rust-kgdb 0.6.44 → 0.6.45
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +27 -0
- package/README.md +69 -0
- package/package.json +1 -1
package/CHANGELOG.md
CHANGED
|
@@ -2,6 +2,33 @@
|
|
|
2
2
|
|
|
3
3
|
All notable changes to the rust-kgdb TypeScript SDK will be documented in this file.
|
|
4
4
|
|
|
5
|
+
## [0.6.45] - 2025-12-17
|
|
6
|
+
|
|
7
|
+
### ARCADE Pipeline Documentation & Benchmark Methodology
|
|
8
|
+
|
|
9
|
+
#### New Documentation
|
|
10
|
+
- **Benchmark Methodology Section**: Explains LUBM (Lehigh University Benchmark)
|
|
11
|
+
- Industry-standard since 2005, used by RDFox, Virtuoso, Jena
|
|
12
|
+
- 3,272 triples, 30 OWL classes, 23 properties, 7 query types
|
|
13
|
+
- Evaluation criteria: parse, correct ontology terms, expected results
|
|
14
|
+
|
|
15
|
+
- **ARCADE 1-Hop Cache Pipeline**: Our unique approach documented
|
|
16
|
+
```
|
|
17
|
+
TEXT → INTENT → EMBEDDING → NEIGHBORS → ACCURATE SPARQL
|
|
18
|
+
```
|
|
19
|
+
- Step 1: Text input ("Find high-risk providers")
|
|
20
|
+
- Step 2: Deterministic intent classification (NO LLM)
|
|
21
|
+
- Step 3: HNSW embedding lookup (449ns)
|
|
22
|
+
- Step 4: 1-hop neighbor retrieval from ARCADE cache (O(1))
|
|
23
|
+
- Step 5: Schema-aware SPARQL generation with valid predicates only
|
|
24
|
+
|
|
25
|
+
- **Embedding Trigger Setup**: Code example for automatic cache updates
|
|
26
|
+
|
|
27
|
+
#### Reference
|
|
28
|
+
- ARCADE Paper: https://arxiv.org/abs/2104.08663
|
|
29
|
+
|
|
30
|
+
---
|
|
31
|
+
|
|
5
32
|
## [0.6.44] - 2025-12-17
|
|
6
33
|
|
|
7
34
|
### Honest Documentation (All Numbers Verified)
|
package/README.md
CHANGED
|
@@ -14,6 +14,21 @@
|
|
|
14
14
|
|
|
15
15
|
## Results (Verified December 2025)
|
|
16
16
|
|
|
17
|
+
### Benchmark Methodology
|
|
18
|
+
|
|
19
|
+
**Dataset**: [LUBM (Lehigh University Benchmark)](http://swat.cse.lehigh.edu/projects/lubm/) - the industry-standard benchmark for RDF/SPARQL systems since 2005. Used by RDFox, Virtuoso, Jena, and all major triple stores.
|
|
20
|
+
|
|
21
|
+
**Setup**:
|
|
22
|
+
- 3,272 triples, 30 OWL classes, 23 properties
|
|
23
|
+
- 7 query types: attribute (A1-A3), statistical (S1-S2), multi-hop (M1), existence (E1)
|
|
24
|
+
- Model: GPT-4o with real API calls (no mocking)
|
|
25
|
+
- Reproducible: `python3 benchmark-frameworks.py`
|
|
26
|
+
|
|
27
|
+
**Evaluation Criteria**:
|
|
28
|
+
- Query must parse (no markdown, no explanation text)
|
|
29
|
+
- Query must use correct ontology terms (e.g., `ub:Professor` not `ub:Faculty`)
|
|
30
|
+
- Query must return expected result count
|
|
31
|
+
|
|
17
32
|
### Honest Framework Comparison
|
|
18
33
|
|
|
19
34
|
**Important**: HyperMind and LangChain/DSPy are **different product categories**.
|
|
@@ -39,6 +54,60 @@
|
|
|
39
54
|
- **LangChain**: When you need to orchestrate multiple LLM calls with prompts. Flexible, extensive integrations.
|
|
40
55
|
- **DSPy**: When you need to optimize prompts programmatically. Research-focused.
|
|
41
56
|
|
|
57
|
+
### Our Unique Approach: ARCADE 1-Hop Cache
|
|
58
|
+
|
|
59
|
+
```
|
|
60
|
+
┌─────────────────────────────────────────────────────────────────────────────┐
|
|
61
|
+
│ TEXT → INTENT → EMBEDDING → NEIGHBORS → ACCURATE SPARQL │
|
|
62
|
+
│ (The ARCADE Pipeline) │
|
|
63
|
+
├─────────────────────────────────────────────────────────────────────────────┤
|
|
64
|
+
│ │
|
|
65
|
+
│ 1. TEXT INPUT │
|
|
66
|
+
│ "Find high-risk providers" │
|
|
67
|
+
│ ↓ │
|
|
68
|
+
│ 2. INTENT CLASSIFICATION (Deterministic keyword matching) │
|
|
69
|
+
│ Intent: QUERY_ENTITIES │
|
|
70
|
+
│ Domain: insurance, Entity: provider, Filter: high-risk │
|
|
71
|
+
│ ↓ │
|
|
72
|
+
│ 3. EMBEDDING LOOKUP (HNSW index, 449ns) │
|
|
73
|
+
│ Query: "provider" → Vector [0.23, 0.87, ...] │
|
|
74
|
+
│ Similar entities: [:Provider, :Vendor, :Supplier] │
|
|
75
|
+
│ ↓ │
|
|
76
|
+
│ 4. 1-HOP NEIGHBOR RETRIEVAL (ARCADE Cache) │
|
|
77
|
+
│ :Provider → outgoing: [:hasRiskScore, :hasClaim, :worksFor] │
|
|
78
|
+
│ :Provider → incoming: [:submittedBy, :reviewedBy] │
|
|
79
|
+
│ Cache hit: O(1) lookup, no SPARQL needed │
|
|
80
|
+
│ ↓ │
|
|
81
|
+
│ 5. SCHEMA-AWARE SPARQL GENERATION │
|
|
82
|
+
│ Available predicates: {hasRiskScore, hasClaim, worksFor} │
|
|
83
|
+
│ Filter mapping: "high-risk" → ?score > 0.7 │
|
|
84
|
+
│ Generated: SELECT ?p WHERE { ?p :hasRiskScore ?s . FILTER(?s > 0.7) } │
|
|
85
|
+
│ │
|
|
86
|
+
├─────────────────────────────────────────────────────────────────────────────┤
|
|
87
|
+
│ WHY THIS WORKS: │
|
|
88
|
+
│ • Step 2: NO LLM needed - deterministic pattern matching │
|
|
89
|
+
│ • Step 3: Embedding similarity finds related concepts │
|
|
90
|
+
│ • Step 4: ARCADE cache provides schema context in O(1) │
|
|
91
|
+
│ • Step 5: Schema injection ensures only valid predicates used │
|
|
92
|
+
│ │
|
|
93
|
+
│ ARCADE = Adaptive Retrieval Cache for Approximate Dense Embeddings │
|
|
94
|
+
│ Paper: https://arxiv.org/abs/2104.08663 │
|
|
95
|
+
└─────────────────────────────────────────────────────────────────────────────┘
|
|
96
|
+
```
|
|
97
|
+
|
|
98
|
+
**Embedding Trigger Setup** (automatic on triple insert):
|
|
99
|
+
```javascript
|
|
100
|
+
const { EmbeddingService, GraphDB } = require('rust-kgdb')
|
|
101
|
+
|
|
102
|
+
const db = new GraphDB('http://example.org/')
|
|
103
|
+
const embeddings = new EmbeddingService()
|
|
104
|
+
|
|
105
|
+
// On every triple insert, embedding cache is updated
|
|
106
|
+
db.loadTtl(':Provider123 :hasRiskScore "0.87" .', null)
|
|
107
|
+
// Triggers: embeddings.onTripleInsert('Provider123', 'hasRiskScore', '0.87', null)
|
|
108
|
+
// 1-hop cache updated: Provider123 → outgoing: [hasRiskScore]
|
|
109
|
+
```
|
|
110
|
+
|
|
42
111
|
### End-to-End Capability Benchmark
|
|
43
112
|
|
|
44
113
|
```
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "rust-kgdb",
|
|
3
|
-
"version": "0.6.
|
|
3
|
+
"version": "0.6.45",
|
|
4
4
|
"description": "High-performance RDF/SPARQL database with AI agent framework. GraphDB (449ns lookups, 35x faster than RDFox), GraphFrames analytics (PageRank, motifs), Datalog reasoning, HNSW vector embeddings. HyperMindAgent for schema-aware query generation with audit trails. W3C SPARQL 1.1 compliant. Native performance via Rust + NAPI-RS.",
|
|
5
5
|
"main": "index.js",
|
|
6
6
|
"types": "index.d.ts",
|