Path | null;
|
|
430
|
+
neighbors(nodeId: string, depth?: number): Node[];
|
|
1186
431
|
}
|
|
1187
|
-
|
|
1188
|
-
main().catch(console.error);
|
|
1189
432
|
```
|
|
1190
433
|
|
|
1191
|
-
|
|
1192
|
-
```
|
|
1193
|
-
π§ Memory system initialized for agent: agent-001
|
|
1194
|
-
|
|
1195
|
-
============================================================
|
|
1196
|
-
PHASE 1: Learning from experiences
|
|
1197
|
-
============================================================
|
|
1198
|
-
|
|
1199
|
-
πΎ Stored experience: move_north -> reached room2 (reward: 0.5)
|
|
1200
|
-
πΎ Stored experience: move_east -> reached room3 (reward: 1.0)
|
|
1201
|
-
πΎ Stored experience: move_south -> hit wall (reward: -0.5)
|
|
1202
|
-
π Learned: navigation_strategy
|
|
1203
|
-
|
|
1204
|
-
============================================================
|
|
1205
|
-
PHASE 2: Applying memory
|
|
1206
|
-
============================================================
|
|
1207
|
-
|
|
1208
|
-
π Recalling similar experiences...
|
|
1209
|
-
π Recalled 3 relevant experiences
|
|
1210
|
-
|
|
1211
|
-
π Recalled experiences:
|
|
1212
|
-
1. Action: move_east | Result: reached room3 | Reward: 1.0 | Similarity: 0.892
|
|
1213
|
-
2. Action: move_north | Result: reached room2 | Reward: 0.5 | Similarity: 0.876
|
|
1214
|
-
3. Action: move_south | Result: hit wall | Reward: -0.5 | Similarity: 0.654
|
|
1215
|
-
|
|
1216
|
-
π Relevant knowledge:
|
|
1217
|
-
1. navigation_strategy: Moving north then east is efficient for reaching room3 from room1 (confidence: 0.9)
|
|
434
|
+
### GNNLayer
|
|
1218
435
|
|
|
1219
|
-
|
|
1220
|
-
|
|
1221
|
-
|
|
436
|
+
```typescript
|
|
437
|
+
class GNNLayer {
|
|
438
|
+
constructor(inputDim: number, outputDim: number, numHeads: number);
|
|
1222
439
|
|
|
1223
|
-
|
|
1224
|
-
|
|
1225
|
-
π‘ Analysis complete
|
|
440
|
+
// Inference
|
|
441
|
+
forward(query: number[], neighbors: number[][], weights: number[]): number[];
|
|
1226
442
|
|
|
1227
|
-
|
|
1228
|
-
|
|
1229
|
-
|
|
1230
|
-
|
|
443
|
+
// Training
|
|
444
|
+
train(data: TrainingData, config?: TrainingConfig): TrainingMetrics;
|
|
445
|
+
save(path: string): void;
|
|
446
|
+
static load(path: string): GNNLayer;
|
|
447
|
+
}
|
|
1231
448
|
```
|
|
1232
449
|
|
|
1233
|
-
|
|
1234
|
-
- β
Reinforcement learning agents
|
|
1235
|
-
- β
Chatbot conversation history
|
|
1236
|
-
- β
Game AI that learns from gameplay
|
|
1237
|
-
- β
Personal assistant memory
|
|
1238
|
-
- β
Robotic navigation systems
|
|
1239
|
-
|
|
1240
|
-
## ποΈ API Reference
|
|
1241
|
-
|
|
1242
|
-
### Constructor
|
|
450
|
+
### Router
|
|
1243
451
|
|
|
1244
452
|
```typescript
|
|
1245
|
-
|
|
1246
|
-
|
|
1247
|
-
maxElements?: number; // Max vectors (default: 10000)
|
|
1248
|
-
storagePath?: string; // Persistent storage path
|
|
1249
|
-
ef_construction?: number; // HNSW construction parameter (default: 200)
|
|
1250
|
-
m?: number; // HNSW M parameter (default: 16)
|
|
1251
|
-
distanceMetric?: string; // 'cosine', 'euclidean', or 'dot' (default: 'cosine')
|
|
1252
|
-
})
|
|
1253
|
-
```
|
|
453
|
+
class Router {
|
|
454
|
+
constructor(config?: RouterConfig);
|
|
1254
455
|
|
|
1255
|
-
|
|
456
|
+
// Routing
|
|
457
|
+
route(query: number[], candidates: Candidate[]): RoutingDecision;
|
|
458
|
+
routeBatch(queries: number[][], candidates: Candidate[]): RoutingDecision[];
|
|
1256
459
|
|
|
1257
|
-
|
|
1258
|
-
|
|
1259
|
-
|
|
1260
|
-
|
|
1261
|
-
|
|
1262
|
-
id: 'doc_1',
|
|
1263
|
-
vector: new Float32Array([0.1, 0.2, 0.3, ...]),
|
|
1264
|
-
metadata: { title: 'Document 1' }
|
|
1265
|
-
});
|
|
460
|
+
// Management
|
|
461
|
+
reloadModel(): void;
|
|
462
|
+
circuitBreakerStatus(): 'closed' | 'open' | 'half-open';
|
|
463
|
+
resetCircuitBreaker(): void;
|
|
464
|
+
}
|
|
1266
465
|
```
|
|
1267
466
|
|
|
1268
|
-
|
|
1269
|
-
Search for similar vectors.
|
|
467
|
+
## Use Cases
|
|
1270
468
|
|
|
1271
|
-
|
|
1272
|
-
const results = await db.search({
|
|
1273
|
-
vector: new Float32Array([0.1, 0.2, 0.3, ...]),
|
|
1274
|
-
k: 10,
|
|
1275
|
-
threshold: 0.7
|
|
1276
|
-
});
|
|
1277
|
-
```
|
|
1278
|
-
|
|
1279
|
-
#### get(id: string): Promise<VectorEntry | null>
|
|
1280
|
-
Retrieve a vector by ID.
|
|
469
|
+
### Agentic AI / Multi-Agent Systems
|
|
1281
470
|
|
|
1282
471
|
```javascript
|
|
1283
|
-
|
|
1284
|
-
|
|
1285
|
-
|
|
1286
|
-
}
|
|
1287
|
-
|
|
1288
|
-
|
|
1289
|
-
#### delete(id: string): Promise<boolean>
|
|
1290
|
-
Remove a vector from the database.
|
|
472
|
+
// Route tasks to specialized agents
|
|
473
|
+
const agents = [
|
|
474
|
+
{ id: 'researcher', embedding: researchEmb, capabilities: ['search', 'summarize'] },
|
|
475
|
+
{ id: 'coder', embedding: codeEmb, capabilities: ['code', 'debug'] },
|
|
476
|
+
{ id: 'analyst', embedding: analysisEmb, capabilities: ['data', 'visualize'] }
|
|
477
|
+
];
|
|
1291
478
|
|
|
1292
|
-
|
|
1293
|
-
const
|
|
1294
|
-
|
|
479
|
+
const taskEmb = await embed("Write a Python script to analyze sales data");
|
|
480
|
+
const decision = router.route(taskEmb, agents);
|
|
481
|
+
// Routes to 'coder' agent with high confidence
|
|
1295
482
|
```
|
|
1296
483
|
|
|
1297
|
-
|
|
1298
|
-
Get the total number of vectors.
|
|
484
|
+
### Recommendation Systems
|
|
1299
485
|
|
|
1300
486
|
```javascript
|
|
1301
|
-
const
|
|
1302
|
-
|
|
487
|
+
const recommendations = graph.execute(`
|
|
488
|
+
MATCH (user:User {id: $userId})-[:VIEWED]->(item:Product)
|
|
489
|
+
MATCH (item)-[:SIMILAR_TO]->(rec:Product)
|
|
490
|
+
WHERE NOT (user)-[:VIEWED]->(rec)
|
|
491
|
+
AND vector.similarity(rec.embedding, $userPreference) > 0.7
|
|
492
|
+
RETURN rec
|
|
493
|
+
ORDER BY vector.similarity(rec.embedding, $userPreference) DESC
|
|
494
|
+
LIMIT 10
|
|
495
|
+
`);
|
|
1303
496
|
```
|
|
1304
497
|
|
|
1305
|
-
|
|
1306
|
-
|
|
1307
|
-
### HNSW Parameters
|
|
498
|
+
### Semantic Caching
|
|
1308
499
|
|
|
1309
500
|
```javascript
|
|
1310
|
-
const
|
|
1311
|
-
dimensions: 384,
|
|
1312
|
-
maxElements: 1000000,
|
|
1313
|
-
ef_construction: 200, // Higher = better recall, slower build
|
|
1314
|
-
m: 16, // Higher = better recall, more memory
|
|
1315
|
-
storagePath: './large-db.db'
|
|
1316
|
-
});
|
|
1317
|
-
```
|
|
1318
|
-
|
|
1319
|
-
**Parameter Guidelines:**
|
|
1320
|
-
- `ef_construction`: 100-400 (higher = better recall, slower indexing)
|
|
1321
|
-
- `m`: 8-64 (higher = better recall, more memory)
|
|
1322
|
-
- Default values work well for most use cases
|
|
501
|
+
const cache = new VectorDB(1536);
|
|
1323
502
|
|
|
1324
|
-
|
|
503
|
+
async function cachedLLMCall(prompt) {
|
|
504
|
+
const promptEmb = await embed(prompt);
|
|
1325
505
|
|
|
1326
|
-
|
|
1327
|
-
|
|
1328
|
-
|
|
1329
|
-
|
|
1330
|
-
|
|
1331
|
-
});
|
|
506
|
+
// Check semantic cache
|
|
507
|
+
const cached = await cache.search(promptEmb, 1);
|
|
508
|
+
if (cached[0]?.score > 0.95) {
|
|
509
|
+
return cached[0].metadata.response; // Cache hit
|
|
510
|
+
}
|
|
1332
511
|
|
|
1333
|
-
//
|
|
1334
|
-
const
|
|
1335
|
-
|
|
1336
|
-
distanceMetric: 'euclidean'
|
|
1337
|
-
});
|
|
512
|
+
// Cache miss - call LLM
|
|
513
|
+
const response = await llm.complete(prompt);
|
|
514
|
+
await cache.insert(generateId(), promptEmb, { prompt, response });
|
|
1338
515
|
|
|
1339
|
-
|
|
1340
|
-
|
|
1341
|
-
dimensions: 128,
|
|
1342
|
-
distanceMetric: 'dot'
|
|
1343
|
-
});
|
|
516
|
+
return response;
|
|
517
|
+
}
|
|
1344
518
|
```
|
|
1345
519
|
|
|
1346
|
-
###
|
|
520
|
+
### Document Q&A with Sources
|
|
1347
521
|
|
|
1348
522
|
```javascript
|
|
1349
|
-
|
|
1350
|
-
const
|
|
1351
|
-
dimensions: 128,
|
|
1352
|
-
storagePath: './persistent.db'
|
|
1353
|
-
});
|
|
1354
|
-
|
|
1355
|
-
// In-memory only (faster, but data lost on exit)
|
|
1356
|
-
const temporary = new VectorDb({
|
|
1357
|
-
dimensions: 128
|
|
1358
|
-
// No storagePath = in-memory
|
|
1359
|
-
});
|
|
1360
|
-
```
|
|
1361
|
-
|
|
1362
|
-
## π¦ Platform Support
|
|
1363
|
-
|
|
1364
|
-
Automatically installs the correct implementation for:
|
|
1365
|
-
|
|
1366
|
-
### Native (Rust) - Best Performance
|
|
1367
|
-
- **Linux**: x64, ARM64 (GNU libc)
|
|
1368
|
-
- **macOS**: x64 (Intel), ARM64 (Apple Silicon)
|
|
1369
|
-
- **Windows**: x64 (MSVC)
|
|
1370
|
-
|
|
1371
|
-
Performance: **<0.5ms latency**, **50K+ ops/sec**
|
|
1372
|
-
|
|
1373
|
-
### WASM Fallback - Universal Compatibility
|
|
1374
|
-
- Any platform where native module isn't available
|
|
1375
|
-
- Browser environments (experimental)
|
|
1376
|
-
- Alpine Linux (musl) and other non-glibc systems
|
|
523
|
+
async function qaWithSources(question) {
|
|
524
|
+
const results = await db.search(await embed(question), 5);
|
|
1377
525
|
|
|
1378
|
-
|
|
1379
|
-
|
|
1380
|
-
|
|
526
|
+
const answer = await llm.complete({
|
|
527
|
+
prompt: `Answer based on these sources:\n${results.map(r =>
|
|
528
|
+
`[${r.id}] ${r.metadata.content}`
|
|
529
|
+
).join('\n')}\n\nQuestion: ${question}`,
|
|
530
|
+
});
|
|
1381
531
|
|
|
1382
|
-
|
|
532
|
+
return {
|
|
533
|
+
answer,
|
|
534
|
+
sources: results.map(r => ({
|
|
535
|
+
id: r.id,
|
|
536
|
+
title: r.metadata.title,
|
|
537
|
+
relevance: r.score
|
|
538
|
+
}))
|
|
539
|
+
};
|
|
540
|
+
}
|
|
541
|
+
```
|
|
1383
542
|
|
|
1384
|
-
|
|
543
|
+
## Architecture
|
|
544
|
+
|
|
545
|
+
```
|
|
546
|
+
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
|
547
|
+
β ruvector β
|
|
548
|
+
β (All-in-One npm Package) β
|
|
549
|
+
ββββββββββββββββ¬βββββββββββββββ¬βββββββββββββββ¬ββββββββββββββββββ€
|
|
550
|
+
β VectorDB β GraphDB β GNNLayer β Router β
|
|
551
|
+
β (Search) β (Cypher) β (ML) β (AI Routing) β
|
|
552
|
+
ββββββββββββββββ΄βββββββββββββββ΄βββββββββββββββ΄ββββββββββββββββββ€
|
|
553
|
+
β Rust Core Engine β
|
|
554
|
+
β β’ HNSW Index β’ Cypher Parser β’ Attention β’ FastGRNN β
|
|
555
|
+
β β’ SIMD Ops β’ Hyperedges β’ Training β’ Uncertainty β
|
|
556
|
+
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
|
557
|
+
β
|
|
558
|
+
ββββββββββββββββββββΌβββββββββββββββββββ
|
|
559
|
+
β β β
|
|
560
|
+
ββββββΌβββββ ββββββΌβββββ ββββββΌβββββ
|
|
561
|
+
β Native β β WASM β β FFI β
|
|
562
|
+
β(napi-rs)β β(wasm32) β β (C) β
|
|
563
|
+
βββββββββββ βββββββββββ βββββββββββ
|
|
564
|
+
β β β
|
|
565
|
+
ββββββΌβββββ ββββββΌβββββ ββββββΌβββββ
|
|
566
|
+
β Node.js β β Browser β β Python β
|
|
567
|
+
β Bun β β Deno β β Go β
|
|
568
|
+
βββββββββββ βββββββββββ βββββββββββ
|
|
569
|
+
```
|
|
570
|
+
|
|
571
|
+
## Platform Support
|
|
572
|
+
|
|
573
|
+
| Platform | Backend | Installation |
|
|
574
|
+
|----------|---------|--------------|
|
|
575
|
+
| **Node.js 16+** | Native (napi-rs) | `npm install ruvector` |
|
|
576
|
+
| **Node.js (fallback)** | WASM | Automatic if native fails |
|
|
577
|
+
| **Bun** | Native | `bun add ruvector` |
|
|
578
|
+
| **Deno** | WASM | `import from "npm:ruvector"` |
|
|
579
|
+
| **Browser** | WASM | `npm install @ruvector/wasm` |
|
|
580
|
+
| **Cloudflare Workers** | WASM | `npm install @ruvector/wasm` |
|
|
581
|
+
| **Vercel Edge** | WASM | `npm install @ruvector/wasm` |
|
|
582
|
+
|
|
583
|
+
## Documentation
|
|
584
|
+
|
|
585
|
+
- [Getting Started Guide](https://github.com/ruvnet/ruvector/blob/main/docs/guide/GETTING_STARTED.md)
|
|
586
|
+
- [Cypher Reference](https://github.com/ruvnet/ruvector/blob/main/docs/api/CYPHER_REFERENCE.md)
|
|
587
|
+
- [GNN Architecture](https://github.com/ruvnet/ruvector/blob/main/docs/gnn-layer-implementation.md)
|
|
588
|
+
- [Performance Tuning](https://github.com/ruvnet/ruvector/blob/main/docs/optimization/PERFORMANCE_TUNING_GUIDE.md)
|
|
589
|
+
- [API Reference](https://github.com/ruvnet/ruvector/tree/main/docs/api)
|
|
590
|
+
|
|
591
|
+
## Contributing
|
|
1385
592
|
|
|
1386
593
|
```bash
|
|
1387
|
-
# Install Rust toolchain
|
|
1388
|
-
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
|
|
1389
|
-
|
|
1390
594
|
# Clone repository
|
|
1391
595
|
git clone https://github.com/ruvnet/ruvector.git
|
|
1392
596
|
cd ruvector
|
|
1393
597
|
|
|
1394
|
-
#
|
|
1395
|
-
cd npm/packages/core
|
|
1396
|
-
npm run build:napi
|
|
1397
|
-
|
|
1398
|
-
# Build wrapper package
|
|
1399
|
-
cd ../ruvector
|
|
598
|
+
# Install dependencies
|
|
1400
599
|
npm install
|
|
1401
|
-
npm run build
|
|
1402
600
|
|
|
1403
601
|
# Run tests
|
|
1404
602
|
npm test
|
|
1405
|
-
```
|
|
1406
|
-
|
|
1407
|
-
**Requirements:**
|
|
1408
|
-
- Rust 1.77+
|
|
1409
|
-
- Node.js 18+
|
|
1410
|
-
- Cargo
|
|
1411
|
-
|
|
1412
|
-
## π Ecosystem
|
|
1413
|
-
|
|
1414
|
-
### Related Packages
|
|
1415
|
-
|
|
1416
|
-
- **[ruvector-core](https://www.npmjs.com/package/ruvector-core)** - Core native bindings (lower-level API)
|
|
1417
|
-
- **[ruvector-wasm](https://www.npmjs.com/package/ruvector-wasm)** - WebAssembly implementation for browsers
|
|
1418
|
-
- **[ruvector-cli](https://www.npmjs.com/package/ruvector-cli)** - Standalone CLI tools
|
|
1419
|
-
|
|
1420
|
-
### Platform-Specific Packages (auto-installed)
|
|
1421
|
-
|
|
1422
|
-
- **[ruvector-core-linux-x64-gnu](https://www.npmjs.com/package/ruvector-core-linux-x64-gnu)**
|
|
1423
|
-
- **[ruvector-core-linux-arm64-gnu](https://www.npmjs.com/package/ruvector-core-linux-arm64-gnu)**
|
|
1424
|
-
- **[ruvector-core-darwin-x64](https://www.npmjs.com/package/ruvector-core-darwin-x64)**
|
|
1425
|
-
- **[ruvector-core-darwin-arm64](https://www.npmjs.com/package/ruvector-core-darwin-arm64)**
|
|
1426
|
-
- **[ruvector-core-win32-x64-msvc](https://www.npmjs.com/package/ruvector-core-win32-x64-msvc)**
|
|
1427
603
|
|
|
1428
|
-
|
|
1429
|
-
|
|
1430
|
-
### Native Module Not Loading
|
|
1431
|
-
|
|
1432
|
-
If you see "Cannot find module 'ruvector-core-*'":
|
|
1433
|
-
|
|
1434
|
-
```bash
|
|
1435
|
-
# Reinstall with optional dependencies
|
|
1436
|
-
npm install --include=optional ruvector
|
|
1437
|
-
|
|
1438
|
-
# Verify platform
|
|
1439
|
-
npx ruvector info
|
|
604
|
+
# Build
|
|
605
|
+
npm run build
|
|
1440
606
|
|
|
1441
|
-
#
|
|
1442
|
-
|
|
607
|
+
# Benchmarks
|
|
608
|
+
npm run bench
|
|
1443
609
|
```
|
|
1444
610
|
|
|
1445
|
-
|
|
1446
|
-
|
|
1447
|
-
If you're using WASM fallback and need better performance:
|
|
1448
|
-
|
|
1449
|
-
1. **Install native toolchain** for your platform
|
|
1450
|
-
2. **Rebuild native module**: `npm rebuild ruvector`
|
|
1451
|
-
3. **Verify native**: `npx ruvector info` should show "native (Rust)"
|
|
611
|
+
See [CONTRIBUTING.md](https://github.com/ruvnet/ruvector/blob/main/docs/development/CONTRIBUTING.md) for guidelines.
|
|
1452
612
|
|
|
1453
|
-
|
|
613
|
+
## License
|
|
1454
614
|
|
|
1455
|
-
|
|
1456
|
-
- **Windows ARM**: Not yet supported, uses WASM fallback
|
|
1457
|
-
- **Node.js < 18**: Not supported, upgrade to Node.js 18+
|
|
1458
|
-
|
|
1459
|
-
## π Documentation
|
|
1460
|
-
|
|
1461
|
-
- π [Homepage](https://ruv.io)
|
|
1462
|
-
- π¦ [GitHub Repository](https://github.com/ruvnet/ruvector)
|
|
1463
|
-
- π [Full Documentation](https://github.com/ruvnet/ruvector/tree/main/docs)
|
|
1464
|
-
- π [Getting Started Guide](https://github.com/ruvnet/ruvector/blob/main/docs/guide/GETTING_STARTED.md)
|
|
1465
|
-
- π [API Reference](https://github.com/ruvnet/ruvector/blob/main/docs/api/NODEJS_API.md)
|
|
1466
|
-
- π― [Performance Tuning](https://github.com/ruvnet/ruvector/blob/main/docs/optimization/PERFORMANCE_TUNING_GUIDE.md)
|
|
1467
|
-
- π [Issue Tracker](https://github.com/ruvnet/ruvector/issues)
|
|
1468
|
-
- π¬ [Discussions](https://github.com/ruvnet/ruvector/discussions)
|
|
1469
|
-
|
|
1470
|
-
## π€ Contributing
|
|
1471
|
-
|
|
1472
|
-
We welcome contributions! See [CONTRIBUTING.md](https://github.com/ruvnet/ruvector/blob/main/docs/development/CONTRIBUTING.md) for guidelines.
|
|
1473
|
-
|
|
1474
|
-
### Quick Start
|
|
1475
|
-
|
|
1476
|
-
1. Fork the repository
|
|
1477
|
-
2. Create a feature branch: `git checkout -b feature/amazing-feature`
|
|
1478
|
-
3. Commit changes: `git commit -m 'Add amazing feature'`
|
|
1479
|
-
4. Push to branch: `git push origin feature/amazing-feature`
|
|
1480
|
-
5. Open a Pull Request
|
|
1481
|
-
|
|
1482
|
-
## π Community & Support
|
|
1483
|
-
|
|
1484
|
-
- **GitHub**: [github.com/ruvnet/ruvector](https://github.com/ruvnet/ruvector) - β Star and follow
|
|
1485
|
-
- **Discord**: [Join our community](https://discord.gg/ruvnet) - Chat with developers
|
|
1486
|
-
- **Twitter**: [@ruvnet](https://twitter.com/ruvnet) - Follow for updates
|
|
1487
|
-
- **Issues**: [Report bugs](https://github.com/ruvnet/ruvector/issues)
|
|
1488
|
-
|
|
1489
|
-
### Enterprise Support
|
|
1490
|
-
|
|
1491
|
-
Need custom development or consulting?
|
|
1492
|
-
|
|
1493
|
-
π§ [enterprise@ruv.io](mailto:enterprise@ruv.io)
|
|
1494
|
-
|
|
1495
|
-
## π License
|
|
1496
|
-
|
|
1497
|
-
**MIT License** - see [LICENSE](https://github.com/ruvnet/ruvector/blob/main/LICENSE) for details.
|
|
1498
|
-
|
|
1499
|
-
Free for commercial and personal use.
|
|
1500
|
-
|
|
1501
|
-
## π Acknowledgments
|
|
1502
|
-
|
|
1503
|
-
Built with battle-tested technologies:
|
|
1504
|
-
|
|
1505
|
-
- **HNSW**: Hierarchical Navigable Small World graphs
|
|
1506
|
-
- **SIMD**: Hardware-accelerated vector operations via simsimd
|
|
1507
|
-
- **Rust**: Memory-safe, zero-cost abstractions
|
|
1508
|
-
- **NAPI-RS**: High-performance Node.js bindings
|
|
1509
|
-
- **WebAssembly**: Universal browser compatibility
|
|
615
|
+
MIT License β free for commercial and personal use.
|
|
1510
616
|
|
|
1511
617
|
---
|
|
1512
618
|
|
|
1513
619
|
<div align="center">
|
|
1514
620
|
|
|
1515
|
-
**Built
|
|
621
|
+
**Built by [rUv](https://ruv.io)** β’ [GitHub](https://github.com/ruvnet/ruvector) β’ [npm](https://npmjs.com/package/ruvector)
|
|
1516
622
|
|
|
1517
|
-
|
|
1518
|
-
[](https://github.com/ruvnet/ruvector)
|
|
1519
|
-
[](https://twitter.com/ruvnet)
|
|
623
|
+
*Vector search that gets smarter over time.*
|
|
1520
624
|
|
|
1521
|
-
**[
|
|
625
|
+
**[β Star on GitHub](https://github.com/ruvnet/ruvector)** if RuVector helps your project!
|
|
1522
626
|
|
|
1523
627
|
</div>
|