rust-kgdb 0.6.47 → 0.6.48
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +26 -0
- package/README.md +23 -2
- package/package.json +1 -1
package/CHANGELOG.md
CHANGED
|
@@ -2,6 +2,32 @@
|
|
|
2
2
|
|
|
3
3
|
All notable changes to the rust-kgdb TypeScript SDK will be documented in this file.
|
|
4
4
|
|
|
5
|
+
## [0.6.48] - 2025-12-17
|
|
6
|
+
|
|
7
|
+
### Clearer Product Definition
|
|
8
|
+
|
|
9
|
+
#### Added "What Is This?" Section
|
|
10
|
+
New section at the very top of README explaining:
|
|
11
|
+
|
|
12
|
+
1. **rust-kgdb** = High-Performance RDF Database (Rust core)
|
|
13
|
+
- SPARQL 1.1 query engine (449ns lookups)
|
|
14
|
+
- GraphFrames, Datalog, HNSW embeddings
|
|
15
|
+
|
|
16
|
+
2. **HyperMind Agent Framework** = AI agent layer (JavaScript)
|
|
17
|
+
- Natural language queries
|
|
18
|
+
- Schema auto-extraction
|
|
19
|
+
- Audit trail
|
|
20
|
+
|
|
21
|
+
**Summary**: "A knowledge graph database with an AI agent layer on top."
|
|
22
|
+
|
|
23
|
+
#### Fixed Misleading +14.3pp Claim
|
|
24
|
+
- **Old (wrong)**: "HyperMind's +14.3pp comes from predicate resolver"
|
|
25
|
+
- **New (correct)**: DSPy gets 14.3% WITHOUT schema due to structured output format
|
|
26
|
+
|
|
27
|
+
**Fact check**: All frameworks achieve identical 71.4% WITH schema.
|
|
28
|
+
|
|
29
|
+
---
|
|
30
|
+
|
|
5
31
|
## [0.6.47] - 2025-12-17
|
|
6
32
|
|
|
7
33
|
### Memory Retrieval Depth Benchmark Added
|
package/README.md
CHANGED
|
@@ -4,6 +4,27 @@
|
|
|
4
4
|
[](https://opensource.org/licenses/Apache-2.0)
|
|
5
5
|
[](https://www.w3.org/TR/sparql11-query/)
|
|
6
6
|
|
|
7
|
+
## What Is This?
|
|
8
|
+
|
|
9
|
+
**rust-kgdb** is two things in one package:
|
|
10
|
+
|
|
11
|
+
1. **High-Performance RDF Database** (Rust core)
|
|
12
|
+
- SPARQL 1.1 query engine with 449ns lookup speed
|
|
13
|
+
- GraphFrames analytics (PageRank, connected components, motifs)
|
|
14
|
+
- Datalog reasoning engine
|
|
15
|
+
- HNSW vector embeddings for similarity search
|
|
16
|
+
- 35x faster than RDFox, 25% less memory
|
|
17
|
+
|
|
18
|
+
2. **HyperMind Agent Framework** (JavaScript layer)
|
|
19
|
+
- AI agents that query the database using natural language
|
|
20
|
+
- Schema auto-extraction from your data
|
|
21
|
+
- Typed tools that prevent hallucination
|
|
22
|
+
- Audit trail for every answer
|
|
23
|
+
|
|
24
|
+
**Think of it as**: A knowledge graph database with an AI agent layer on top. The database provides ground truth. The agent layer makes it accessible via natural language.
|
|
25
|
+
|
|
26
|
+
---
|
|
27
|
+
|
|
7
28
|
## AI Answers You Can Trust
|
|
8
29
|
|
|
9
30
|
**The Problem**: LLMs hallucinate. They make up facts, invent data, and confidently state falsehoods. In regulated industries (finance, healthcare, legal), this is not just annoying—it's a liability.
|
|
@@ -200,8 +221,8 @@ Based on academic benchmarks: MemQ (arXiv 2503.05193), mKGQAgent (Text2SPARQL 20
|
|
|
200
221
|
│ HONEST TRUTH: Schema injection improves ALL frameworks equally. │
|
|
201
222
|
│ Any framework + schema context achieves ~71% accuracy. │
|
|
202
223
|
│ │
|
|
203
|
-
│
|
|
204
|
-
│
|
|
224
|
+
│ NOTE: DSPy gets 14.3% WITHOUT schema (vs 0% for others) due to │
|
|
225
|
+
│ its structured output format. With schema, all converge to 71.4%. │
|
|
205
226
|
│ │
|
|
206
227
|
│ OUR REAL VALUE: We include the database. Others don't. │
|
|
207
228
|
│ - LangChain generates SPARQL → you need to find a database │
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "rust-kgdb",
|
|
3
|
-
"version": "0.6.
|
|
3
|
+
"version": "0.6.48",
|
|
4
4
|
"description": "High-performance RDF/SPARQL database with AI agent framework. GraphDB (449ns lookups, 35x faster than RDFox), GraphFrames analytics (PageRank, motifs), Datalog reasoning, HNSW vector embeddings. HyperMindAgent for schema-aware query generation with audit trails. W3C SPARQL 1.1 compliant. Native performance via Rust + NAPI-RS.",
|
|
5
5
|
"main": "index.js",
|
|
6
6
|
"types": "index.d.ts",
|