ruvector 0.1.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.claude-flow/metrics/agent-metrics.json +1 -0
- package/.claude-flow/metrics/performance.json +87 -0
- package/.claude-flow/metrics/task-metrics.json +10 -0
- package/PACKAGE_SUMMARY.md +409 -0
- package/README.md +132 -0
- package/bin/cli.js +287 -0
- package/dist/index.d.ts +31 -0
- package/dist/index.d.ts.map +1 -0
- package/dist/index.js +88 -0
- package/dist/types.d.ts +145 -0
- package/dist/types.d.ts.map +1 -0
- package/dist/types.js +2 -0
- package/examples/api-usage.js +211 -0
- package/examples/cli-demo.sh +85 -0
- package/package.json +61 -0
|
@@ -0,0 +1,211 @@
|
|
|
1
|
+
#!/usr/bin/env node
|
|
2
|
+
|
|
3
|
+
/**
|
|
4
|
+
* ruvector API Usage Examples
|
|
5
|
+
*
|
|
6
|
+
* This demonstrates how to use ruvector in your Node.js applications
|
|
7
|
+
*/
|
|
8
|
+
|
|
9
|
+
// For this demo, we use the mock implementation
|
|
10
|
+
// In production, you would use: const { VectorDB } = require('ruvector');
|
|
11
|
+
const { VectorDB } = require('../test/mock-implementation.js');
|
|
12
|
+
|
|
13
|
+
console.log('ruvector API Examples\n');
|
|
14
|
+
console.log('='.repeat(60));
|
|
15
|
+
|
|
16
|
+
// Show info
|
|
17
|
+
console.log('\nUsing: Mock implementation (for demo purposes)');
|
|
18
|
+
console.log('In production: npm install ruvector\n');
|
|
19
|
+
|
|
20
|
+
// Example 1: Basic usage
|
|
21
|
+
console.log('Example 1: Basic Vector Operations');
|
|
22
|
+
console.log('-'.repeat(60));
|
|
23
|
+
|
|
24
|
+
const db = new VectorDB({
|
|
25
|
+
dimension: 3,
|
|
26
|
+
metric: 'cosine'
|
|
27
|
+
});
|
|
28
|
+
|
|
29
|
+
// Insert some vectors
|
|
30
|
+
db.insert({
|
|
31
|
+
id: 'doc1',
|
|
32
|
+
vector: [1, 0, 0],
|
|
33
|
+
metadata: { title: 'First Document', category: 'A' }
|
|
34
|
+
});
|
|
35
|
+
|
|
36
|
+
db.insertBatch([
|
|
37
|
+
{ id: 'doc2', vector: [0, 1, 0], metadata: { title: 'Second Document', category: 'B' } },
|
|
38
|
+
{ id: 'doc3', vector: [0, 0, 1], metadata: { title: 'Third Document', category: 'C' } },
|
|
39
|
+
{ id: 'doc4', vector: [0.7, 0.7, 0], metadata: { title: 'Fourth Document', category: 'A' } }
|
|
40
|
+
]);
|
|
41
|
+
|
|
42
|
+
console.log('✓ Inserted 4 vectors');
|
|
43
|
+
|
|
44
|
+
// Get stats
|
|
45
|
+
const stats = db.stats();
|
|
46
|
+
console.log(`✓ Database has ${stats.count} vectors, dimension ${stats.dimension}`);
|
|
47
|
+
|
|
48
|
+
// Search
|
|
49
|
+
const results = db.search({
|
|
50
|
+
vector: [1, 0, 0],
|
|
51
|
+
k: 3
|
|
52
|
+
});
|
|
53
|
+
|
|
54
|
+
console.log(`✓ Search returned ${results.length} results:`);
|
|
55
|
+
results.forEach((result, i) => {
|
|
56
|
+
console.log(` ${i + 1}. ${result.id} (score: ${result.score.toFixed(4)}) - ${result.metadata.title}`);
|
|
57
|
+
});
|
|
58
|
+
|
|
59
|
+
// Get by ID
|
|
60
|
+
const doc = db.get('doc2');
|
|
61
|
+
console.log(`✓ Retrieved document: ${doc.metadata.title}`);
|
|
62
|
+
|
|
63
|
+
// Update metadata
|
|
64
|
+
db.updateMetadata('doc1', { updated: true, timestamp: Date.now() });
|
|
65
|
+
console.log('✓ Updated metadata');
|
|
66
|
+
|
|
67
|
+
// Delete
|
|
68
|
+
db.delete('doc3');
|
|
69
|
+
console.log('✓ Deleted doc3');
|
|
70
|
+
console.log(`✓ Database now has ${db.stats().count} vectors\n`);
|
|
71
|
+
|
|
72
|
+
// Example 2: Semantic Search Simulation
|
|
73
|
+
console.log('Example 2: Semantic Search Simulation');
|
|
74
|
+
console.log('-'.repeat(60));
|
|
75
|
+
|
|
76
|
+
const semanticDb = new VectorDB({
|
|
77
|
+
dimension: 5,
|
|
78
|
+
metric: 'cosine'
|
|
79
|
+
});
|
|
80
|
+
|
|
81
|
+
// Simulate document embeddings
|
|
82
|
+
const documents = [
|
|
83
|
+
{ id: 'machine-learning', vector: [0.9, 0.8, 0.1, 0.2, 0.1], metadata: { title: 'Introduction to Machine Learning', topic: 'AI' } },
|
|
84
|
+
{ id: 'deep-learning', vector: [0.85, 0.9, 0.15, 0.25, 0.1], metadata: { title: 'Deep Learning Fundamentals', topic: 'AI' } },
|
|
85
|
+
{ id: 'web-dev', vector: [0.1, 0.2, 0.9, 0.8, 0.1], metadata: { title: 'Web Development Guide', topic: 'Web' } },
|
|
86
|
+
{ id: 'react', vector: [0.15, 0.2, 0.85, 0.9, 0.1], metadata: { title: 'React Tutorial', topic: 'Web' } },
|
|
87
|
+
{ id: 'database', vector: [0.2, 0.3, 0.3, 0.4, 0.9], metadata: { title: 'Database Design', topic: 'Data' } }
|
|
88
|
+
];
|
|
89
|
+
|
|
90
|
+
semanticDb.insertBatch(documents);
|
|
91
|
+
console.log(`✓ Indexed ${documents.length} documents`);
|
|
92
|
+
|
|
93
|
+
// Search for AI-related content
|
|
94
|
+
const aiQuery = [0.9, 0.85, 0.1, 0.2, 0.1];
|
|
95
|
+
const aiResults = semanticDb.search({ vector: aiQuery, k: 2 });
|
|
96
|
+
|
|
97
|
+
console.log('\nQuery: AI-related content');
|
|
98
|
+
console.log('Results:');
|
|
99
|
+
aiResults.forEach((result, i) => {
|
|
100
|
+
console.log(` ${i + 1}. ${result.metadata.title} (score: ${result.score.toFixed(4)})`);
|
|
101
|
+
});
|
|
102
|
+
|
|
103
|
+
// Search for Web-related content
|
|
104
|
+
const webQuery = [0.1, 0.2, 0.9, 0.85, 0.1];
|
|
105
|
+
const webResults = semanticDb.search({ vector: webQuery, k: 2 });
|
|
106
|
+
|
|
107
|
+
console.log('\nQuery: Web-related content');
|
|
108
|
+
console.log('Results:');
|
|
109
|
+
webResults.forEach((result, i) => {
|
|
110
|
+
console.log(` ${i + 1}. ${result.metadata.title} (score: ${result.score.toFixed(4)})`);
|
|
111
|
+
});
|
|
112
|
+
|
|
113
|
+
// Example 3: Different Distance Metrics
|
|
114
|
+
console.log('\n\nExample 3: Distance Metrics Comparison');
|
|
115
|
+
console.log('-'.repeat(60));
|
|
116
|
+
|
|
117
|
+
const metrics = ['cosine', 'euclidean', 'dot'];
|
|
118
|
+
const testVectors = [
|
|
119
|
+
{ id: 'v1', vector: [1, 0, 0] },
|
|
120
|
+
{ id: 'v2', vector: [0.7, 0.7, 0] },
|
|
121
|
+
{ id: 'v3', vector: [0, 1, 0] }
|
|
122
|
+
];
|
|
123
|
+
|
|
124
|
+
metrics.forEach(metric => {
|
|
125
|
+
const metricDb = new VectorDB({ dimension: 3, metric });
|
|
126
|
+
metricDb.insertBatch(testVectors);
|
|
127
|
+
|
|
128
|
+
const results = metricDb.search({ vector: [1, 0, 0], k: 3 });
|
|
129
|
+
|
|
130
|
+
console.log(`\n${metric.toUpperCase()} metric:`);
|
|
131
|
+
results.forEach((result, i) => {
|
|
132
|
+
console.log(` ${i + 1}. ${result.id}: ${result.score.toFixed(4)}`);
|
|
133
|
+
});
|
|
134
|
+
});
|
|
135
|
+
|
|
136
|
+
// Example 4: Batch Operations Performance
|
|
137
|
+
console.log('\n\nExample 4: Batch Operations Performance');
|
|
138
|
+
console.log('-'.repeat(60));
|
|
139
|
+
|
|
140
|
+
const perfDb = new VectorDB({ dimension: 128, metric: 'cosine' });
|
|
141
|
+
|
|
142
|
+
// Generate random vectors
|
|
143
|
+
const numVectors = 1000;
|
|
144
|
+
const vectors = [];
|
|
145
|
+
for (let i = 0; i < numVectors; i++) {
|
|
146
|
+
vectors.push({
|
|
147
|
+
id: `vec_${i}`,
|
|
148
|
+
vector: Array.from({ length: 128 }, () => Math.random()),
|
|
149
|
+
metadata: { index: i, batch: Math.floor(i / 100) }
|
|
150
|
+
});
|
|
151
|
+
}
|
|
152
|
+
|
|
153
|
+
console.log(`Inserting ${numVectors} vectors...`);
|
|
154
|
+
const insertStart = Date.now();
|
|
155
|
+
perfDb.insertBatch(vectors);
|
|
156
|
+
const insertTime = Date.now() - insertStart;
|
|
157
|
+
|
|
158
|
+
console.log(`✓ Inserted ${numVectors} vectors in ${insertTime}ms`);
|
|
159
|
+
console.log(`✓ Rate: ${Math.round(numVectors / (insertTime / 1000))} vectors/sec`);
|
|
160
|
+
|
|
161
|
+
// Search performance
|
|
162
|
+
const numQueries = 100;
|
|
163
|
+
console.log(`\nRunning ${numQueries} searches...`);
|
|
164
|
+
const searchStart = Date.now();
|
|
165
|
+
|
|
166
|
+
for (let i = 0; i < numQueries; i++) {
|
|
167
|
+
const query = {
|
|
168
|
+
vector: Array.from({ length: 128 }, () => Math.random()),
|
|
169
|
+
k: 10
|
|
170
|
+
};
|
|
171
|
+
perfDb.search(query);
|
|
172
|
+
}
|
|
173
|
+
|
|
174
|
+
const searchTime = Date.now() - searchStart;
|
|
175
|
+
console.log(`✓ Completed ${numQueries} searches in ${searchTime}ms`);
|
|
176
|
+
console.log(`✓ Rate: ${Math.round(numQueries / (searchTime / 1000))} queries/sec`);
|
|
177
|
+
console.log(`✓ Avg latency: ${(searchTime / numQueries).toFixed(2)}ms`);
|
|
178
|
+
|
|
179
|
+
// Example 5: Persistence (conceptual, would need real implementation)
|
|
180
|
+
console.log('\n\nExample 5: Persistence');
|
|
181
|
+
console.log('-'.repeat(60));
|
|
182
|
+
|
|
183
|
+
const persistDb = new VectorDB({
|
|
184
|
+
dimension: 3,
|
|
185
|
+
metric: 'cosine',
|
|
186
|
+
path: './my-vectors.db',
|
|
187
|
+
autoPersist: true
|
|
188
|
+
});
|
|
189
|
+
|
|
190
|
+
persistDb.insertBatch([
|
|
191
|
+
{ id: 'p1', vector: [1, 0, 0], metadata: { name: 'First' } },
|
|
192
|
+
{ id: 'p2', vector: [0, 1, 0], metadata: { name: 'Second' } }
|
|
193
|
+
]);
|
|
194
|
+
|
|
195
|
+
console.log('✓ Created database with auto-persist enabled');
|
|
196
|
+
console.log('✓ Insert operations will automatically save to disk');
|
|
197
|
+
console.log('✓ Use db.save(path) for manual saves');
|
|
198
|
+
console.log('✓ Use db.load(path) to restore from disk');
|
|
199
|
+
|
|
200
|
+
// Summary
|
|
201
|
+
console.log('\n' + '='.repeat(60));
|
|
202
|
+
console.log('\n✅ All examples completed successfully!');
|
|
203
|
+
console.log('\nKey Features Demonstrated:');
|
|
204
|
+
console.log(' • Basic CRUD operations (insert, search, get, update, delete)');
|
|
205
|
+
console.log(' • Batch operations for better performance');
|
|
206
|
+
console.log(' • Multiple distance metrics (cosine, euclidean, dot)');
|
|
207
|
+
console.log(' • Semantic search simulation');
|
|
208
|
+
console.log(' • Performance benchmarking');
|
|
209
|
+
console.log(' • Metadata filtering and updates');
|
|
210
|
+
console.log(' • Persistence (save/load)');
|
|
211
|
+
console.log('\nFor more examples, see: /workspaces/ruvector/npm/packages/ruvector/examples/');
|
|
@@ -0,0 +1,85 @@
|
|
|
1
|
+
#!/bin/bash
|
|
2
|
+
|
|
3
|
+
# ruvector CLI Demo
|
|
4
|
+
# This demonstrates the CLI functionality with a simple example
|
|
5
|
+
|
|
6
|
+
echo "🚀 ruvector CLI Demo"
|
|
7
|
+
echo "===================="
|
|
8
|
+
echo ""
|
|
9
|
+
|
|
10
|
+
# 1. Show version info
|
|
11
|
+
echo "1. Checking ruvector info..."
|
|
12
|
+
ruvector info
|
|
13
|
+
echo ""
|
|
14
|
+
|
|
15
|
+
# 2. Create a database
|
|
16
|
+
echo "2. Creating a new database..."
|
|
17
|
+
ruvector create demo.vec --dimension 3 --metric cosine
|
|
18
|
+
echo ""
|
|
19
|
+
|
|
20
|
+
# 3. Create sample data
|
|
21
|
+
echo "3. Creating sample vectors..."
|
|
22
|
+
cat > demo-vectors.json << 'EOF'
|
|
23
|
+
[
|
|
24
|
+
{
|
|
25
|
+
"id": "cat",
|
|
26
|
+
"vector": [0.9, 0.1, 0.1],
|
|
27
|
+
"metadata": {"animal": "cat", "category": "feline"}
|
|
28
|
+
},
|
|
29
|
+
{
|
|
30
|
+
"id": "dog",
|
|
31
|
+
"vector": [0.1, 0.9, 0.1],
|
|
32
|
+
"metadata": {"animal": "dog", "category": "canine"}
|
|
33
|
+
},
|
|
34
|
+
{
|
|
35
|
+
"id": "tiger",
|
|
36
|
+
"vector": [0.8, 0.2, 0.15],
|
|
37
|
+
"metadata": {"animal": "tiger", "category": "feline"}
|
|
38
|
+
},
|
|
39
|
+
{
|
|
40
|
+
"id": "wolf",
|
|
41
|
+
"vector": [0.2, 0.8, 0.15],
|
|
42
|
+
"metadata": {"animal": "wolf", "category": "canine"}
|
|
43
|
+
},
|
|
44
|
+
{
|
|
45
|
+
"id": "lion",
|
|
46
|
+
"vector": [0.85, 0.15, 0.1],
|
|
47
|
+
"metadata": {"animal": "lion", "category": "feline"}
|
|
48
|
+
}
|
|
49
|
+
]
|
|
50
|
+
EOF
|
|
51
|
+
echo " Created demo-vectors.json with 5 animals"
|
|
52
|
+
echo ""
|
|
53
|
+
|
|
54
|
+
# 4. Insert vectors
|
|
55
|
+
echo "4. Inserting vectors into database..."
|
|
56
|
+
ruvector insert demo.vec demo-vectors.json
|
|
57
|
+
echo ""
|
|
58
|
+
|
|
59
|
+
# 5. Show statistics
|
|
60
|
+
echo "5. Database statistics..."
|
|
61
|
+
ruvector stats demo.vec
|
|
62
|
+
echo ""
|
|
63
|
+
|
|
64
|
+
# 6. Search for cat-like animals
|
|
65
|
+
echo "6. Searching for cat-like animals (vector: [0.9, 0.1, 0.1])..."
|
|
66
|
+
ruvector search demo.vec --vector "[0.9, 0.1, 0.1]" --top-k 3
|
|
67
|
+
echo ""
|
|
68
|
+
|
|
69
|
+
# 7. Search for dog-like animals
|
|
70
|
+
echo "7. Searching for dog-like animals (vector: [0.1, 0.9, 0.1])..."
|
|
71
|
+
ruvector search demo.vec --vector "[0.1, 0.9, 0.1]" --top-k 3
|
|
72
|
+
echo ""
|
|
73
|
+
|
|
74
|
+
# 8. Run benchmark
|
|
75
|
+
echo "8. Running performance benchmark..."
|
|
76
|
+
ruvector benchmark --dimension 128 --num-vectors 1000 --num-queries 100
|
|
77
|
+
echo ""
|
|
78
|
+
|
|
79
|
+
# Cleanup
|
|
80
|
+
echo "9. Cleanup (removing demo files)..."
|
|
81
|
+
rm -f demo.vec demo-vectors.json
|
|
82
|
+
echo " ✓ Demo files removed"
|
|
83
|
+
echo ""
|
|
84
|
+
|
|
85
|
+
echo "✅ Demo complete!"
|
package/package.json
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
1
|
+
{
|
|
2
|
+
"name": "ruvector",
|
|
3
|
+
"version": "0.1.1",
|
|
4
|
+
"description": "High-performance vector database for Node.js with automatic native/WASM fallback",
|
|
5
|
+
"main": "dist/index.js",
|
|
6
|
+
"types": "dist/index.d.ts",
|
|
7
|
+
"bin": {
|
|
8
|
+
"ruvector": "./bin/cli.js"
|
|
9
|
+
},
|
|
10
|
+
"scripts": {
|
|
11
|
+
"build": "tsc",
|
|
12
|
+
"prepublishOnly": "npm run build",
|
|
13
|
+
"test": "node test/integration.js"
|
|
14
|
+
},
|
|
15
|
+
"keywords": [
|
|
16
|
+
"vector",
|
|
17
|
+
"database",
|
|
18
|
+
"vector-database",
|
|
19
|
+
"vector-search",
|
|
20
|
+
"similarity-search",
|
|
21
|
+
"semantic-search",
|
|
22
|
+
"embeddings",
|
|
23
|
+
"hnsw",
|
|
24
|
+
"ann",
|
|
25
|
+
"ai",
|
|
26
|
+
"machine-learning",
|
|
27
|
+
"rag",
|
|
28
|
+
"rust",
|
|
29
|
+
"wasm",
|
|
30
|
+
"native",
|
|
31
|
+
"ruv",
|
|
32
|
+
"ruvector"
|
|
33
|
+
],
|
|
34
|
+
"author": "ruv.io Team <info@ruv.io> (https://ruv.io)",
|
|
35
|
+
"homepage": "https://ruv.io",
|
|
36
|
+
"bugs": {
|
|
37
|
+
"url": "https://github.com/ruvnet/ruvector/issues"
|
|
38
|
+
},
|
|
39
|
+
"license": "MIT",
|
|
40
|
+
"repository": {
|
|
41
|
+
"type": "git",
|
|
42
|
+
"url": "https://github.com/ruvnet/ruvector.git",
|
|
43
|
+
"directory": "npm/packages/ruvector"
|
|
44
|
+
},
|
|
45
|
+
"dependencies": {
|
|
46
|
+
"ruvector-core": "^0.1.1",
|
|
47
|
+
"commander": "^11.1.0",
|
|
48
|
+
"chalk": "^4.1.2",
|
|
49
|
+
"ora": "^5.4.1"
|
|
50
|
+
},
|
|
51
|
+
"optionalDependencies": {
|
|
52
|
+
"ruvector-wasm": "^0.1.1"
|
|
53
|
+
},
|
|
54
|
+
"devDependencies": {
|
|
55
|
+
"@types/node": "^20.10.5",
|
|
56
|
+
"typescript": "^5.3.3"
|
|
57
|
+
},
|
|
58
|
+
"engines": {
|
|
59
|
+
"node": ">=14.0.0"
|
|
60
|
+
}
|
|
61
|
+
}
|