rust-kgdb 0.6.48 → 0.6.49

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (3) hide show
  1. package/CHANGELOG.md +29 -0
  2. package/README.md +24 -0
  3. package/package.json +1 -1
package/CHANGELOG.md CHANGED
@@ -2,6 +2,35 @@
2
2
 
3
3
  All notable changes to the rust-kgdb TypeScript SDK will be documented in this file.
4
4
 
5
+ ## [0.6.49] - 2025-12-17
6
+
7
+ ### Core Concepts Section Added
8
+
9
+ #### New "What We Bring and Why" Section
10
+ Simple Problem → Solution format explaining our 5 core innovations:
11
+
12
+ 1. **Schema-Aware Query Generation**
13
+ - Problem: LLMs hallucinate predicates
14
+ - Solution: Auto-extract schema, inject into prompts
15
+
16
+ 2. **Built-in Database (Not BYODB)**
17
+ - Problem: Other frameworks generate queries but need external DB
18
+ - Solution: rust-kgdb IS the database
19
+
20
+ 3. **Audit Trail (Provenance)**
21
+ - Problem: Where did that answer come from?
22
+ - Solution: Full reasoning trace with every answer
23
+
24
+ 4. **Deterministic Execution**
25
+ - Problem: Same question → different answers
26
+ - Solution: Same hash for same input (compliance-ready)
27
+
28
+ 5. **ARCADE 1-Hop Cache**
29
+ - Problem: Slow embedding neighborhood lookups
30
+ - Solution: Pre-cached 1-hop neighbors for O(1) context
31
+
32
+ ---
33
+
5
34
  ## [0.6.48] - 2025-12-17
6
35
 
7
36
  ### Clearer Product Definition
package/README.md CHANGED
@@ -25,6 +25,30 @@
25
25
 
26
26
  ---
27
27
 
28
+ ## Core Concepts: What We Bring and Why
29
+
30
+ ### 1. Schema-Aware Query Generation
31
+ **Problem**: LLMs generate SPARQL with made-up predicates (`?person :fakeProperty ?value`).
32
+ **Solution**: We auto-extract your schema and inject it into prompts. The LLM can ONLY reference predicates that actually exist in your data.
33
+
34
+ ### 2. Built-in Database (Not BYODB)
35
+ **Problem**: LangChain/DSPy generate queries, but you need to find a database to run them.
36
+ **Solution**: rust-kgdb IS the database. Generate query → Execute query → Return results. All in one package.
37
+
38
+ ### 3. Audit Trail (Provenance)
39
+ **Problem**: LLM says "Provider P001 is suspicious" - where did that come from?
40
+ **Solution**: Every answer includes a reasoning trace showing which SPARQL queries ran, which rules matched, and what data was found.
41
+
42
+ ### 4. Deterministic Execution
43
+ **Problem**: Ask the same question twice, get different answers.
44
+ **Solution**: Same input → Same query → Same database → Same result → Same hash. Reproducible for compliance.
45
+
46
+ ### 5. ARCADE 1-Hop Cache
47
+ **Problem**: Embedding lookups are slow when you need neighborhood context.
48
+ **Solution**: Pre-cache 1-hop neighbors. When you find "Provider", instantly know its outgoing predicates (hasRiskScore, hasClaim) without another query.
49
+
50
+ ---
51
+
28
52
  ## AI Answers You Can Trust
29
53
 
30
54
  **The Problem**: LLMs hallucinate. They make up facts, invent data, and confidently state falsehoods. In regulated industries (finance, healthcare, legal), this is not just annoying—it's a liability.
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "rust-kgdb",
3
- "version": "0.6.48",
3
+ "version": "0.6.49",
4
4
  "description": "High-performance RDF/SPARQL database with AI agent framework. GraphDB (449ns lookups, 35x faster than RDFox), GraphFrames analytics (PageRank, motifs), Datalog reasoning, HNSW vector embeddings. HyperMindAgent for schema-aware query generation with audit trails. W3C SPARQL 1.1 compliant. Native performance via Rust + NAPI-RS.",
5
5
  "main": "index.js",
6
6
  "types": "index.d.ts",