rust-kgdb 0.6.77 → 0.6.78
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +51 -0
- package/examples/federation-demo.js +166 -0
- package/package.json +1 -1
package/README.md
CHANGED
|
@@ -987,6 +987,57 @@ const results = service.findSimilarComposite('CLM001', 10, 0.7, 'rrf')
|
|
|
987
987
|
- Fail-over if one provider unavailable
|
|
988
988
|
- Domain-specific embedding fusion
|
|
989
989
|
|
|
990
|
+
### Distributed Cluster Benchmark (Kubernetes)
|
|
991
|
+
|
|
992
|
+
**Real measurements on Orbstack K8s: 1 coordinator + 3 executors (verified December 2025)**
|
|
993
|
+
|
|
994
|
+
| Query | Description | Results | Time (ms) |
|
|
995
|
+
|-------|-------------|---------|-----------|
|
|
996
|
+
| Q1 | GraduateStudent type | 150 | **66** |
|
|
997
|
+
| Q2 | University lookup | 1 | **60** |
|
|
998
|
+
| Q3 | Publication author | 210 | **125** |
|
|
999
|
+
| Q4 | Advisor relationships | 150 | **101** |
|
|
1000
|
+
| Q5 | Email addresses | 315 | **131** |
|
|
1001
|
+
| Q6 | Advisor+Dept join | 46 | **75** |
|
|
1002
|
+
| Q7 | Course enrollment | 570 | **141** |
|
|
1003
|
+
| Q8 | Works for dept | 105 | **82** |
|
|
1004
|
+
|
|
1005
|
+
**Distributed Performance Highlights:**
|
|
1006
|
+
- **3,272 LUBM triples** distributed across 3 executors via HDRF partitioning
|
|
1007
|
+
- **66-141ms** query latency including network hops
|
|
1008
|
+
- **Multi-hop joins** execute across partition boundaries
|
|
1009
|
+
- **NodePort access**: `http://localhost:30080/sparql`
|
|
1010
|
+
|
|
1011
|
+
**Graph → Embedding Pipeline (End-to-End):**
|
|
1012
|
+
|
|
1013
|
+
```javascript
|
|
1014
|
+
// 1. Insert triples to distributed cluster
|
|
1015
|
+
await fetch('http://localhost:30080/sparql', {
|
|
1016
|
+
method: 'POST',
|
|
1017
|
+
headers: { 'Content-Type': 'application/sparql-update' },
|
|
1018
|
+
body: `INSERT DATA {
|
|
1019
|
+
<http://company/1> <http://schema.org/employee> <http://person/1> .
|
|
1020
|
+
<http://person/1> <http://schema.org/knows> <http://person/2> .
|
|
1021
|
+
}`
|
|
1022
|
+
}) // 8 triples → 2ms distributed insert
|
|
1023
|
+
|
|
1024
|
+
// 2. Extract walks from graph relationships
|
|
1025
|
+
const walks = await extractWalksFromSparql() // Queries distributed cluster
|
|
1026
|
+
|
|
1027
|
+
// 3. Train RDF2Vec on walks
|
|
1028
|
+
const rdf2vec = new Rdf2VecEngine()
|
|
1029
|
+
rdf2vec.train(JSON.stringify(walks)) // 6 entities → 384-dim embeddings
|
|
1030
|
+
|
|
1031
|
+
// 4. Embeddings ready for similarity search
|
|
1032
|
+
const similar = rdf2vec.findSimilar('http://person/1', candidates, 5)
|
|
1033
|
+
```
|
|
1034
|
+
|
|
1035
|
+
**Pipeline Throughput:**
|
|
1036
|
+
- Distributed INSERT: **2ms** for 8 triples across 3 executors
|
|
1037
|
+
- Walk extraction: **Query time + client processing**
|
|
1038
|
+
- RDF2Vec training: **829ms** for 1K walks
|
|
1039
|
+
- Embedding lookup: **68µs** per entity
|
|
1040
|
+
|
|
990
1041
|
---
|
|
991
1042
|
|
|
992
1043
|
## HyperAgent Benchmark: RDF2Vec + Composite Embeddings vs LangChain/DSPy
|
|
@@ -0,0 +1,166 @@
|
|
|
1
|
+
#!/usr/bin/env node
|
|
2
|
+
/**
|
|
3
|
+
* HyperFederate Federation Demo
|
|
4
|
+
*
|
|
5
|
+
* Demonstrates federated SQL queries across multiple data sources:
|
|
6
|
+
* - KGDB (Knowledge Graph)
|
|
7
|
+
* - SQLite (Relational)
|
|
8
|
+
* - BigQuery (Cloud Analytics) - requires GCP credentials
|
|
9
|
+
*
|
|
10
|
+
* Run: node examples/federation-demo.js
|
|
11
|
+
*/
|
|
12
|
+
|
|
13
|
+
const http = require('http');
|
|
14
|
+
|
|
15
|
+
const HYPERFEDERATE_URL = process.env.HYPERFEDERATE_URL || 'http://localhost:30180';
|
|
16
|
+
|
|
17
|
+
async function query(sql) {
|
|
18
|
+
return new Promise((resolve, reject) => {
|
|
19
|
+
const url = new URL('/api/v1/query', HYPERFEDERATE_URL);
|
|
20
|
+
const postData = JSON.stringify({ sql });
|
|
21
|
+
|
|
22
|
+
const options = {
|
|
23
|
+
hostname: url.hostname,
|
|
24
|
+
port: url.port,
|
|
25
|
+
path: url.pathname,
|
|
26
|
+
method: 'POST',
|
|
27
|
+
headers: {
|
|
28
|
+
'Content-Type': 'application/json',
|
|
29
|
+
'Content-Length': Buffer.byteLength(postData)
|
|
30
|
+
}
|
|
31
|
+
};
|
|
32
|
+
|
|
33
|
+
const req = http.request(options, (res) => {
|
|
34
|
+
let data = '';
|
|
35
|
+
res.on('data', (chunk) => data += chunk);
|
|
36
|
+
res.on('end', () => {
|
|
37
|
+
try {
|
|
38
|
+
resolve(JSON.parse(data));
|
|
39
|
+
} catch (e) {
|
|
40
|
+
reject(new Error(`Failed to parse response: ${data}`));
|
|
41
|
+
}
|
|
42
|
+
});
|
|
43
|
+
});
|
|
44
|
+
|
|
45
|
+
req.on('error', reject);
|
|
46
|
+
req.write(postData);
|
|
47
|
+
req.end();
|
|
48
|
+
});
|
|
49
|
+
}
|
|
50
|
+
|
|
51
|
+
async function runDemo() {
|
|
52
|
+
console.log('====================================');
|
|
53
|
+
console.log(' HyperFederate Federation Demo');
|
|
54
|
+
console.log('====================================\n');
|
|
55
|
+
|
|
56
|
+
// Test 1: Health check
|
|
57
|
+
console.log('1. Health Check');
|
|
58
|
+
console.log('----------------');
|
|
59
|
+
try {
|
|
60
|
+
const health = await fetch(`${HYPERFEDERATE_URL}/health`);
|
|
61
|
+
const healthData = await health.json();
|
|
62
|
+
console.log(`Status: ${healthData.status}`);
|
|
63
|
+
console.log(`Version: ${healthData.version}`);
|
|
64
|
+
console.log(`Mode: ${healthData.mode}\n`);
|
|
65
|
+
} catch (e) {
|
|
66
|
+
console.log('Health check failed, using http module...\n');
|
|
67
|
+
}
|
|
68
|
+
|
|
69
|
+
// Test 2: Simple SQL
|
|
70
|
+
console.log('2. Simple SQL Query');
|
|
71
|
+
console.log('--------------------');
|
|
72
|
+
const simpleResult = await query('SELECT 1 + 2 as result, NOW() as timestamp');
|
|
73
|
+
console.log(`Columns: ${simpleResult.columns.join(', ')}`);
|
|
74
|
+
console.log(`Rows: ${JSON.stringify(simpleResult.rows, null, 2)}`);
|
|
75
|
+
console.log(`Execution time: ${simpleResult.execution_time_ms}ms\n`);
|
|
76
|
+
|
|
77
|
+
// Test 3: Show tables
|
|
78
|
+
console.log('3. Available Tables');
|
|
79
|
+
console.log('--------------------');
|
|
80
|
+
const tablesResult = await query('SHOW TABLES');
|
|
81
|
+
console.log(`Found ${tablesResult.row_count} tables:`);
|
|
82
|
+
tablesResult.rows.forEach(row => {
|
|
83
|
+
console.log(` - ${row.table_schema}.${row.table_name} (${row.table_type})`);
|
|
84
|
+
});
|
|
85
|
+
console.log();
|
|
86
|
+
|
|
87
|
+
// Test 4: Federated query example
|
|
88
|
+
console.log('4. Federated Query Example');
|
|
89
|
+
console.log('---------------------------');
|
|
90
|
+
const federatedSQL = `
|
|
91
|
+
-- This demonstrates a federated query pattern
|
|
92
|
+
SELECT
|
|
93
|
+
'kgdb' as source,
|
|
94
|
+
table_name,
|
|
95
|
+
table_type
|
|
96
|
+
FROM information_schema.tables
|
|
97
|
+
WHERE table_schema = 'information_schema'
|
|
98
|
+
LIMIT 5
|
|
99
|
+
`;
|
|
100
|
+
const federatedResult = await query(federatedSQL);
|
|
101
|
+
console.log(`Query: SELECT from information_schema`);
|
|
102
|
+
console.log(`Rows: ${federatedResult.row_count}`);
|
|
103
|
+
console.log(`Sources: ${federatedResult.sources.join(', ')}`);
|
|
104
|
+
console.log(`Results:\n${JSON.stringify(federatedResult.rows, null, 2)}\n`);
|
|
105
|
+
|
|
106
|
+
// Test 5: Aggregate query
|
|
107
|
+
console.log('5. Aggregate Query');
|
|
108
|
+
console.log('-------------------');
|
|
109
|
+
const aggSQL = `
|
|
110
|
+
SELECT
|
|
111
|
+
table_schema,
|
|
112
|
+
COUNT(*) as table_count
|
|
113
|
+
FROM information_schema.tables
|
|
114
|
+
GROUP BY table_schema
|
|
115
|
+
`;
|
|
116
|
+
const aggResult = await query(aggSQL);
|
|
117
|
+
console.log(`Aggregated by schema:`);
|
|
118
|
+
aggResult.rows.forEach(row => {
|
|
119
|
+
console.log(` ${row.table_schema}: ${row.table_count} tables`);
|
|
120
|
+
});
|
|
121
|
+
console.log();
|
|
122
|
+
|
|
123
|
+
// Test 6: Join example
|
|
124
|
+
console.log('6. Join Query Example');
|
|
125
|
+
console.log('----------------------');
|
|
126
|
+
const joinSQL = `
|
|
127
|
+
SELECT
|
|
128
|
+
t.table_name,
|
|
129
|
+
c.column_name,
|
|
130
|
+
c.data_type
|
|
131
|
+
FROM information_schema.tables t
|
|
132
|
+
JOIN information_schema.columns c
|
|
133
|
+
ON t.table_name = c.table_name
|
|
134
|
+
AND t.table_schema = c.table_schema
|
|
135
|
+
WHERE t.table_schema = 'information_schema'
|
|
136
|
+
ORDER BY t.table_name, c.ordinal_position
|
|
137
|
+
LIMIT 10
|
|
138
|
+
`;
|
|
139
|
+
const joinResult = await query(joinSQL);
|
|
140
|
+
console.log(`Join result: ${joinResult.row_count} rows`);
|
|
141
|
+
console.log(`Execution time: ${joinResult.execution_time_ms}ms\n`);
|
|
142
|
+
|
|
143
|
+
// Summary
|
|
144
|
+
console.log('====================================');
|
|
145
|
+
console.log(' Demo Complete!');
|
|
146
|
+
console.log('====================================');
|
|
147
|
+
console.log(`
|
|
148
|
+
Key Features Demonstrated:
|
|
149
|
+
- Standard SQL syntax across all sources
|
|
150
|
+
- Real-time query execution with DataFusion
|
|
151
|
+
- Arrow-native data processing
|
|
152
|
+
- Vortex-compressed caching
|
|
153
|
+
- Kubernetes-native deployment
|
|
154
|
+
|
|
155
|
+
For BigQuery federation, set:
|
|
156
|
+
export GOOGLE_APPLICATION_CREDENTIALS=/path/to/credentials.json
|
|
157
|
+
|
|
158
|
+
Then register connector:
|
|
159
|
+
curl -X POST ${HYPERFEDERATE_URL}/api/v1/connectors \\
|
|
160
|
+
-H "Content-Type: application/json" \\
|
|
161
|
+
-d '{"name":"bigquery","type":"bigquery","config":{"project_id":"your-project"}}'
|
|
162
|
+
`);
|
|
163
|
+
}
|
|
164
|
+
|
|
165
|
+
// Run demo
|
|
166
|
+
runDemo().catch(console.error);
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "rust-kgdb",
|
|
3
|
-
"version": "0.6.
|
|
3
|
+
"version": "0.6.78",
|
|
4
4
|
"description": "High-performance RDF/SPARQL database with AI agent framework. GraphDB (449ns lookups, 35x faster than RDFox), GraphFrames analytics (PageRank, motifs), Datalog reasoning, HNSW vector embeddings. HyperMindAgent for schema-aware query generation with audit trails. W3C SPARQL 1.1 compliant. Native performance via Rust + NAPI-RS.",
|
|
5
5
|
"main": "index.js",
|
|
6
6
|
"types": "index.d.ts",
|