ruvector 0.1.20 β†’ 0.1.22

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -1,1523 +1,627 @@
1
- # ruvector
1
+ # RuVector
2
2
 
3
- [![npm version](https://badge.fury.io/js/ruvector.svg)](https://www.npmjs.com/package/ruvector)
4
- [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
5
- [![Node Version](https://img.shields.io/node/v/ruvector)](https://nodejs.org)
6
- [![Downloads](https://img.shields.io/npm/dm/ruvector)](https://www.npmjs.com/package/ruvector)
7
- [![Build Status](https://img.shields.io/badge/build-passing-brightgreen.svg)](https://github.com/ruvnet/ruvector)
8
- [![Performance](https://img.shields.io/badge/latency-<0.5ms-green.svg)](https://github.com/ruvnet/ruvector)
9
- [![GitHub Stars](https://img.shields.io/github/stars/ruvnet/ruvector?style=social)](https://github.com/ruvnet/ruvector)
10
-
11
- **The fastest vector database for Node.jsβ€”built in Rust, runs everywhere**
12
-
13
- Ruvector is a next-generation vector database that brings **enterprise-grade semantic search** to Node.js applications. Unlike cloud-only solutions or Python-first databases, Ruvector is designed specifically for JavaScript/TypeScript developers who need **blazing-fast vector similarity search** without the complexity of external services.
14
-
15
- > πŸš€ **Sub-millisecond queries** β€’ 🎯 **52,000+ inserts/sec** β€’ πŸ’Ύ **~50 bytes per vector** β€’ 🌍 **Runs anywhere**
16
-
17
- Built by [rUv](https://ruv.io) with production-grade Rust performance and intelligent platform detectionβ€”**automatically uses native bindings when available, falls back to WebAssembly when needed**.
18
-
19
- 🌐 **[Visit ruv.io](https://ruv.io)** | πŸ“¦ **[GitHub](https://github.com/ruvnet/ruvector)** | πŸ“š **[Documentation](https://github.com/ruvnet/ruvector/tree/main/docs)**
20
-
21
- ---
22
-
23
- ## 🌟 Why Ruvector?
24
-
25
- ### The Problem with Existing Vector Databases
26
-
27
- Most vector databases force you to choose between three painful trade-offs:
28
-
29
- 1. **Cloud-Only Services** (Pinecone, Weaviate Cloud) - Expensive, vendor lock-in, latency issues, API rate limits
30
- 2. **Python-First Solutions** (ChromaDB, Faiss) - Poor Node.js support, require separate Python processes
31
- 3. **Self-Hosted Complexity** (Milvus, Qdrant) - Heavy infrastructure, Docker orchestration, operational overhead
32
-
33
- **Ruvector eliminates these trade-offs.**
34
-
35
- ### The Ruvector Advantage
36
-
37
- Ruvector is purpose-built for **modern JavaScript/TypeScript applications** that need vector search:
38
-
39
- 🎯 **Native Node.js Integration**
40
- - Drop-in npm packageβ€”no Docker, no Python, no external services
41
- - Full TypeScript support with complete type definitions
42
- - Automatic platform detection with native Rust bindings
43
- - Seamless WebAssembly fallback for universal compatibility
3
+ [![MIT License](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
4
+ [![npm](https://img.shields.io/npm/v/ruvector.svg)](https://www.npmjs.com/package/ruvector)
5
+ [![npm downloads](https://img.shields.io/npm/dm/ruvector.svg)](https://www.npmjs.com/package/ruvector)
6
+ [![TypeScript](https://img.shields.io/badge/TypeScript-Ready-blue.svg)](https://www.typescriptlang.org/)
7
+ [![Node.js](https://img.shields.io/badge/Node.js-16+-green.svg)](https://nodejs.org/)
44
8
 
45
- ⚑ **Production-Grade Performance**
46
- - **52,000+ inserts/second** with native Rust (10x faster than Python alternatives)
47
- - **<0.5ms query latency** with HNSW indexing and SIMD optimizations
48
- - **~50 bytes per vector** with advanced memory optimization
49
- - Scales from edge devices to millions of vectors
9
+ **A distributed vector database that learns.** Store embeddings, query with Cypher, scale horizontally, and let the index improve itself through Graph Neural Networks.
50
10
 
51
- 🧠 **Built for AI Applications**
52
- - Optimized for LLM embeddings (OpenAI, Cohere, Hugging Face)
53
- - Perfect for RAG (Retrieval-Augmented Generation) systems
54
- - Agent memory and semantic caching
55
- - Real-time recommendation engines
11
+ ```bash
12
+ npx ruvector
13
+ ```
56
14
 
57
- 🌍 **Universal Deployment**
58
- - **Linux, macOS, Windows** with native performance
59
- - **Browser support** via WebAssembly (experimental)
60
- - **Edge computing** and serverless environments
61
- - **Alpine Linux** and non-glibc systems supported
15
+ > **All-in-One Package**: The `ruvector` package includes everything β€” vector search, graph queries, GNN layers, AI agent routing, and WASM support. No additional packages needed.
62
16
 
63
- πŸ’° **Zero Operational Costs**
64
- - No cloud API fees or usage limits
65
- - No infrastructure to manage
66
- - No separate database servers
67
- - Open source MIT license
17
+ ## Why RuVector?
68
18
 
69
- ### Key Advantages
19
+ Traditional vector databases just store and search. When you ask "find similar items," they return results but never get smarter. They can't handle complex relationships. They don't optimize your AI costs.
70
20
 
71
- - ⚑ **Blazing Fast**: <0.5ms p50 latency with native Rust, 10-50ms with WASM fallback
72
- - 🎯 **Automatic Platform Detection**: Uses native when available, falls back to WASM seamlessly
73
- - 🧠 **AI-Native**: Built specifically for embeddings, RAG, semantic search, and agent memory
74
- - πŸ”§ **CLI Tools Included**: Full command-line interface for database management
75
- - 🌍 **Universal Deployment**: Works on all platformsβ€”Linux, macOS, Windows, even browsers
76
- - πŸ’Ύ **Memory Efficient**: ~50 bytes per vector with advanced quantization
77
- - πŸš€ **Production Ready**: Battle-tested algorithms with comprehensive benchmarks
78
- - πŸ”“ **Open Source**: MIT licensed, community-driven
21
+ **RuVector is built for the agentic AI era:**
79
22
 
80
- ## πŸš€ Quick Start Tutorial
23
+ | Challenge | RuVector Solution |
24
+ |-----------|-------------------|
25
+ | RAG retrieval quality plateaus | **Self-learning GNN** improves results over time |
26
+ | Knowledge graphs need separate DB | **Cypher queries** built-in (Neo4j syntax) |
27
+ | LLM costs spiral out of control | **AI Router** sends simple queries to cheaper models |
28
+ | Memory usage explodes at scale | **Adaptive compression** (2-32x reduction) |
29
+ | Can't run AI in the browser | **Full WASM support** for client-side inference |
81
30
 
82
- ### Step 1: Installation
31
+ ## Quick Start
83
32
 
84
- Install Ruvector with a single npm command:
33
+ ### Installation
85
34
 
86
35
  ```bash
36
+ # Install the package
87
37
  npm install ruvector
88
- ```
89
-
90
- **What happens during installation:**
91
- - npm automatically detects your platform (Linux, macOS, Windows)
92
- - Downloads the correct native binary for maximum performance
93
- - Falls back to WebAssembly if native binaries aren't available
94
- - No additional setup, Docker, or external services required
95
38
 
96
- **Verify installation:**
97
- ```bash
98
- npx ruvector info
99
- ```
39
+ # Or try instantly without installing
40
+ npx ruvector
100
41
 
101
- You should see your platform and implementation type (native Rust or WASM fallback).
42
+ # With yarn
43
+ yarn add ruvector
102
44
 
103
- ### Step 2: Your First Vector Database
45
+ # With pnpm
46
+ pnpm add ruvector
47
+ ```
104
48
 
105
- Let's create a simple vector database and perform basic operations. This example demonstrates the complete CRUD (Create, Read, Update, Delete) workflow:
49
+ ### Basic Vector Search
106
50
 
107
51
  ```javascript
108
- const { VectorDb } = require('ruvector');
109
-
110
- async function tutorial() {
111
- // Step 2.1: Create a new vector database
112
- // The 'dimensions' parameter must match your embedding model
113
- // Common sizes: 128, 384 (sentence-transformers), 768 (BERT), 1536 (OpenAI)
114
- const db = new VectorDb({
115
- dimensions: 128, // Vector size - MUST match your embeddings
116
- maxElements: 10000, // Maximum vectors (can grow automatically)
117
- storagePath: './my-vectors.db' // Persist to disk (omit for in-memory)
118
- });
119
-
120
- console.log('βœ… Database created successfully');
121
-
122
- // Step 2.2: Insert vectors
123
- // In real applications, these would come from an embedding model
124
- const documents = [
125
- { id: 'doc1', text: 'Artificial intelligence and machine learning' },
126
- { id: 'doc2', text: 'Deep learning neural networks' },
127
- { id: 'doc3', text: 'Natural language processing' },
128
- ];
129
-
130
- for (const doc of documents) {
131
- // Generate random vector for demonstration
132
- // In production: use OpenAI, Cohere, or sentence-transformers
133
- const vector = new Float32Array(128).map(() => Math.random());
134
-
135
- await db.insert({
136
- id: doc.id,
137
- vector: vector,
138
- metadata: {
139
- text: doc.text,
140
- timestamp: Date.now(),
141
- category: 'AI'
142
- }
143
- });
144
-
145
- console.log(`βœ… Inserted: ${doc.id}`);
146
- }
52
+ const { VectorDB } = require('ruvector');
147
53
 
148
- // Step 2.3: Search for similar vectors
149
- // Create a query vector (in production, this would be from your search query)
150
- const queryVector = new Float32Array(128).map(() => Math.random());
54
+ // Create a vector database (384 = OpenAI ada-002 dimensions)
55
+ const db = new VectorDB(384);
151
56
 
152
- const results = await db.search({
153
- vector: queryVector,
154
- k: 5, // Return top 5 most similar vectors
155
- threshold: 0.7 // Only return results with similarity > 0.7
156
- });
157
-
158
- console.log('\nπŸ” Search Results:');
159
- results.forEach((result, index) => {
160
- console.log(`${index + 1}. ${result.id} - Score: ${result.score.toFixed(3)}`);
161
- console.log(` Text: ${result.metadata.text}`);
162
- });
163
-
164
- // Step 2.4: Retrieve a specific vector
165
- const retrieved = await db.get('doc1');
166
- if (retrieved) {
167
- console.log('\nπŸ“„ Retrieved document:', retrieved.metadata.text);
168
- }
169
-
170
- // Step 2.5: Get database statistics
171
- const count = await db.len();
172
- console.log(`\nπŸ“Š Total vectors in database: ${count}`);
173
-
174
- // Step 2.6: Delete a vector
175
- const deleted = await db.delete('doc1');
176
- console.log(`\nπŸ—‘οΈ Deleted doc1: ${deleted ? 'Success' : 'Not found'}`);
177
-
178
- // Final count
179
- const finalCount = await db.len();
180
- console.log(`πŸ“Š Final count: ${finalCount}`);
181
- }
57
+ // Insert vectors with metadata
58
+ await db.insert('doc1', embedding1, {
59
+ title: 'Introduction to AI',
60
+ category: 'tech',
61
+ date: '2024-01-15'
62
+ });
182
63
 
183
- // Run the tutorial
184
- tutorial().catch(console.error);
185
- ```
64
+ // Semantic search
65
+ const results = await db.search(queryEmbedding, 10);
186
66
 
187
- **Expected Output:**
67
+ // Filter by metadata
68
+ const filtered = await db.search(queryEmbedding, 10, {
69
+ category: 'tech',
70
+ date: { $gte: '2024-01-01' }
71
+ });
188
72
  ```
189
- βœ… Database created successfully
190
- βœ… Inserted: doc1
191
- βœ… Inserted: doc2
192
- βœ… Inserted: doc3
193
-
194
- πŸ” Search Results:
195
- 1. doc2 - Score: 0.892
196
- Text: Deep learning neural networks
197
- 2. doc1 - Score: 0.856
198
- Text: Artificial intelligence and machine learning
199
- 3. doc3 - Score: 0.801
200
- Text: Natural language processing
201
-
202
- πŸ“„ Retrieved document: Artificial intelligence and machine learning
203
73
 
204
- πŸ“Š Total vectors in database: 3
74
+ ### RAG (Retrieval-Augmented Generation)
205
75
 
206
- πŸ—‘οΈ Deleted doc1: Success
207
- πŸ“Š Final count: 2
208
- ```
209
-
210
- ### Step 3: TypeScript Tutorial
76
+ ```javascript
77
+ const { VectorDB } = require('ruvector');
78
+ const OpenAI = require('openai');
211
79
 
212
- Ruvector provides full TypeScript support with complete type safety. Here's how to use it:
80
+ const db = new VectorDB(1536); // text-embedding-3-small dimensions
81
+ const openai = new OpenAI();
213
82
 
214
- ```typescript
215
- import { VectorDb, VectorEntry, SearchQuery, SearchResult } from 'ruvector';
216
-
217
- // Step 3.1: Define your custom metadata type
218
- interface DocumentMetadata {
219
- title: string;
220
- content: string;
221
- author: string;
222
- date: Date;
223
- tags: string[];
83
+ // Index your documents
84
+ async function indexDocument(doc) {
85
+ const embedding = await openai.embeddings.create({
86
+ model: 'text-embedding-3-small',
87
+ input: doc.content
88
+ });
89
+ await db.insert(doc.id, embedding.data[0].embedding, {
90
+ title: doc.title,
91
+ content: doc.content
92
+ });
224
93
  }
225
94
 
226
- async function typescriptTutorial() {
227
- // Step 3.2: Create typed database
228
- const db = new VectorDb({
229
- dimensions: 384, // sentence-transformers/all-MiniLM-L6-v2
230
- maxElements: 10000,
231
- storagePath: './typed-vectors.db'
95
+ // RAG query
96
+ async function ragQuery(question) {
97
+ // 1. Embed the question
98
+ const questionEmb = await openai.embeddings.create({
99
+ model: 'text-embedding-3-small',
100
+ input: question
232
101
  });
233
102
 
234
- // Step 3.3: Type-safe vector entry
235
- const entry: VectorEntry<DocumentMetadata> = {
236
- id: 'article-001',
237
- vector: new Float32Array(384), // Your embedding here
238
- metadata: {
239
- title: 'Introduction to Vector Databases',
240
- content: 'Vector databases enable semantic search...',
241
- author: 'Jane Doe',
242
- date: new Date('2024-01-15'),
243
- tags: ['database', 'AI', 'search']
244
- }
245
- };
103
+ // 2. Retrieve relevant context
104
+ const context = await db.search(questionEmb.data[0].embedding, 5);
246
105
 
247
- // Step 3.4: Insert with type checking
248
- await db.insert(entry);
249
- console.log('βœ… Inserted typed document');
106
+ // 3. Generate answer with context
107
+ const response = await openai.chat.completions.create({
108
+ model: 'gpt-4-turbo',
109
+ messages: [{
110
+ role: 'user',
111
+ content: `Context:\n${context.map(c => c.metadata.content).join('\n\n')}
250
112
 
251
- // Step 3.5: Type-safe search
252
- const query: SearchQuery = {
253
- vector: new Float32Array(384),
254
- k: 10,
255
- threshold: 0.8
256
- };
257
-
258
- // Step 3.6: Fully typed results
259
- const results: SearchResult<DocumentMetadata>[] = await db.search(query);
260
-
261
- // TypeScript knows the exact shape of metadata
262
- results.forEach(result => {
263
- console.log(`Title: ${result.metadata.title}`);
264
- console.log(`Author: ${result.metadata.author}`);
265
- console.log(`Tags: ${result.metadata.tags.join(', ')}`);
266
- console.log(`Similarity: ${result.score.toFixed(3)}\n`);
113
+ Question: ${question}
114
+ Answer based only on the context above:`
115
+ }]
267
116
  });
268
117
 
269
- // Step 3.7: Type-safe retrieval
270
- const doc = await db.get('article-001');
271
- if (doc) {
272
- // TypeScript autocomplete works perfectly here
273
- const publishYear = doc.metadata.date.getFullYear();
274
- console.log(`Published in ${publishYear}`);
275
- }
118
+ return response.choices[0].message.content;
276
119
  }
277
-
278
- typescriptTutorial().catch(console.error);
279
120
  ```
280
121
 
281
- **TypeScript Benefits:**
282
- - βœ… Full autocomplete for all methods and properties
283
- - βœ… Compile-time type checking prevents errors
284
- - βœ… IDE IntelliSense shows documentation
285
- - βœ… Custom metadata types for your use case
286
- - βœ… No `any` types - fully typed throughout
287
-
288
- ## 🎯 Platform Detection
289
-
290
- Ruvector automatically detects the best implementation for your platform:
122
+ ### Knowledge Graphs (Cypher)
291
123
 
292
124
  ```javascript
293
- const { getImplementationType, isNative, isWasm } = require('ruvector');
294
-
295
- console.log(getImplementationType()); // 'native' or 'wasm'
296
- console.log(isNative()); // true if using native Rust
297
- console.log(isWasm()); // true if using WebAssembly fallback
298
-
299
- // Performance varies by implementation:
300
- // Native (Rust): <0.5ms latency, 50K+ ops/sec
301
- // WASM fallback: 10-50ms latency, ~1K ops/sec
302
- ```
303
-
304
- ## πŸ”§ CLI Tools
305
-
306
- Ruvector includes a full command-line interface for database management:
307
-
308
- ### Create Database
309
-
310
- ```bash
311
- # Create a new vector database
312
- npx ruvector create mydb.vec --dimensions 384 --metric cosine
313
-
314
- # Options:
315
- # --dimensions, -d Vector dimensionality (required)
316
- # --metric, -m Distance metric (cosine, euclidean, dot)
317
- # --max-elements Maximum number of vectors (default: 10000)
318
- ```
319
-
320
- ### Insert Vectors
321
-
322
- ```bash
323
- # Insert vectors from JSON file
324
- npx ruvector insert mydb.vec vectors.json
325
-
326
- # JSON format:
327
- # [
328
- # { "id": "doc1", "vector": [0.1, 0.2, ...], "metadata": {...} },
329
- # { "id": "doc2", "vector": [0.3, 0.4, ...], "metadata": {...} }
330
- # ]
331
- ```
332
-
333
- ### Search Vectors
125
+ const { GraphDB } = require('ruvector');
126
+
127
+ const graph = new GraphDB();
128
+
129
+ // Create entities and relationships
130
+ graph.execute(`
131
+ CREATE (alice:Person {name: 'Alice', role: 'Engineer'})
132
+ CREATE (bob:Person {name: 'Bob', role: 'Manager'})
133
+ CREATE (techcorp:Company {name: 'TechCorp', industry: 'AI'})
134
+ CREATE (alice)-[:WORKS_AT {since: 2022}]->(techcorp)
135
+ CREATE (bob)-[:WORKS_AT {since: 2020}]->(techcorp)
136
+ CREATE (alice)-[:REPORTS_TO]->(bob)
137
+ `);
138
+
139
+ // Query relationships
140
+ const team = graph.execute(`
141
+ MATCH (p:Person)-[:WORKS_AT]->(c:Company {name: 'TechCorp'})
142
+ RETURN p.name, p.role
143
+ `);
144
+
145
+ // Find paths
146
+ const chain = graph.execute(`
147
+ MATCH path = (a:Person {name: 'Alice'})-[:REPORTS_TO*1..3]->(manager)
148
+ RETURN path
149
+ `);
150
+
151
+ // Combine with vector search
152
+ const similarPeople = graph.execute(`
153
+ MATCH (p:Person)
154
+ WHERE vector.similarity(p.embedding, $queryEmbedding) > 0.8
155
+ RETURN p ORDER BY vector.similarity(p.embedding, $queryEmbedding) DESC
156
+ LIMIT 10
157
+ `);
158
+ ```
159
+
160
+ ### GNN-Enhanced Search (Self-Learning)
334
161
 
335
- ```bash
336
- # Search for similar vectors
337
- npx ruvector search mydb.vec --vector "[0.1,0.2,0.3,...]" --top-k 10
338
-
339
- # Options:
340
- # --vector, -v Query vector (JSON array)
341
- # --top-k, -k Number of results (default: 10)
342
- # --threshold Minimum similarity score
343
- ```
344
-
345
- ### Database Statistics
346
-
347
- ```bash
348
- # Show database statistics
349
- npx ruvector stats mydb.vec
350
-
351
- # Output:
352
- # Total vectors: 10,000
353
- # Dimensions: 384
354
- # Metric: cosine
355
- # Memory usage: ~500 KB
356
- # Index type: HNSW
357
- ```
162
+ ```javascript
163
+ const { GNNLayer, VectorDB } = require('ruvector');
358
164
 
359
- ### Benchmarking
165
+ // Create GNN layer for query enhancement
166
+ const gnn = new GNNLayer(384, 512, 4); // input_dim, output_dim, num_heads
360
167
 
361
- ```bash
362
- # Run performance benchmark
363
- npx ruvector benchmark --num-vectors 10000 --num-queries 1000
168
+ // The GNN learns from your search patterns
169
+ async function enhancedSearch(query) {
170
+ // Get initial results
171
+ const neighbors = await db.search(query, 20);
364
172
 
365
- # Options:
366
- # --num-vectors Number of vectors to insert
367
- # --num-queries Number of search queries
368
- # --dimensions Vector dimensionality (default: 128)
369
- ```
173
+ // Compute attention weights based on user clicks/relevance
174
+ const weights = computeRelevanceWeights(neighbors);
370
175
 
371
- ### System Information
176
+ // GNN enhances the query using graph structure
177
+ const enhancedQuery = gnn.forward(query,
178
+ neighbors.map(n => n.embedding),
179
+ weights
180
+ );
372
181
 
373
- ```bash
374
- # Show platform and implementation info
375
- npx ruvector info
182
+ // Re-rank with enhanced understanding
183
+ return db.search(enhancedQuery, 10);
184
+ }
376
185
 
377
- # Output:
378
- # Platform: linux-x64-gnu
379
- # Implementation: native (Rust)
380
- # Node.js: v18.17.0
381
- # Performance: <0.5ms p50 latency
186
+ // Train on user feedback
187
+ gnn.train({
188
+ queries: historicalQueries,
189
+ clicks: userClickData,
190
+ relevance: expertLabels
191
+ }, { epochs: 100 });
382
192
  ```
383
193
 
384
- ## πŸ“Š Performance Benchmarks
385
-
386
- Tested on AMD Ryzen 9 5950X, 128-dimensional vectors:
387
-
388
- ### Native Performance (Rust)
389
-
390
- | Operation | Throughput | Latency (p50) | Latency (p99) |
391
- |-----------|------------|---------------|---------------|
392
- | Insert | 52,341 ops/sec | 0.019 ms | 0.045 ms |
393
- | Search (k=10) | 11,234 ops/sec | 0.089 ms | 0.156 ms |
394
- | Search (k=100) | 8,932 ops/sec | 0.112 ms | 0.203 ms |
395
- | Delete | 45,678 ops/sec | 0.022 ms | 0.051 ms |
396
-
397
- **Memory Usage**: ~50 bytes per 128-dim vector (including index)
398
-
399
- ### Comparison with Alternatives
400
-
401
- | Database | Insert (ops/sec) | Search (ops/sec) | Memory per Vector | Node.js | Browser |
402
- |----------|------------------|------------------|-------------------|---------|---------|
403
- | **Ruvector (Native)** | **52,341** | **11,234** | **50 bytes** | βœ… | ❌ |
404
- | **Ruvector (WASM)** | **~1,000** | **~100** | **50 bytes** | βœ… | βœ… |
405
- | Faiss (HNSW) | 38,200 | 9,800 | 68 bytes | ❌ | ❌ |
406
- | Hnswlib | 41,500 | 10,200 | 62 bytes | βœ… | ❌ |
407
- | ChromaDB | ~1,000 | ~20 | 150 bytes | βœ… | ❌ |
408
-
409
- *Benchmarks measured with 100K vectors, 128 dimensions, k=10*
410
-
411
- ## πŸ” Comparison with Other Vector Databases
412
-
413
- Comprehensive comparison of Ruvector against popular vector database solutions:
414
-
415
- | Feature | Ruvector | Pinecone | Qdrant | Weaviate | Milvus | ChromaDB | Faiss |
416
- |---------|----------|----------|--------|----------|--------|----------|-------|
417
- | **Deployment** |
418
- | Installation | `npm install` βœ… | Cloud API ☁️ | Docker 🐳 | Docker 🐳 | Docker/K8s 🐳 | `pip install` 🐍 | `pip install` 🐍 |
419
- | Node.js Native | βœ… First-class | ❌ API only | ⚠️ HTTP API | ⚠️ HTTP API | ⚠️ HTTP API | ❌ Python | ❌ Python |
420
- | Setup Time | < 1 minute | 5-10 minutes | 10-30 minutes | 15-30 minutes | 30-60 minutes | 5 minutes | 5 minutes |
421
- | Infrastructure | None required | Managed cloud | Self-hosted | Self-hosted | Self-hosted | Embedded | Embedded |
422
- | **Performance** |
423
- | Query Latency (p50) | **<0.5ms** | ~2-5ms | ~1-2ms | ~2-3ms | ~3-5ms | ~50ms | ~1ms |
424
- | Insert Throughput | **52,341 ops/sec** | ~10,000 ops/sec | ~20,000 ops/sec | ~15,000 ops/sec | ~25,000 ops/sec | ~1,000 ops/sec | ~40,000 ops/sec |
425
- | Memory per Vector (128d) | **50 bytes** | ~80 bytes | 62 bytes | ~100 bytes | ~70 bytes | 150 bytes | 68 bytes |
426
- | Recall @ k=10 | 95%+ | 93% | 94% | 92% | 96% | 85% | 97% |
427
- | **Platform Support** |
428
- | Linux | βœ… Native | ☁️ API | βœ… Docker | βœ… Docker | βœ… Docker | βœ… Python | βœ… Python |
429
- | macOS | βœ… Native | ☁️ API | βœ… Docker | βœ… Docker | βœ… Docker | βœ… Python | βœ… Python |
430
- | Windows | βœ… Native | ☁️ API | βœ… Docker | βœ… Docker | ⚠️ WSL2 | βœ… Python | βœ… Python |
431
- | Browser/WASM | βœ… Yes | ❌ No | ❌ No | ❌ No | ❌ No | ❌ No | ❌ No |
432
- | ARM64 | βœ… Native | ☁️ API | βœ… Yes | βœ… Yes | ⚠️ Limited | βœ… Yes | βœ… Yes |
433
- | Alpine Linux | βœ… WASM | ☁️ API | ⚠️ Build from source | ⚠️ Build from source | ❌ No | βœ… Yes | βœ… Yes |
434
- | **Features** |
435
- | Distance Metrics | Cosine, L2, Dot | Cosine, L2, Dot | 11 metrics | 10 metrics | 8 metrics | L2, Cosine, IP | L2, IP, Cosine |
436
- | Filtering | βœ… Metadata | βœ… Advanced | βœ… Advanced | βœ… Advanced | βœ… Advanced | βœ… Basic | ❌ Limited |
437
- | Persistence | βœ… File-based | ☁️ Managed | βœ… Disk | βœ… Disk | βœ… Disk | βœ… DuckDB | ❌ Memory |
438
- | Indexing | HNSW | Proprietary | HNSW | HNSW | IVF/HNSW | HNSW | IVF/HNSW |
439
- | Quantization | βœ… PQ | βœ… Yes | βœ… Scalar | βœ… PQ | βœ… PQ/SQ | ❌ No | βœ… PQ |
440
- | Batch Operations | βœ… Yes | βœ… Yes | βœ… Yes | βœ… Yes | βœ… Yes | βœ… Yes | βœ… Yes |
441
- | **Developer Experience** |
442
- | TypeScript Types | βœ… Full | βœ… Generated | ⚠️ Community | ⚠️ Community | ⚠️ Community | ⚠️ Partial | ❌ No |
443
- | Documentation | βœ… Excellent | βœ… Excellent | βœ… Good | βœ… Good | βœ… Good | βœ… Good | ⚠️ Technical |
444
- | Examples | βœ… Many | βœ… Many | βœ… Good | βœ… Good | βœ… Many | βœ… Good | ⚠️ Limited |
445
- | CLI Tools | βœ… Included | ⚠️ Limited | βœ… Yes | βœ… Yes | βœ… Yes | ⚠️ Basic | ❌ No |
446
- | **Operations** |
447
- | Monitoring | βœ… Metrics | βœ… Dashboard | βœ… Prometheus | βœ… Prometheus | βœ… Prometheus | ⚠️ Basic | ❌ No |
448
- | Backups | βœ… File copy | ☁️ Automatic | βœ… Snapshots | βœ… Snapshots | βœ… Snapshots | βœ… File copy | ❌ Manual |
449
- | High Availability | ⚠️ App-level | βœ… Built-in | βœ… Clustering | βœ… Clustering | βœ… Clustering | ❌ No | ❌ No |
450
- | Auto-Scaling | ⚠️ App-level | βœ… Automatic | ⚠️ Manual | ⚠️ Manual | ⚠️ K8s HPA | ❌ No | ❌ No |
451
- | **Cost** |
452
- | Pricing Model | Free (MIT) | Pay-per-use | Free (Apache) | Free (BSD) | Free (Apache) | Free (Apache) | Free (MIT) |
453
- | Monthly Cost (1M vectors) | **$0** | ~$70-200 | ~$20-50 (infra) | ~$30-60 (infra) | ~$50-100 (infra) | $0 | $0 |
454
- | Monthly Cost (10M vectors) | **$0** | ~$500-1000 | ~$100-200 (infra) | ~$150-300 (infra) | ~$200-400 (infra) | $0 | $0 |
455
- | API Rate Limits | None | Yes | None | None | None | None | None |
456
- | **Use Cases** |
457
- | RAG Systems | βœ… Excellent | βœ… Excellent | βœ… Excellent | βœ… Excellent | βœ… Excellent | βœ… Good | ⚠️ Limited |
458
- | Serverless | βœ… Perfect | βœ… Good | ❌ No | ❌ No | ❌ No | ⚠️ Possible | ⚠️ Possible |
459
- | Edge Computing | βœ… Excellent | ❌ No | ❌ No | ❌ No | ❌ No | ❌ No | ⚠️ Possible |
460
- | Production Scale (100M+) | ⚠️ Single node | βœ… Yes | βœ… Yes | βœ… Yes | βœ… Excellent | ⚠️ Limited | ⚠️ Manual |
461
- | Embedded Apps | βœ… Excellent | ❌ No | ❌ No | ❌ No | ❌ No | ⚠️ Possible | βœ… Good |
462
-
463
- ### When to Choose Ruvector
464
-
465
- βœ… **Perfect for:**
466
- - **Node.js/TypeScript applications** needing embedded vector search
467
- - **Serverless and edge computing** where external services aren't practical
468
- - **Rapid prototyping and development** with minimal setup time
469
- - **RAG systems** with LangChain, LlamaIndex, or custom implementations
470
- - **Cost-sensitive projects** that can't afford cloud API pricing
471
- - **Offline-first applications** requiring local vector search
472
- - **Browser-based AI** with WebAssembly fallback
473
- - **Small to medium scale** (up to 10M vectors per instance)
474
-
475
- ⚠️ **Consider alternatives for:**
476
- - **Massive scale (100M+ vectors)** - Consider Pinecone, Milvus, or Qdrant clusters
477
- - **Multi-tenancy requirements** - Weaviate or Qdrant offer better isolation
478
- - **Distributed systems** - Milvus provides better horizontal scaling
479
- - **Zero-ops cloud solution** - Pinecone handles all infrastructure
480
-
481
- ### Why Choose Ruvector Over...
482
-
483
- **vs Pinecone:**
484
- - βœ… No API costs (save $1000s/month)
485
- - βœ… No network latency (10x faster queries)
486
- - βœ… No vendor lock-in
487
- - βœ… Works offline and in restricted environments
488
- - ❌ No managed multi-region clusters
489
-
490
- **vs ChromaDB:**
491
- - βœ… 50x faster queries (native Rust vs Python)
492
- - βœ… True Node.js support (not HTTP API)
493
- - βœ… Better TypeScript integration
494
- - βœ… Lower memory usage
495
- - ❌ Smaller ecosystem and community
496
-
497
- **vs Qdrant:**
498
- - βœ… Zero infrastructure setup
499
- - βœ… Embedded in your app (no Docker)
500
- - βœ… Better for serverless environments
501
- - βœ… Native Node.js bindings
502
- - ❌ No built-in clustering or HA
503
-
504
- **vs Faiss:**
505
- - βœ… Full Node.js support (Faiss is Python-only)
506
- - βœ… Easier API and better developer experience
507
- - βœ… Built-in persistence and metadata
508
- - ⚠️ Slightly lower recall at same performance
509
-
510
- ## 🎯 Real-World Tutorials
511
-
512
- ### Tutorial 1: Building a RAG System with OpenAI
513
-
514
- **What you'll learn:** Create a production-ready Retrieval-Augmented Generation system that enhances LLM responses with relevant context from your documents.
515
-
516
- **Prerequisites:**
517
- ```bash
518
- npm install ruvector openai
519
- export OPENAI_API_KEY="your-api-key-here"
520
- ```
194
+ ### AI Agent Routing (Tiny Dancer)
521
195
 
522
- **Complete Implementation:**
196
+ Route queries to the optimal LLM based on complexity β€” save 60-80% on API costs:
523
197
 
524
198
  ```javascript
525
- const { VectorDb } = require('ruvector');
526
- const OpenAI = require('openai');
527
-
528
- class RAGSystem {
529
- constructor() {
530
- // Initialize OpenAI client
531
- this.openai = new OpenAI({
532
- apiKey: process.env.OPENAI_API_KEY
533
- });
534
-
535
- // Create vector database for OpenAI embeddings
536
- // text-embedding-ada-002 produces 1536-dimensional vectors
537
- this.db = new VectorDb({
538
- dimensions: 1536,
539
- maxElements: 100000,
540
- storagePath: './rag-knowledge-base.db'
541
- });
542
-
543
- console.log('βœ… RAG System initialized');
544
- }
199
+ const { Router } = require('ruvector');
545
200
 
546
- // Step 1: Index your knowledge base
547
- async indexDocuments(documents) {
548
- console.log(`πŸ“š Indexing ${documents.length} documents...`);
549
-
550
- for (let i = 0; i < documents.length; i++) {
551
- const doc = documents[i];
552
-
553
- // Generate embedding for the document
554
- const response = await this.openai.embeddings.create({
555
- model: 'text-embedding-ada-002',
556
- input: doc.content
557
- });
558
-
559
- // Store in vector database
560
- await this.db.insert({
561
- id: doc.id || `doc_${i}`,
562
- vector: new Float32Array(response.data[0].embedding),
563
- metadata: {
564
- title: doc.title,
565
- content: doc.content,
566
- source: doc.source,
567
- date: doc.date || new Date().toISOString()
568
- }
569
- });
570
-
571
- console.log(` βœ… Indexed: ${doc.title}`);
572
- }
573
-
574
- const count = await this.db.len();
575
- console.log(`\nβœ… Indexed ${count} documents total`);
576
- }
577
-
578
- // Step 2: Retrieve relevant context for a query
579
- async retrieveContext(query, k = 3) {
580
- console.log(`πŸ” Searching for: "${query}"`);
581
-
582
- // Generate embedding for the query
583
- const response = await this.openai.embeddings.create({
584
- model: 'text-embedding-ada-002',
585
- input: query
586
- });
587
-
588
- // Search for similar documents
589
- const results = await this.db.search({
590
- vector: new Float32Array(response.data[0].embedding),
591
- k: k,
592
- threshold: 0.7 // Only use highly relevant results
593
- });
594
-
595
- console.log(`πŸ“„ Found ${results.length} relevant documents\n`);
596
-
597
- return results.map(r => ({
598
- content: r.metadata.content,
599
- title: r.metadata.title,
600
- score: r.score
601
- }));
602
- }
603
-
604
- // Step 3: Generate answer with retrieved context
605
- async answer(question) {
606
- // Retrieve relevant context
607
- const context = await this.retrieveContext(question, 3);
608
-
609
- if (context.length === 0) {
610
- return "I don't have enough information to answer that question.";
611
- }
612
-
613
- // Build prompt with context
614
- const contextText = context
615
- .map((doc, i) => `[${i + 1}] ${doc.title}\n${doc.content}`)
616
- .join('\n\n');
617
-
618
- const prompt = `Answer the question based on the following context. If the context doesn't contain the answer, say so.
619
-
620
- Context:
621
- ${contextText}
622
-
623
- Question: ${question}
201
+ const router = new Router({
202
+ confidenceThreshold: 0.85,
203
+ maxUncertainty: 0.15,
204
+ enableCircuitBreaker: true
205
+ });
624
206
 
625
- Answer:`;
207
+ // Define your model candidates
208
+ const models = [
209
+ { id: 'gpt-4-turbo', embedding: gpt4Emb, cost: 0.03, quality: 0.95 },
210
+ { id: 'gpt-3.5-turbo', embedding: gpt35Emb, cost: 0.002, quality: 0.80 },
211
+ { id: 'claude-3-haiku', embedding: haikuEmb, cost: 0.001, quality: 0.75 },
212
+ { id: 'llama-3-8b', embedding: llamaEmb, cost: 0.0005, quality: 0.70 }
213
+ ];
626
214
 
627
- console.log('πŸ€– Generating answer...\n');
215
+ async function smartComplete(prompt) {
216
+ const promptEmb = await embed(prompt);
628
217
 
629
- // Generate completion
630
- const completion = await this.openai.chat.completions.create({
631
- model: 'gpt-4',
632
- messages: [
633
- { role: 'system', content: 'You are a helpful assistant that answers questions based on provided context.' },
634
- { role: 'user', content: prompt }
635
- ],
636
- temperature: 0.3 // Lower temperature for more factual responses
637
- });
218
+ // Router decides optimal model
219
+ const decision = router.route(promptEmb, models);
638
220
 
639
- return {
640
- answer: completion.choices[0].message.content,
641
- sources: context.map(c => c.title)
642
- };
643
- }
644
- }
221
+ console.log(`Routing to ${decision.candidateId} (confidence: ${decision.confidence})`);
222
+ // Output: "Routing to gpt-3.5-turbo (confidence: 0.92)"
645
223
 
646
- // Example Usage
647
- async function main() {
648
- const rag = new RAGSystem();
649
-
650
- // Step 1: Index your knowledge base
651
- const documents = [
652
- {
653
- id: 'doc1',
654
- title: 'Ruvector Introduction',
655
- content: 'Ruvector is a high-performance vector database for Node.js built in Rust. It provides sub-millisecond query latency and supports over 52,000 inserts per second.',
656
- source: 'documentation'
657
- },
658
- {
659
- id: 'doc2',
660
- title: 'Vector Databases Explained',
661
- content: 'Vector databases store data as high-dimensional vectors, enabling semantic similarity search. They are essential for AI applications like RAG systems and recommendation engines.',
662
- source: 'blog'
663
- },
664
- {
665
- id: 'doc3',
666
- title: 'HNSW Algorithm',
667
- content: 'Hierarchical Navigable Small World (HNSW) is a graph-based algorithm for approximate nearest neighbor search. It provides excellent recall with low latency.',
668
- source: 'research'
669
- }
670
- ];
671
-
672
- await rag.indexDocuments(documents);
673
-
674
- // Step 2: Ask questions
675
- console.log('\n' + '='.repeat(60) + '\n');
676
-
677
- const result = await rag.answer('What is Ruvector and what are its performance characteristics?');
678
-
679
- console.log('πŸ“ Answer:', result.answer);
680
- console.log('\nπŸ“š Sources:', result.sources.join(', '));
224
+ // Call the selected model
225
+ return callModel(decision.candidateId, prompt);
681
226
  }
682
-
683
- main().catch(console.error);
684
- ```
685
-
686
- **Expected Output:**
687
227
  ```
688
- βœ… RAG System initialized
689
- πŸ“š Indexing 3 documents...
690
- βœ… Indexed: Ruvector Introduction
691
- βœ… Indexed: Vector Databases Explained
692
- βœ… Indexed: HNSW Algorithm
693
-
694
- βœ… Indexed 3 documents total
695
-
696
- ============================================================
697
228
 
698
- πŸ” Searching for: "What is Ruvector and what are its performance characteristics?"
699
- πŸ“„ Found 2 relevant documents
229
+ ### Compression (2-32x Memory Savings)
700
230
 
701
- πŸ€– Generating answer...
702
-
703
- πŸ“ Answer: Ruvector is a high-performance vector database built in Rust for Node.js applications. Its key performance characteristics include:
704
- - Sub-millisecond query latency
705
- - Over 52,000 inserts per second
706
- - Optimized for semantic similarity search
707
-
708
- πŸ“š Sources: Ruvector Introduction, Vector Databases Explained
231
+ ```javascript
232
+ const { compress, decompress, CompressionTier } = require('ruvector');
233
+
234
+ // Automatic tier selection
235
+ const auto = compress(embedding, 0.3); // 30% quality threshold
236
+
237
+ // Explicit tiers
238
+ const f16 = compress(embedding, CompressionTier.F16); // 2x compression
239
+ const pq8 = compress(embedding, CompressionTier.PQ8); // 8x compression
240
+ const pq4 = compress(embedding, CompressionTier.PQ4); // 16x compression
241
+ const binary = compress(embedding, CompressionTier.Binary); // 32x compression
242
+
243
+ // Adaptive tiering based on access frequency
244
+ db.enableAdaptiveCompression({
245
+ hotThreshold: 0.8, // Keep hot data in f32
246
+ warmThreshold: 0.4, // Compress to f16
247
+ coldThreshold: 0.1, // Compress to PQ8
248
+ archiveThreshold: 0.01 // Compress to binary
249
+ });
709
250
  ```
710
251
 
711
- **Production Tips:**
712
- - βœ… Use batch embedding for better throughput (OpenAI supports up to 2048 texts)
713
- - βœ… Implement caching for frequently asked questions
714
- - βœ… Add error handling for API rate limits
715
- - βœ… Monitor token usage and costs
716
- - βœ… Regularly update your knowledge base
252
+ ## CLI Usage
717
253
 
718
- ---
719
-
720
- ### Tutorial 2: Semantic Search Engine
721
-
722
- **What you'll learn:** Build a semantic search engine that understands meaning, not just keywords.
723
-
724
- **Prerequisites:**
725
254
  ```bash
726
- npm install ruvector @xenova/transformers
727
- ```
728
-
729
- **Complete Implementation:**
730
-
731
- ```javascript
732
- const { VectorDb } = require('ruvector');
733
- const { pipeline } = require('@xenova/transformers');
734
-
735
- class SemanticSearchEngine {
736
- constructor() {
737
- this.db = null;
738
- this.embedder = null;
739
- }
740
-
741
- // Step 1: Initialize the embedding model
742
- async initialize() {
743
- console.log('πŸš€ Initializing semantic search engine...');
744
-
745
- // Load sentence-transformers model (runs locally, no API needed!)
746
- console.log('πŸ“₯ Loading embedding model...');
747
- this.embedder = await pipeline(
748
- 'feature-extraction',
749
- 'Xenova/all-MiniLM-L6-v2'
750
- );
751
-
752
- // Create vector database (384 dimensions for all-MiniLM-L6-v2)
753
- this.db = new VectorDb({
754
- dimensions: 384,
755
- maxElements: 50000,
756
- storagePath: './semantic-search.db'
757
- });
758
-
759
- console.log('βœ… Search engine ready!\n');
760
- }
761
-
762
- // Step 2: Generate embeddings
763
- async embed(text) {
764
- const output = await this.embedder(text, {
765
- pooling: 'mean',
766
- normalize: true
767
- });
768
-
769
- // Convert to Float32Array
770
- return new Float32Array(output.data);
771
- }
772
-
773
- // Step 3: Index documents
774
- async indexDocuments(documents) {
775
- console.log(`πŸ“š Indexing ${documents.length} documents...`);
776
-
777
- for (const doc of documents) {
778
- const vector = await this.embed(doc.content);
779
-
780
- await this.db.insert({
781
- id: doc.id,
782
- vector: vector,
783
- metadata: {
784
- title: doc.title,
785
- content: doc.content,
786
- category: doc.category,
787
- url: doc.url
788
- }
789
- });
790
-
791
- console.log(` βœ… ${doc.title}`);
792
- }
793
-
794
- const count = await this.db.len();
795
- console.log(`\nβœ… Indexed ${count} documents\n`);
796
- }
797
-
798
- // Step 4: Semantic search
799
- async search(query, options = {}) {
800
- const {
801
- k = 5,
802
- category = null,
803
- threshold = 0.3
804
- } = options;
805
-
806
- console.log(`πŸ” Searching for: "${query}"`);
255
+ # Show system info and backend status
256
+ npx ruvector info
807
257
 
808
- // Generate query embedding
809
- const queryVector = await this.embed(query);
258
+ # Initialize a new index
259
+ npx ruvector init my-index --dimension 384 --type hnsw
810
260
 
811
- // Search vector database
812
- const results = await this.db.search({
813
- vector: queryVector,
814
- k: k * 2, // Get more results for filtering
815
- threshold: threshold
816
- });
261
+ # Insert vectors from JSON/JSONL
262
+ npx ruvector insert my-index vectors.json
263
+ npx ruvector insert my-index vectors.jsonl --format jsonl
817
264
 
818
- // Filter by category if specified
819
- let filtered = results;
820
- if (category) {
821
- filtered = results.filter(r => r.metadata.category === category);
822
- }
265
+ # Search with a query
266
+ npx ruvector search my-index --query "[0.1, 0.2, ...]" -k 10
267
+ npx ruvector search my-index --text "machine learning" -k 10 # Auto-embed
823
268
 
824
- // Return top k after filtering
825
- const final = filtered.slice(0, k);
269
+ # Show index statistics
270
+ npx ruvector stats my-index
826
271
 
827
- console.log(`πŸ“„ Found ${final.length} results\n`);
272
+ # Run performance benchmarks
273
+ npx ruvector benchmark --dimension 384 --num-vectors 10000
828
274
 
829
- return final.map(r => ({
830
- id: r.id,
831
- title: r.metadata.title,
832
- content: r.metadata.content,
833
- category: r.metadata.category,
834
- score: r.score,
835
- url: r.metadata.url
836
- }));
837
- }
838
-
839
- // Step 5: Find similar documents
840
- async findSimilar(documentId, k = 5) {
841
- const doc = await this.db.get(documentId);
842
-
843
- if (!doc) {
844
- throw new Error(`Document ${documentId} not found`);
845
- }
846
-
847
- const results = await this.db.search({
848
- vector: doc.vector,
849
- k: k + 1 // +1 because the document itself will be included
850
- });
275
+ # Export/import
276
+ npx ruvector export my-index backup.bin
277
+ npx ruvector import backup.bin restored-index
278
+ ```
851
279
 
852
- // Remove the document itself from results
853
- return results
854
- .filter(r => r.id !== documentId)
855
- .slice(0, k);
856
- }
857
- }
280
+ ## Integrations
858
281
 
859
- // Example Usage
860
- async function main() {
861
- const engine = new SemanticSearchEngine();
862
- await engine.initialize();
863
-
864
- // Sample documents (in production, load from your database)
865
- const documents = [
866
- {
867
- id: '1',
868
- title: 'Understanding Neural Networks',
869
- content: 'Neural networks are computing systems inspired by biological neural networks. They learn to perform tasks by considering examples.',
870
- category: 'AI',
871
- url: '/docs/neural-networks'
872
- },
873
- {
874
- id: '2',
875
- title: 'Introduction to Machine Learning',
876
- content: 'Machine learning is a subset of artificial intelligence that provides systems the ability to learn and improve from experience.',
877
- category: 'AI',
878
- url: '/docs/machine-learning'
879
- },
880
- {
881
- id: '3',
882
- title: 'Web Development Best Practices',
883
- content: 'Modern web development involves responsive design, performance optimization, and accessibility considerations.',
884
- category: 'Web',
885
- url: '/docs/web-dev'
886
- },
887
- {
888
- id: '4',
889
- title: 'Deep Learning Applications',
890
- content: 'Deep learning has revolutionized computer vision, natural language processing, and speech recognition.',
891
- category: 'AI',
892
- url: '/docs/deep-learning'
893
- }
894
- ];
895
-
896
- // Index documents
897
- await engine.indexDocuments(documents);
898
-
899
- // Example 1: Basic semantic search
900
- console.log('Example 1: Basic Search\n' + '='.repeat(60));
901
- const results1 = await engine.search('AI and neural nets');
902
- results1.forEach((result, i) => {
903
- console.log(`${i + 1}. ${result.title} (Score: ${result.score.toFixed(3)})`);
904
- console.log(` ${result.content.slice(0, 80)}...`);
905
- console.log(` Category: ${result.category}\n`);
906
- });
282
+ ### LangChain
907
283
 
908
- // Example 2: Category-filtered search
909
- console.log('\nExample 2: Category-Filtered Search\n' + '='.repeat(60));
910
- const results2 = await engine.search('learning algorithms', {
911
- category: 'AI',
912
- k: 3
913
- });
914
- results2.forEach((result, i) => {
915
- console.log(`${i + 1}. ${result.title} (Score: ${result.score.toFixed(3)})`);
916
- });
284
+ ```javascript
285
+ const { RuVectorStore } = require('ruvector/langchain');
286
+ const { OpenAIEmbeddings } = require('@langchain/openai');
917
287
 
918
- // Example 3: Find similar documents
919
- console.log('\n\nExample 3: Find Similar Documents\n' + '='.repeat(60));
920
- const similar = await engine.findSimilar('1', 2);
921
- console.log('Documents similar to "Understanding Neural Networks":');
922
- similar.forEach((doc, i) => {
923
- console.log(`${i + 1}. ${doc.metadata.title} (Score: ${doc.score.toFixed(3)})`);
924
- });
925
- }
288
+ const vectorStore = new RuVectorStore(
289
+ new OpenAIEmbeddings(),
290
+ { dimension: 1536 }
291
+ );
926
292
 
927
- main().catch(console.error);
293
+ await vectorStore.addDocuments(documents);
294
+ const results = await vectorStore.similaritySearch("query", 5);
928
295
  ```
929
296
 
930
- **Key Features:**
931
- - βœ… Runs completely locally (no API keys needed)
932
- - βœ… Understands semantic meaning, not just keywords
933
- - βœ… Category filtering for better results
934
- - βœ… "Find similar" functionality
935
- - βœ… Fast: ~10ms query latency
936
-
937
- ---
938
-
939
- ### Tutorial 3: AI Agent Memory System
940
-
941
- **What you'll learn:** Implement a memory system for AI agents that remembers past experiences and learns from them.
942
-
943
- **Complete Implementation:**
297
+ ### LlamaIndex
944
298
 
945
299
  ```javascript
946
- const { VectorDb } = require('ruvector');
947
-
948
- class AgentMemory {
949
- constructor(agentId) {
950
- this.agentId = agentId;
300
+ const { RuVectorIndex } = require('ruvector/llamaindex');
951
301
 
952
- // Create separate databases for different memory types
953
- this.episodicMemory = new VectorDb({
954
- dimensions: 768,
955
- storagePath: `./memory/${agentId}-episodic.db`
956
- });
957
-
958
- this.semanticMemory = new VectorDb({
959
- dimensions: 768,
960
- storagePath: `./memory/${agentId}-semantic.db`
961
- });
302
+ const index = new RuVectorIndex({
303
+ dimension: 384,
304
+ enableGNN: true
305
+ });
962
306
 
963
- console.log(`🧠 Memory system initialized for agent: ${agentId}`);
964
- }
307
+ await index.insert(documents);
308
+ const queryEngine = index.asQueryEngine();
309
+ const response = await queryEngine.query("What is machine learning?");
310
+ ```
965
311
 
966
- // Step 1: Store an experience (episodic memory)
967
- async storeExperience(experience) {
968
- const {
969
- state,
970
- action,
971
- result,
972
- reward,
973
- embedding
974
- } = experience;
975
-
976
- const experienceId = `exp_${Date.now()}_${Math.random()}`;
977
-
978
- await this.episodicMemory.insert({
979
- id: experienceId,
980
- vector: new Float32Array(embedding),
981
- metadata: {
982
- state: state,
983
- action: action,
984
- result: result,
985
- reward: reward,
986
- timestamp: Date.now(),
987
- type: 'episodic'
988
- }
989
- });
990
-
991
- console.log(`πŸ’Ύ Stored experience: ${action} -> ${result} (reward: ${reward})`);
992
- return experienceId;
993
- }
312
+ ### OpenAI / Anthropic
994
313
 
995
- // Step 2: Store learned knowledge (semantic memory)
996
- async storeKnowledge(knowledge) {
997
- const {
998
- concept,
999
- description,
1000
- embedding,
1001
- confidence = 1.0
1002
- } = knowledge;
1003
-
1004
- const knowledgeId = `know_${Date.now()}`;
1005
-
1006
- await this.semanticMemory.insert({
1007
- id: knowledgeId,
1008
- vector: new Float32Array(embedding),
1009
- metadata: {
1010
- concept: concept,
1011
- description: description,
1012
- confidence: confidence,
1013
- learned: Date.now(),
1014
- uses: 0,
1015
- type: 'semantic'
1016
- }
1017
- });
1018
-
1019
- console.log(`πŸ“š Learned: ${concept}`);
1020
- return knowledgeId;
1021
- }
314
+ ```javascript
315
+ const { createEmbedder } = require('ruvector');
1022
316
 
1023
- // Step 3: Recall similar experiences
1024
- async recallExperiences(currentState, k = 5) {
1025
- console.log(`πŸ” Recalling similar experiences...`);
317
+ // OpenAI
318
+ const openaiEmbed = createEmbedder('openai', {
319
+ model: 'text-embedding-3-small'
320
+ });
1026
321
 
1027
- const results = await this.episodicMemory.search({
1028
- vector: new Float32Array(currentState.embedding),
1029
- k: k,
1030
- threshold: 0.6 // Only recall reasonably similar experiences
1031
- });
322
+ // Anthropic (via Voyage)
323
+ const anthropicEmbed = createEmbedder('voyage', {
324
+ model: 'voyage-2'
325
+ });
1032
326
 
1033
- // Sort by reward to prioritize successful experiences
1034
- const sorted = results.sort((a, b) => b.metadata.reward - a.metadata.reward);
327
+ // Cohere
328
+ const cohereEmbed = createEmbedder('cohere', {
329
+ model: 'embed-english-v3.0'
330
+ });
331
+ ```
1035
332
 
1036
- console.log(`πŸ“ Recalled ${sorted.length} relevant experiences`);
333
+ ## Benchmarks
1037
334
 
1038
- return sorted.map(r => ({
1039
- state: r.metadata.state,
1040
- action: r.metadata.action,
1041
- result: r.metadata.result,
1042
- reward: r.metadata.reward,
1043
- similarity: r.score
1044
- }));
1045
- }
335
+ | Operation | Dimensions | Time | Throughput |
336
+ |-----------|------------|------|------------|
337
+ | **HNSW Search (k=10)** | 384 | 61Β΅s | 16,400 QPS |
338
+ | **HNSW Search (k=100)** | 384 | 164Β΅s | 6,100 QPS |
339
+ | **Cosine Similarity** | 1536 | 143ns | 7M ops/sec |
340
+ | **Dot Product** | 384 | 33ns | 30M ops/sec |
341
+ | **Insert** | 384 | 20Β΅s | 50,000/sec |
342
+ | **GNN Forward** | 384β†’512 | 89Β΅s | 11,200/sec |
343
+ | **Compression (PQ8)** | 384 | 12Β΅s | 83,000/sec |
1046
344
 
1047
- // Step 4: Query knowledge base
1048
- async queryKnowledge(query, k = 3) {
1049
- const results = await this.semanticMemory.search({
1050
- vector: new Float32Array(query.embedding),
1051
- k: k
1052
- });
1053
-
1054
- // Update usage statistics
1055
- for (const result of results) {
1056
- const knowledge = await this.semanticMemory.get(result.id);
1057
- if (knowledge) {
1058
- knowledge.metadata.uses += 1;
1059
- // In production, update the entry
1060
- }
1061
- }
1062
-
1063
- return results.map(r => ({
1064
- concept: r.metadata.concept,
1065
- description: r.metadata.description,
1066
- confidence: r.metadata.confidence,
1067
- relevance: r.score
1068
- }));
1069
- }
345
+ Run your own benchmarks:
346
+ ```bash
347
+ npx ruvector benchmark --dimension 384 --num-vectors 100000
348
+ ```
349
+
350
+ ## Comparison
351
+
352
+ | Feature | RuVector | Pinecone | Qdrant | ChromaDB | Milvus | Weaviate |
353
+ |---------|----------|----------|--------|----------|--------|----------|
354
+ | **Latency (p50)** | **61Β΅s** | ~2ms | ~1ms | ~50ms | ~5ms | ~3ms |
355
+ | **Graph Queries** | βœ… Cypher | ❌ | ❌ | ❌ | ❌ | βœ… GraphQL |
356
+ | **Self-Learning** | βœ… GNN | ❌ | ❌ | ❌ | ❌ | ❌ |
357
+ | **AI Routing** | βœ… | ❌ | ❌ | ❌ | ❌ | ❌ |
358
+ | **Browser/WASM** | βœ… | ❌ | ❌ | ❌ | ❌ | ❌ |
359
+ | **Compression** | 2-32x | ❌ | βœ… | ❌ | βœ… | βœ… |
360
+ | **Hybrid Search** | βœ… | βœ… | βœ… | ❌ | βœ… | βœ… |
361
+ | **Multi-tenancy** | βœ… | βœ… | βœ… | βœ… | βœ… | βœ… |
362
+ | **Open Source** | βœ… MIT | ❌ | βœ… Apache | βœ… Apache | βœ… Apache | βœ… BSD |
363
+ | **Pricing** | Free | $70+/mo | Free | Free | Free | Free |
364
+
365
+ ## npm Packages
366
+
367
+ | Package | Description |
368
+ |---------|-------------|
369
+ | [`ruvector`](https://www.npmjs.com/package/ruvector) | **All-in-one package (recommended)** |
370
+ | [`@ruvector/wasm`](https://www.npmjs.com/package/@ruvector/wasm) | Browser/WASM bindings |
371
+ | [`@ruvector/graph`](https://www.npmjs.com/package/@ruvector/graph) | Graph database with Cypher |
372
+ | [`@ruvector/gnn`](https://www.npmjs.com/package/@ruvector/gnn) | Graph Neural Network layers |
373
+ | [`@ruvector/tiny-dancer`](https://www.npmjs.com/package/@ruvector/tiny-dancer) | AI agent routing (FastGRNN) |
374
+ | [`@ruvector/router`](https://www.npmjs.com/package/@ruvector/router) | Semantic routing engine |
1070
375
 
1071
- // Step 5: Reflect and learn from experiences
1072
- async reflect() {
1073
- console.log('\nπŸ€” Reflecting on experiences...');
376
+ ```bash
377
+ # Install all-in-one (recommended)
378
+ npm install ruvector
1074
379
 
1075
- // Get all experiences
1076
- const totalExperiences = await this.episodicMemory.len();
1077
- console.log(`πŸ“Š Total experiences: ${totalExperiences}`);
380
+ # Or install specific packages
381
+ npm install @ruvector/graph @ruvector/gnn
382
+ ```
1078
383
 
1079
- // Analyze success rate
1080
- // In production, you'd aggregate experiences and extract patterns
1081
- console.log('πŸ’‘ Analysis complete');
384
+ ## API Reference
1082
385
 
1083
- return {
1084
- totalExperiences: totalExperiences,
1085
- knowledgeItems: await this.semanticMemory.len()
1086
- };
1087
- }
386
+ ### VectorDB
1088
387
 
1089
- // Step 6: Get memory statistics
1090
- async getStats() {
1091
- return {
1092
- episodicMemorySize: await this.episodicMemory.len(),
1093
- semanticMemorySize: await this.semanticMemory.len(),
1094
- agentId: this.agentId
1095
- };
1096
- }
388
+ ```typescript
389
+ class VectorDB {
390
+ constructor(dimension: number, options?: VectorDBOptions);
391
+
392
+ // CRUD operations
393
+ insert(id: string, values: number[], metadata?: object): Promise<void>;
394
+ insertBatch(vectors: Vector[], options?: BatchOptions): Promise<void>;
395
+ get(id: string): Promise<Vector | null>;
396
+ update(id: string, values?: number[], metadata?: object): Promise<void>;
397
+ delete(id: string): Promise<boolean>;
398
+
399
+ // Search
400
+ search(query: number[], k?: number, filter?: Filter): Promise<SearchResult[]>;
401
+ hybridSearch(query: number[], text: string, k?: number): Promise<SearchResult[]>;
402
+
403
+ // Persistence
404
+ save(path: string): Promise<void>;
405
+ static load(path: string): Promise<VectorDB>;
406
+
407
+ // Management
408
+ stats(): Promise<IndexStats>;
409
+ optimize(): Promise<void>;
410
+ clear(): Promise<void>;
1097
411
  }
412
+ ```
1098
413
 
1099
- // Example Usage: Simulated agent learning to navigate
1100
- async function main() {
1101
- const agent = new AgentMemory('agent-001');
1102
-
1103
- // Simulate embedding function (in production, use a real model)
1104
- function embed(text) {
1105
- return Array(768).fill(0).map(() => Math.random());
1106
- }
1107
-
1108
- console.log('\n' + '='.repeat(60));
1109
- console.log('PHASE 1: Learning from experiences');
1110
- console.log('='.repeat(60) + '\n');
1111
-
1112
- // Store some experiences
1113
- await agent.storeExperience({
1114
- state: { location: 'room1', goal: 'room3' },
1115
- action: 'move_north',
1116
- result: 'reached room2',
1117
- reward: 0.5,
1118
- embedding: embed('navigating from room1 to room2')
1119
- });
1120
-
1121
- await agent.storeExperience({
1122
- state: { location: 'room2', goal: 'room3' },
1123
- action: 'move_east',
1124
- result: 'reached room3',
1125
- reward: 1.0,
1126
- embedding: embed('navigating from room2 to room3')
1127
- });
1128
-
1129
- await agent.storeExperience({
1130
- state: { location: 'room1', goal: 'room3' },
1131
- action: 'move_south',
1132
- result: 'hit wall',
1133
- reward: -0.5,
1134
- embedding: embed('failed navigation attempt')
1135
- });
1136
-
1137
- // Store learned knowledge
1138
- await agent.storeKnowledge({
1139
- concept: 'navigation_strategy',
1140
- description: 'Moving north then east is efficient for reaching room3 from room1',
1141
- embedding: embed('navigation strategy knowledge'),
1142
- confidence: 0.9
1143
- });
1144
-
1145
- console.log('\n' + '='.repeat(60));
1146
- console.log('PHASE 2: Applying memory');
1147
- console.log('='.repeat(60) + '\n');
1148
-
1149
- // Agent encounters a similar situation
1150
- const currentState = {
1151
- location: 'room1',
1152
- goal: 'room3',
1153
- embedding: embed('navigating from room1 to room3')
1154
- };
1155
-
1156
- // Recall relevant experiences
1157
- const experiences = await agent.recallExperiences(currentState, 3);
1158
-
1159
- console.log('\nπŸ“– Recalled experiences:');
1160
- experiences.forEach((exp, i) => {
1161
- console.log(`${i + 1}. Action: ${exp.action} | Result: ${exp.result} | Reward: ${exp.reward} | Similarity: ${exp.similarity.toFixed(3)}`);
1162
- });
1163
-
1164
- // Query relevant knowledge
1165
- const knowledge = await agent.queryKnowledge({
1166
- embedding: embed('how to navigate efficiently')
1167
- }, 2);
414
+ ### GraphDB
1168
415
 
1169
- console.log('\nπŸ“š Relevant knowledge:');
1170
- knowledge.forEach((k, i) => {
1171
- console.log(`${i + 1}. ${k.concept}: ${k.description} (confidence: ${k.confidence})`);
1172
- });
416
+ ```typescript
417
+ class GraphDB {
418
+ constructor(options?: GraphDBOptions);
1173
419
 
1174
- console.log('\n' + '='.repeat(60));
1175
- console.log('PHASE 3: Reflection');
1176
- console.log('='.repeat(60) + '\n');
420
+ // Cypher execution
421
+ execute(cypher: string, params?: object): QueryResult;
1177
422
 
1178
- // Reflect on learning
1179
- const stats = await agent.reflect();
1180
- const memoryStats = await agent.getStats();
423
+ // Direct API
424
+ createNode(label: string, properties: object): string;
425
+ createRelationship(from: string, to: string, type: string, props?: object): void;
426
+ createHyperedge(nodeIds: string[], type: string, props?: object): string;
1181
427
 
1182
- console.log('\nπŸ“Š Memory Statistics:');
1183
- console.log(` Episodic memories: ${memoryStats.episodicMemorySize}`);
1184
- console.log(` Semantic knowledge: ${memoryStats.semanticMemorySize}`);
1185
- console.log(` Agent ID: ${memoryStats.agentId}`);
428
+ // Traversal
429
+ shortestPath(from: string, to: string): Path | null;
430
+ neighbors(nodeId: string, depth?: number): Node[];
1186
431
  }
1187
-
1188
- main().catch(console.error);
1189
432
  ```
1190
433
 
1191
- **Expected Output:**
1192
- ```
1193
- 🧠 Memory system initialized for agent: agent-001
1194
-
1195
- ============================================================
1196
- PHASE 1: Learning from experiences
1197
- ============================================================
1198
-
1199
- πŸ’Ύ Stored experience: move_north -> reached room2 (reward: 0.5)
1200
- πŸ’Ύ Stored experience: move_east -> reached room3 (reward: 1.0)
1201
- πŸ’Ύ Stored experience: move_south -> hit wall (reward: -0.5)
1202
- πŸ“š Learned: navigation_strategy
1203
-
1204
- ============================================================
1205
- PHASE 2: Applying memory
1206
- ============================================================
1207
-
1208
- πŸ” Recalling similar experiences...
1209
- πŸ“ Recalled 3 relevant experiences
1210
-
1211
- πŸ“– Recalled experiences:
1212
- 1. Action: move_east | Result: reached room3 | Reward: 1.0 | Similarity: 0.892
1213
- 2. Action: move_north | Result: reached room2 | Reward: 0.5 | Similarity: 0.876
1214
- 3. Action: move_south | Result: hit wall | Reward: -0.5 | Similarity: 0.654
1215
-
1216
- πŸ“š Relevant knowledge:
1217
- 1. navigation_strategy: Moving north then east is efficient for reaching room3 from room1 (confidence: 0.9)
434
+ ### GNNLayer
1218
435
 
1219
- ============================================================
1220
- PHASE 3: Reflection
1221
- ============================================================
436
+ ```typescript
437
+ class GNNLayer {
438
+ constructor(inputDim: number, outputDim: number, numHeads: number);
1222
439
 
1223
- πŸ€” Reflecting on experiences...
1224
- πŸ“Š Total experiences: 3
1225
- πŸ’‘ Analysis complete
440
+ // Inference
441
+ forward(query: number[], neighbors: number[][], weights: number[]): number[];
1226
442
 
1227
- πŸ“Š Memory Statistics:
1228
- Episodic memories: 3
1229
- Semantic knowledge: 1
1230
- Agent ID: agent-001
443
+ // Training
444
+ train(data: TrainingData, config?: TrainingConfig): TrainingMetrics;
445
+ save(path: string): void;
446
+ static load(path: string): GNNLayer;
447
+ }
1231
448
  ```
1232
449
 
1233
- **Use Cases:**
1234
- - βœ… Reinforcement learning agents
1235
- - βœ… Chatbot conversation history
1236
- - βœ… Game AI that learns from gameplay
1237
- - βœ… Personal assistant memory
1238
- - βœ… Robotic navigation systems
1239
-
1240
- ## πŸ—οΈ API Reference
1241
-
1242
- ### Constructor
450
+ ### Router
1243
451
 
1244
452
  ```typescript
1245
- new VectorDb(options: {
1246
- dimensions: number; // Vector dimensionality (required)
1247
- maxElements?: number; // Max vectors (default: 10000)
1248
- storagePath?: string; // Persistent storage path
1249
- ef_construction?: number; // HNSW construction parameter (default: 200)
1250
- m?: number; // HNSW M parameter (default: 16)
1251
- distanceMetric?: string; // 'cosine', 'euclidean', or 'dot' (default: 'cosine')
1252
- })
1253
- ```
453
+ class Router {
454
+ constructor(config?: RouterConfig);
1254
455
 
1255
- ### Methods
456
+ // Routing
457
+ route(query: number[], candidates: Candidate[]): RoutingDecision;
458
+ routeBatch(queries: number[][], candidates: Candidate[]): RoutingDecision[];
1256
459
 
1257
- #### insert(entry: VectorEntry): Promise<string>
1258
- Insert a vector into the database.
1259
-
1260
- ```javascript
1261
- const id = await db.insert({
1262
- id: 'doc_1',
1263
- vector: new Float32Array([0.1, 0.2, 0.3, ...]),
1264
- metadata: { title: 'Document 1' }
1265
- });
460
+ // Management
461
+ reloadModel(): void;
462
+ circuitBreakerStatus(): 'closed' | 'open' | 'half-open';
463
+ resetCircuitBreaker(): void;
464
+ }
1266
465
  ```
1267
466
 
1268
- #### search(query: SearchQuery): Promise<SearchResult[]>
1269
- Search for similar vectors.
467
+ ## Use Cases
1270
468
 
1271
- ```javascript
1272
- const results = await db.search({
1273
- vector: new Float32Array([0.1, 0.2, 0.3, ...]),
1274
- k: 10,
1275
- threshold: 0.7
1276
- });
1277
- ```
1278
-
1279
- #### get(id: string): Promise<VectorEntry | null>
1280
- Retrieve a vector by ID.
469
+ ### Agentic AI / Multi-Agent Systems
1281
470
 
1282
471
  ```javascript
1283
- const entry = await db.get('doc_1');
1284
- if (entry) {
1285
- console.log(entry.vector, entry.metadata);
1286
- }
1287
- ```
1288
-
1289
- #### delete(id: string): Promise<boolean>
1290
- Remove a vector from the database.
472
+ // Route tasks to specialized agents
473
+ const agents = [
474
+ { id: 'researcher', embedding: researchEmb, capabilities: ['search', 'summarize'] },
475
+ { id: 'coder', embedding: codeEmb, capabilities: ['code', 'debug'] },
476
+ { id: 'analyst', embedding: analysisEmb, capabilities: ['data', 'visualize'] }
477
+ ];
1291
478
 
1292
- ```javascript
1293
- const deleted = await db.delete('doc_1');
1294
- console.log(deleted ? 'Deleted' : 'Not found');
479
+ const taskEmb = await embed("Write a Python script to analyze sales data");
480
+ const decision = router.route(taskEmb, agents);
481
+ // Routes to 'coder' agent with high confidence
1295
482
  ```
1296
483
 
1297
- #### len(): Promise<number>
1298
- Get the total number of vectors.
484
+ ### Recommendation Systems
1299
485
 
1300
486
  ```javascript
1301
- const count = await db.len();
1302
- console.log(`Total vectors: ${count}`);
487
+ const recommendations = graph.execute(`
488
+ MATCH (user:User {id: $userId})-[:VIEWED]->(item:Product)
489
+ MATCH (item)-[:SIMILAR_TO]->(rec:Product)
490
+ WHERE NOT (user)-[:VIEWED]->(rec)
491
+ AND vector.similarity(rec.embedding, $userPreference) > 0.7
492
+ RETURN rec
493
+ ORDER BY vector.similarity(rec.embedding, $userPreference) DESC
494
+ LIMIT 10
495
+ `);
1303
496
  ```
1304
497
 
1305
- ## 🎨 Advanced Configuration
1306
-
1307
- ### HNSW Parameters
498
+ ### Semantic Caching
1308
499
 
1309
500
  ```javascript
1310
- const db = new VectorDb({
1311
- dimensions: 384,
1312
- maxElements: 1000000,
1313
- ef_construction: 200, // Higher = better recall, slower build
1314
- m: 16, // Higher = better recall, more memory
1315
- storagePath: './large-db.db'
1316
- });
1317
- ```
1318
-
1319
- **Parameter Guidelines:**
1320
- - `ef_construction`: 100-400 (higher = better recall, slower indexing)
1321
- - `m`: 8-64 (higher = better recall, more memory)
1322
- - Default values work well for most use cases
501
+ const cache = new VectorDB(1536);
1323
502
 
1324
- ### Distance Metrics
503
+ async function cachedLLMCall(prompt) {
504
+ const promptEmb = await embed(prompt);
1325
505
 
1326
- ```javascript
1327
- // Cosine similarity (default, best for normalized vectors)
1328
- const db1 = new VectorDb({
1329
- dimensions: 128,
1330
- distanceMetric: 'cosine'
1331
- });
506
+ // Check semantic cache
507
+ const cached = await cache.search(promptEmb, 1);
508
+ if (cached[0]?.score > 0.95) {
509
+ return cached[0].metadata.response; // Cache hit
510
+ }
1332
511
 
1333
- // Euclidean distance (L2, best for spatial data)
1334
- const db2 = new VectorDb({
1335
- dimensions: 128,
1336
- distanceMetric: 'euclidean'
1337
- });
512
+ // Cache miss - call LLM
513
+ const response = await llm.complete(prompt);
514
+ await cache.insert(generateId(), promptEmb, { prompt, response });
1338
515
 
1339
- // Dot product (best for pre-normalized vectors)
1340
- const db3 = new VectorDb({
1341
- dimensions: 128,
1342
- distanceMetric: 'dot'
1343
- });
516
+ return response;
517
+ }
1344
518
  ```
1345
519
 
1346
- ### Persistence
520
+ ### Document Q&A with Sources
1347
521
 
1348
522
  ```javascript
1349
- // Auto-save to disk
1350
- const persistent = new VectorDb({
1351
- dimensions: 128,
1352
- storagePath: './persistent.db'
1353
- });
1354
-
1355
- // In-memory only (faster, but data lost on exit)
1356
- const temporary = new VectorDb({
1357
- dimensions: 128
1358
- // No storagePath = in-memory
1359
- });
1360
- ```
1361
-
1362
- ## πŸ“¦ Platform Support
1363
-
1364
- Automatically installs the correct implementation for:
1365
-
1366
- ### Native (Rust) - Best Performance
1367
- - **Linux**: x64, ARM64 (GNU libc)
1368
- - **macOS**: x64 (Intel), ARM64 (Apple Silicon)
1369
- - **Windows**: x64 (MSVC)
1370
-
1371
- Performance: **<0.5ms latency**, **50K+ ops/sec**
1372
-
1373
- ### WASM Fallback - Universal Compatibility
1374
- - Any platform where native module isn't available
1375
- - Browser environments (experimental)
1376
- - Alpine Linux (musl) and other non-glibc systems
523
+ async function qaWithSources(question) {
524
+ const results = await db.search(await embed(question), 5);
1377
525
 
1378
- Performance: **10-50ms latency**, **~1K ops/sec**
1379
-
1380
- **Node.js 18+ required** for all platforms.
526
+ const answer = await llm.complete({
527
+ prompt: `Answer based on these sources:\n${results.map(r =>
528
+ `[${r.id}] ${r.metadata.content}`
529
+ ).join('\n')}\n\nQuestion: ${question}`,
530
+ });
1381
531
 
1382
- ## πŸ”§ Building from Source
532
+ return {
533
+ answer,
534
+ sources: results.map(r => ({
535
+ id: r.id,
536
+ title: r.metadata.title,
537
+ relevance: r.score
538
+ }))
539
+ };
540
+ }
541
+ ```
1383
542
 
1384
- If you need to rebuild the native module:
543
+ ## Architecture
544
+
545
+ ```
546
+ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
547
+ β”‚ ruvector β”‚
548
+ β”‚ (All-in-One npm Package) β”‚
549
+ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
550
+ β”‚ VectorDB β”‚ GraphDB β”‚ GNNLayer β”‚ Router β”‚
551
+ β”‚ (Search) β”‚ (Cypher) β”‚ (ML) β”‚ (AI Routing) β”‚
552
+ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
553
+ β”‚ Rust Core Engine β”‚
554
+ β”‚ β€’ HNSW Index β€’ Cypher Parser β€’ Attention β€’ FastGRNN β”‚
555
+ β”‚ β€’ SIMD Ops β€’ Hyperedges β€’ Training β€’ Uncertainty β”‚
556
+ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
557
+ β”‚
558
+ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
559
+ β”‚ β”‚ β”‚
560
+ β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”
561
+ β”‚ Native β”‚ β”‚ WASM β”‚ β”‚ FFI β”‚
562
+ β”‚(napi-rs)β”‚ β”‚(wasm32) β”‚ β”‚ (C) β”‚
563
+ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
564
+ β”‚ β”‚ β”‚
565
+ β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”
566
+ β”‚ Node.js β”‚ β”‚ Browser β”‚ β”‚ Python β”‚
567
+ β”‚ Bun β”‚ β”‚ Deno β”‚ β”‚ Go β”‚
568
+ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
569
+ ```
570
+
571
+ ## Platform Support
572
+
573
+ | Platform | Backend | Installation |
574
+ |----------|---------|--------------|
575
+ | **Node.js 16+** | Native (napi-rs) | `npm install ruvector` |
576
+ | **Node.js (fallback)** | WASM | Automatic if native fails |
577
+ | **Bun** | Native | `bun add ruvector` |
578
+ | **Deno** | WASM | `import from "npm:ruvector"` |
579
+ | **Browser** | WASM | `npm install @ruvector/wasm` |
580
+ | **Cloudflare Workers** | WASM | `npm install @ruvector/wasm` |
581
+ | **Vercel Edge** | WASM | `npm install @ruvector/wasm` |
582
+
583
+ ## Documentation
584
+
585
+ - [Getting Started Guide](https://github.com/ruvnet/ruvector/blob/main/docs/guide/GETTING_STARTED.md)
586
+ - [Cypher Reference](https://github.com/ruvnet/ruvector/blob/main/docs/api/CYPHER_REFERENCE.md)
587
+ - [GNN Architecture](https://github.com/ruvnet/ruvector/blob/main/docs/gnn-layer-implementation.md)
588
+ - [Performance Tuning](https://github.com/ruvnet/ruvector/blob/main/docs/optimization/PERFORMANCE_TUNING_GUIDE.md)
589
+ - [API Reference](https://github.com/ruvnet/ruvector/tree/main/docs/api)
590
+
591
+ ## Contributing
1385
592
 
1386
593
  ```bash
1387
- # Install Rust toolchain
1388
- curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
1389
-
1390
594
  # Clone repository
1391
595
  git clone https://github.com/ruvnet/ruvector.git
1392
596
  cd ruvector
1393
597
 
1394
- # Build native module
1395
- cd npm/packages/core
1396
- npm run build:napi
1397
-
1398
- # Build wrapper package
1399
- cd ../ruvector
598
+ # Install dependencies
1400
599
  npm install
1401
- npm run build
1402
600
 
1403
601
  # Run tests
1404
602
  npm test
1405
- ```
1406
-
1407
- **Requirements:**
1408
- - Rust 1.77+
1409
- - Node.js 18+
1410
- - Cargo
1411
-
1412
- ## 🌍 Ecosystem
1413
-
1414
- ### Related Packages
1415
-
1416
- - **[ruvector-core](https://www.npmjs.com/package/ruvector-core)** - Core native bindings (lower-level API)
1417
- - **[ruvector-wasm](https://www.npmjs.com/package/ruvector-wasm)** - WebAssembly implementation for browsers
1418
- - **[ruvector-cli](https://www.npmjs.com/package/ruvector-cli)** - Standalone CLI tools
1419
-
1420
- ### Platform-Specific Packages (auto-installed)
1421
-
1422
- - **[ruvector-core-linux-x64-gnu](https://www.npmjs.com/package/ruvector-core-linux-x64-gnu)**
1423
- - **[ruvector-core-linux-arm64-gnu](https://www.npmjs.com/package/ruvector-core-linux-arm64-gnu)**
1424
- - **[ruvector-core-darwin-x64](https://www.npmjs.com/package/ruvector-core-darwin-x64)**
1425
- - **[ruvector-core-darwin-arm64](https://www.npmjs.com/package/ruvector-core-darwin-arm64)**
1426
- - **[ruvector-core-win32-x64-msvc](https://www.npmjs.com/package/ruvector-core-win32-x64-msvc)**
1427
603
 
1428
- ## πŸ› Troubleshooting
1429
-
1430
- ### Native Module Not Loading
1431
-
1432
- If you see "Cannot find module 'ruvector-core-*'":
1433
-
1434
- ```bash
1435
- # Reinstall with optional dependencies
1436
- npm install --include=optional ruvector
1437
-
1438
- # Verify platform
1439
- npx ruvector info
604
+ # Build
605
+ npm run build
1440
606
 
1441
- # Check Node.js version (18+ required)
1442
- node --version
607
+ # Benchmarks
608
+ npm run bench
1443
609
  ```
1444
610
 
1445
- ### WASM Fallback Performance
1446
-
1447
- If you're using WASM fallback and need better performance:
1448
-
1449
- 1. **Install native toolchain** for your platform
1450
- 2. **Rebuild native module**: `npm rebuild ruvector`
1451
- 3. **Verify native**: `npx ruvector info` should show "native (Rust)"
611
+ See [CONTRIBUTING.md](https://github.com/ruvnet/ruvector/blob/main/docs/development/CONTRIBUTING.md) for guidelines.
1452
612
 
1453
- ### Platform Compatibility
613
+ ## License
1454
614
 
1455
- - **Alpine Linux**: Uses WASM fallback (musl not supported)
1456
- - **Windows ARM**: Not yet supported, uses WASM fallback
1457
- - **Node.js < 18**: Not supported, upgrade to Node.js 18+
1458
-
1459
- ## πŸ“š Documentation
1460
-
1461
- - 🏠 [Homepage](https://ruv.io)
1462
- - πŸ“¦ [GitHub Repository](https://github.com/ruvnet/ruvector)
1463
- - πŸ“š [Full Documentation](https://github.com/ruvnet/ruvector/tree/main/docs)
1464
- - πŸš€ [Getting Started Guide](https://github.com/ruvnet/ruvector/blob/main/docs/guide/GETTING_STARTED.md)
1465
- - πŸ“– [API Reference](https://github.com/ruvnet/ruvector/blob/main/docs/api/NODEJS_API.md)
1466
- - 🎯 [Performance Tuning](https://github.com/ruvnet/ruvector/blob/main/docs/optimization/PERFORMANCE_TUNING_GUIDE.md)
1467
- - πŸ› [Issue Tracker](https://github.com/ruvnet/ruvector/issues)
1468
- - πŸ’¬ [Discussions](https://github.com/ruvnet/ruvector/discussions)
1469
-
1470
- ## 🀝 Contributing
1471
-
1472
- We welcome contributions! See [CONTRIBUTING.md](https://github.com/ruvnet/ruvector/blob/main/docs/development/CONTRIBUTING.md) for guidelines.
1473
-
1474
- ### Quick Start
1475
-
1476
- 1. Fork the repository
1477
- 2. Create a feature branch: `git checkout -b feature/amazing-feature`
1478
- 3. Commit changes: `git commit -m 'Add amazing feature'`
1479
- 4. Push to branch: `git push origin feature/amazing-feature`
1480
- 5. Open a Pull Request
1481
-
1482
- ## 🌐 Community & Support
1483
-
1484
- - **GitHub**: [github.com/ruvnet/ruvector](https://github.com/ruvnet/ruvector) - ⭐ Star and follow
1485
- - **Discord**: [Join our community](https://discord.gg/ruvnet) - Chat with developers
1486
- - **Twitter**: [@ruvnet](https://twitter.com/ruvnet) - Follow for updates
1487
- - **Issues**: [Report bugs](https://github.com/ruvnet/ruvector/issues)
1488
-
1489
- ### Enterprise Support
1490
-
1491
- Need custom development or consulting?
1492
-
1493
- πŸ“§ [enterprise@ruv.io](mailto:enterprise@ruv.io)
1494
-
1495
- ## πŸ“œ License
1496
-
1497
- **MIT License** - see [LICENSE](https://github.com/ruvnet/ruvector/blob/main/LICENSE) for details.
1498
-
1499
- Free for commercial and personal use.
1500
-
1501
- ## πŸ™ Acknowledgments
1502
-
1503
- Built with battle-tested technologies:
1504
-
1505
- - **HNSW**: Hierarchical Navigable Small World graphs
1506
- - **SIMD**: Hardware-accelerated vector operations via simsimd
1507
- - **Rust**: Memory-safe, zero-cost abstractions
1508
- - **NAPI-RS**: High-performance Node.js bindings
1509
- - **WebAssembly**: Universal browser compatibility
615
+ MIT License β€” free for commercial and personal use.
1510
616
 
1511
617
  ---
1512
618
 
1513
619
  <div align="center">
1514
620
 
1515
- **Built with ❀️ by [rUv](https://ruv.io)**
621
+ **Built by [rUv](https://ruv.io)** β€’ [GitHub](https://github.com/ruvnet/ruvector) β€’ [npm](https://npmjs.com/package/ruvector)
1516
622
 
1517
- [![npm](https://img.shields.io/npm/v/ruvector.svg)](https://www.npmjs.com/package/ruvector)
1518
- [![GitHub Stars](https://img.shields.io/github/stars/ruvnet/ruvector?style=social)](https://github.com/ruvnet/ruvector)
1519
- [![Twitter](https://img.shields.io/twitter/follow/ruvnet?style=social)](https://twitter.com/ruvnet)
623
+ *Vector search that gets smarter over time.*
1520
624
 
1521
- **[Get Started](https://github.com/ruvnet/ruvector/blob/main/docs/guide/GETTING_STARTED.md)** β€’ **[Documentation](https://github.com/ruvnet/ruvector/tree/main/docs)** β€’ **[API Reference](https://github.com/ruvnet/ruvector/blob/main/docs/api/NODEJS_API.md)** β€’ **[Contributing](https://github.com/ruvnet/ruvector/blob/main/docs/development/CONTRIBUTING.md)**
625
+ **[⭐ Star on GitHub](https://github.com/ruvnet/ruvector)** if RuVector helps your project!
1522
626
 
1523
627
  </div>