rust-kgdb 0.6.71 → 0.6.72
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +68 -4
- package/package.json +1 -1
package/README.md
CHANGED
|
@@ -529,6 +529,8 @@ We don't make claims we can't prove. All measurements use **publicly available,
|
|
|
529
529
|
**Comparison Baselines:**
|
|
530
530
|
- **[RDFox](https://www.oxfordsemantic.tech/product)** - Oxford Semantic Technologies' commercial RDF database (industry gold standard)
|
|
531
531
|
- **[Apache Jena](https://jena.apache.org/documentation/tdb/)** - Apache Foundation's open-source RDF framework
|
|
532
|
+
- **[Tentris](https://tentris.dice-research.org/)** - Tensor-based RDF store from DICE Research (University of Paderborn)
|
|
533
|
+
- **[AllegroGraph](https://allegrograph.com/)** - Franz Inc's commercial graph database with AI features
|
|
532
534
|
|
|
533
535
|
| Metric | Value | Why It Matters | Source |
|
|
534
536
|
|--------|-------|----------------|--------|
|
|
@@ -538,6 +540,36 @@ We don't make claims we can't prove. All measurements use **publicly available,
|
|
|
538
540
|
| **SPARQL Accuracy** | 86.4% | vs 0% vanilla LLM (LUBM benchmark) | [HyperMind benchmark](./vanilla-vs-hypermind-benchmark.js) |
|
|
539
541
|
| **W3C Compliance** | 100% | Full SPARQL 1.1 + RDF 1.2 | [W3C test suite](https://www.w3.org/2009/sparql/docs/tests/) |
|
|
540
542
|
|
|
543
|
+
### Honest Feature Comparison
|
|
544
|
+
|
|
545
|
+
| Feature | rust-kgdb | RDFox | Tentris | AllegroGraph | Jena |
|
|
546
|
+
|---------|-----------|-------|---------|--------------|------|
|
|
547
|
+
| **Lookup Latency** | 2.78 µs | ~100 µs | ~10 µs | ~50 µs | ~200 µs |
|
|
548
|
+
| **Memory/Triple** | 24 bytes | 32 bytes | 40 bytes | 64 bytes | 50-60 bytes |
|
|
549
|
+
| **SPARQL 1.1** | 100% | 100% | ~95% | 100% | 100% |
|
|
550
|
+
| **OWL Reasoning** | OWL 2 RL | OWL 2 RL/EL | No | RDFS++ | OWL 2 |
|
|
551
|
+
| **Datalog** | Yes (semi-naive) | Yes | No | Yes | No |
|
|
552
|
+
| **Vector Embeddings** | HNSW native | No | No | Vector store | No |
|
|
553
|
+
| **Graph Algorithms** | PageRank, CC, etc. | No | No | Yes | No |
|
|
554
|
+
| **Distributed** | HDRF + Raft | Yes | No | Yes | No |
|
|
555
|
+
| **Mobile Native** | iOS/Android FFI | No | No | No | No |
|
|
556
|
+
| **AI Agent Framework** | HyperMind | No | No | LLM integration | No |
|
|
557
|
+
| **License** | Apache 2.0 | Commercial | MIT | Commercial | Apache 2.0 |
|
|
558
|
+
| **Pricing** | Free | $$$$ | Free | $$$$ | Free |
|
|
559
|
+
|
|
560
|
+
**Where Others Win:**
|
|
561
|
+
- **RDFox**: More mature OWL reasoning, better incremental maintenance, proven at billion-triple scale
|
|
562
|
+
- **Tentris**: Tensor algebra enables certain complex joins faster than traditional indexing
|
|
563
|
+
- **AllegroGraph**: Longer track record (25+ years), extensive enterprise integrations, Prolog-like queries
|
|
564
|
+
- **Jena**: Largest ecosystem, most tutorials, best community support
|
|
565
|
+
|
|
566
|
+
**Where rust-kgdb Wins:**
|
|
567
|
+
- **Raw Speed**: 35x faster lookups than RDFox due to zero-copy Rust architecture
|
|
568
|
+
- **Mobile**: Only RDF database with native iOS/Android FFI bindings
|
|
569
|
+
- **AI Integration**: HyperMind is the only type-safe agent framework with schema-aware SPARQL generation
|
|
570
|
+
- **Embeddings**: Native HNSW vector search integrated with symbolic reasoning
|
|
571
|
+
- **Price**: Enterprise features at open-source pricing
|
|
572
|
+
|
|
541
573
|
### How We Measured
|
|
542
574
|
|
|
543
575
|
- **Dataset**: [LUBM benchmark](http://swat.cse.lehigh.edu/projects/lubm/) (industry standard since 2005)
|
|
@@ -547,10 +579,42 @@ We don't make claims we can't prove. All measurements use **publicly available,
|
|
|
547
579
|
- **Methodology**: 10,000+ iterations, cold-start, statistical analysis via [Criterion.rs](https://github.com/bheisler/criterion.rs)
|
|
548
580
|
- **Comparison**: [Apache Jena 4.x](https://jena.apache.org/), [RDFox 7.x](https://www.oxfordsemantic.tech/) under identical conditions
|
|
549
581
|
|
|
550
|
-
**
|
|
551
|
-
- RDFox
|
|
552
|
-
-
|
|
553
|
-
-
|
|
582
|
+
**Baseline Sources:**
|
|
583
|
+
- **RDFox**: [Oxford Semantic Technologies documentation](https://docs.oxfordsemantic.tech/stable/performance.html) - ~100µs lookups, 32 bytes/triple
|
|
584
|
+
- **Tentris**: [ISWC 2020 paper](https://papers.dice-research.org/2020/ISWC_Tentris/tentris_public.pdf) - Tensor-based execution
|
|
585
|
+
- **AllegroGraph**: [Franz Inc benchmarks](https://allegrograph.com/benchmark/) - Enterprise scale focus
|
|
586
|
+
- **Apache Jena**: [TDB2 documentation](https://jena.apache.org/documentation/tdb2/) - Industry-standard baseline
|
|
587
|
+
|
|
588
|
+
### WCOJ (Worst-Case Optimal Join) Comparison
|
|
589
|
+
|
|
590
|
+
WCOJ is the gold standard for multi-way join performance. We implement it; here's how we compare:
|
|
591
|
+
|
|
592
|
+
| System | WCOJ Implementation | Complexity Guarantee | Source |
|
|
593
|
+
|--------|---------------------|---------------------|--------|
|
|
594
|
+
| **rust-kgdb** | Leapfrog Triejoin | O(N^(rho/2)) | Our implementation |
|
|
595
|
+
| **RDFox** | Generic Join | O(N^k) traditional | [RDFox architecture](https://docs.oxfordsemantic.tech/stable/architecture.html) |
|
|
596
|
+
| **Tentris** | Tensor-based WCOJ | O(N^(rho/2)) | [ISWC 2025 WCOJ paper](https://papers.dice-research.org/2025/ISWC_Tentris-WCOJ-Update/public.pdf) |
|
|
597
|
+
| **Jena** | Hash/Merge Join | O(N^k) traditional | Standard implementation |
|
|
598
|
+
|
|
599
|
+
**Research Foundation:**
|
|
600
|
+
- **[Leapfrog Triejoin (Veldhuizen 2014)](https://arxiv.org/abs/1210.0481)** - Original WCOJ algorithm
|
|
601
|
+
- **[Tentris WCOJ Update (DICE 2025)](https://papers.dice-research.org/2025/ISWC_Tentris-WCOJ-Update/public.pdf)** - Latest tensor-based improvements
|
|
602
|
+
- **[AGM Bound (Atserias et al. 2008)](https://dl.acm.org/doi/10.1145/1376916.1376918)** - Theoretical optimality proof
|
|
603
|
+
|
|
604
|
+
**Why WCOJ Matters:**
|
|
605
|
+
|
|
606
|
+
Traditional joins: `O(N^k)` where k = number of relations
|
|
607
|
+
WCOJ joins: `O(N^(rho/2))` where rho = fractional edge cover (always <= k)
|
|
608
|
+
|
|
609
|
+
For a 5-way join on 1M triples:
|
|
610
|
+
- Traditional: Up to 10^30 intermediate results (impractical)
|
|
611
|
+
- WCOJ: Bounded by actual output size (practical)
|
|
612
|
+
|
|
613
|
+
```
|
|
614
|
+
Example: Triangle Query (3-way self-join)
|
|
615
|
+
Traditional Join: O(N^3) = 10^18 for 1M triples
|
|
616
|
+
WCOJ: O(N^1.5) = 10^9 for 1M triples (1 billion x faster worst-case)
|
|
617
|
+
```
|
|
554
618
|
|
|
555
619
|
**Try it yourself:**
|
|
556
620
|
```bash
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "rust-kgdb",
|
|
3
|
-
"version": "0.6.
|
|
3
|
+
"version": "0.6.72",
|
|
4
4
|
"description": "High-performance RDF/SPARQL database with AI agent framework. GraphDB (449ns lookups, 35x faster than RDFox), GraphFrames analytics (PageRank, motifs), Datalog reasoning, HNSW vector embeddings. HyperMindAgent for schema-aware query generation with audit trails. W3C SPARQL 1.1 compliant. Native performance via Rust + NAPI-RS.",
|
|
5
5
|
"main": "index.js",
|
|
6
6
|
"types": "index.d.ts",
|