rust-kgdb 0.6.52 → 0.6.54
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +53 -0
- package/README.md +52 -1
- package/package.json +1 -1
package/CHANGELOG.md
CHANGED
|
@@ -2,6 +2,59 @@
|
|
|
2
2
|
|
|
3
3
|
All notable changes to the rust-kgdb TypeScript SDK will be documented in this file.
|
|
4
4
|
|
|
5
|
+
## [0.6.54] - 2025-12-17
|
|
6
|
+
|
|
7
|
+
### Embedded Database: Game Changer
|
|
8
|
+
|
|
9
|
+
#### Added "No Installation Required" Section
|
|
10
|
+
Highlights the key advantage of rust-kgdb as an embedded database:
|
|
11
|
+
|
|
12
|
+
**Traditional Approach**:
|
|
13
|
+
- Install database server (RDFox, Virtuoso, Neo4j)
|
|
14
|
+
- Configure connections, ports, authentication
|
|
15
|
+
- Network latency on every query
|
|
16
|
+
- DevOps overhead
|
|
17
|
+
|
|
18
|
+
**rust-kgdb Embedded**:
|
|
19
|
+
- `npm install rust-kgdb` - that's it
|
|
20
|
+
- No server, no Docker, no configuration
|
|
21
|
+
- Zero network latency (same process)
|
|
22
|
+
- Deploy as single binary
|
|
23
|
+
|
|
24
|
+
**Why This Matters**:
|
|
25
|
+
- "SQLite for RDF" - embedded simplicity with full SPARQL power
|
|
26
|
+
- 449ns lookups - no network roundtrip
|
|
27
|
+
- Ship as one file
|
|
28
|
+
|
|
29
|
+
#### Scale Path: Embedded → Cluster
|
|
30
|
+
```
|
|
31
|
+
Embedded (single node) → Clustered (distributed)
|
|
32
|
+
npm install K8s deployment
|
|
33
|
+
No config HDRF partitioning
|
|
34
|
+
Millions of triples Billions of triples
|
|
35
|
+
```
|
|
36
|
+
|
|
37
|
+
---
|
|
38
|
+
|
|
39
|
+
## [0.6.53] - 2025-12-17
|
|
40
|
+
|
|
41
|
+
### Scalability & Deep Flashback Memory
|
|
42
|
+
|
|
43
|
+
#### Added Rust Core Scalability Numbers
|
|
44
|
+
Verified benchmark results:
|
|
45
|
+
| Operation | 1 Worker | 16 Workers | Scaling |
|
|
46
|
+
|-----------|----------|------------|---------|
|
|
47
|
+
| Concurrent Writes | 66K ops/sec | 132K ops/sec | 2.0x |
|
|
48
|
+
| GraphFrame Analytics | 6.0K ops/sec | 6.5K ops/sec | Thread-safe |
|
|
49
|
+
| Memory per Triple | 24 bytes | 24 bytes | Constant |
|
|
50
|
+
|
|
51
|
+
#### Clarified "Deep Flashback" Memory Advantage
|
|
52
|
+
- **Why it matters**: We can retrieve relevant past queries from 10,000+ history entries
|
|
53
|
+
- **Performance**: 94% Recall@10 accuracy in 16.7ms
|
|
54
|
+
- **Advantage**: Built-in vs requiring external vector DB (Pinecone, Chroma, etc.)
|
|
55
|
+
|
|
56
|
+
---
|
|
57
|
+
|
|
5
58
|
## [0.6.52] - 2025-12-17
|
|
6
59
|
|
|
7
60
|
### Added W3C Standards Support
|
package/README.md
CHANGED
|
@@ -65,6 +65,16 @@
|
|
|
65
65
|
| **ARCADE Cache** | 1-hop neighbor pre-caching | O(1) context |
|
|
66
66
|
| **Storage** | InMemory, RocksDB, LMDB backends | 24 bytes/triple |
|
|
67
67
|
|
|
68
|
+
**Scalability Numbers (Verified Benchmark)**:
|
|
69
|
+
|
|
70
|
+
| Operation | 1 Worker | 16 Workers | Scaling |
|
|
71
|
+
|-----------|----------|------------|---------|
|
|
72
|
+
| Concurrent Writes | 66K ops/sec | 132K ops/sec | 2.0x |
|
|
73
|
+
| GraphFrame Analytics | 6.0K ops/sec | 6.5K ops/sec | Thread-safe |
|
|
74
|
+
| Memory per Triple | 24 bytes | 24 bytes | Constant |
|
|
75
|
+
|
|
76
|
+
Reproduce: `node concurrency-benchmark.js`
|
|
77
|
+
|
|
68
78
|
### Layer 2: HyperMind Agent Framework (JavaScript)
|
|
69
79
|
|
|
70
80
|
| Component | What It Does |
|
|
@@ -96,6 +106,45 @@
|
|
|
96
106
|
|
|
97
107
|
**Think of it as**: A knowledge graph database (Rust, native performance) with an AI agent runtime (JavaScript, WASM-sandboxed) on top. The database provides ground truth. The runtime makes it accessible via natural language with full security and audit trails.
|
|
98
108
|
|
|
109
|
+
### Game Changer: Embedded Database (No Installation)
|
|
110
|
+
|
|
111
|
+
```
|
|
112
|
+
┌─────────────────────────────────────────────────────────────────────────────┐
|
|
113
|
+
│ TRADITIONAL APPROACH │
|
|
114
|
+
│ ─────────────────────── │
|
|
115
|
+
│ Your App → HTTP/gRPC → Database Server → Disk │
|
|
116
|
+
│ │
|
|
117
|
+
│ • Install database server (RDFox, Virtuoso, Neo4j) │
|
|
118
|
+
│ • Configure connections, ports, authentication │
|
|
119
|
+
│ • Network latency on every query │
|
|
120
|
+
│ • DevOps overhead for maintenance │
|
|
121
|
+
└─────────────────────────────────────────────────────────────────────────────┘
|
|
122
|
+
|
|
123
|
+
┌─────────────────────────────────────────────────────────────────────────────┐
|
|
124
|
+
│ rust-kgdb: EMBEDDED │
|
|
125
|
+
│ ────────────────────── │
|
|
126
|
+
│ Your App ← contains → rust-kgdb (native addon) │
|
|
127
|
+
│ │
|
|
128
|
+
│ • npm install rust-kgdb - that's it │
|
|
129
|
+
│ • No server, no Docker, no configuration │
|
|
130
|
+
│ • Zero network latency (same process) │
|
|
131
|
+
│ • Deploy as single binary │
|
|
132
|
+
└─────────────────────────────────────────────────────────────────────────────┘
|
|
133
|
+
```
|
|
134
|
+
|
|
135
|
+
**Why This Matters**:
|
|
136
|
+
- **SQLite for RDF**: Like SQLite replaced MySQL for embedded use cases
|
|
137
|
+
- **449ns lookups**: No network roundtrip - direct memory access
|
|
138
|
+
- **Ship as one file**: Your app + database = single deployable
|
|
139
|
+
|
|
140
|
+
**Scale When You Need To**: Start embedded, scale to cluster when required:
|
|
141
|
+
```
|
|
142
|
+
Embedded (single node) → Clustered (distributed)
|
|
143
|
+
npm install K8s deployment
|
|
144
|
+
No config HDRF partitioning
|
|
145
|
+
Millions of triples Billions of triples
|
|
146
|
+
```
|
|
147
|
+
|
|
99
148
|
---
|
|
100
149
|
|
|
101
150
|
## Core Concepts: What We Bring and Why
|
|
@@ -158,7 +207,9 @@
|
|
|
158
207
|
| **Data Storage** | Built-in QuadStore | None (BYODB) |
|
|
159
208
|
| **Query Execution** | Native SPARQL/Datalog | External DB needed |
|
|
160
209
|
| **Agent Memory** | Built-in (Working + Episodic + KG-backed) | External vector DB needed |
|
|
161
|
-
| **
|
|
210
|
+
| **Deep Flashback** | 94% Recall@10 at 10K query depth (16.7ms) | Limited by external provider |
|
|
211
|
+
|
|
212
|
+
**Why Agent Memory Matters**: We can retrieve relevant past queries from 10,000+ history entries with 94% accuracy in 16.7ms. This enables "flashback" to any past interaction - LangChain/DSPy require external vector DBs for this capability.
|
|
162
213
|
|
|
163
214
|
**Built-in Capabilities (No External Dependencies)**:
|
|
164
215
|
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "rust-kgdb",
|
|
3
|
-
"version": "0.6.
|
|
3
|
+
"version": "0.6.54",
|
|
4
4
|
"description": "High-performance RDF/SPARQL database with AI agent framework. GraphDB (449ns lookups, 35x faster than RDFox), GraphFrames analytics (PageRank, motifs), Datalog reasoning, HNSW vector embeddings. HyperMindAgent for schema-aware query generation with audit trails. W3C SPARQL 1.1 compliant. Native performance via Rust + NAPI-RS.",
|
|
5
5
|
"main": "index.js",
|
|
6
6
|
"types": "index.d.ts",
|