rust-kgdb 0.6.43 → 0.6.44
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +18 -0
- package/README.md +19 -19
- package/package.json +1 -1
package/CHANGELOG.md
CHANGED
|
@@ -2,6 +2,24 @@
|
|
|
2
2
|
|
|
3
3
|
All notable changes to the rust-kgdb TypeScript SDK will be documented in this file.
|
|
4
4
|
|
|
5
|
+
## [0.6.44] - 2025-12-17
|
|
6
|
+
|
|
7
|
+
### Honest Documentation (All Numbers Verified)
|
|
8
|
+
|
|
9
|
+
#### Fixed All Misleading Claims
|
|
10
|
+
- **Removed ALL 85.7% claims**: Our verified benchmark shows 71.4% with schema for ALL frameworks
|
|
11
|
+
- **Honest comparison**: Schema injection helps everyone equally (~71%)
|
|
12
|
+
- **Clear positioning**: We beat databases (RDFox), not LLM frameworks (different category)
|
|
13
|
+
|
|
14
|
+
#### Verified Benchmark Results (from `verified_benchmark_results.json`)
|
|
15
|
+
| Framework | No Schema | With Schema |
|
|
16
|
+
|-----------|-----------|-------------|
|
|
17
|
+
| Vanilla OpenAI | 0.0% | 71.4% |
|
|
18
|
+
| LangChain | 0.0% | 71.4% |
|
|
19
|
+
| DSPy | 14.3% | 71.4% |
|
|
20
|
+
|
|
21
|
+
---
|
|
22
|
+
|
|
5
23
|
## [0.6.43] - 2025-12-17
|
|
6
24
|
|
|
7
25
|
### Clearer Honest Benchmarks
|
package/README.md
CHANGED
|
@@ -233,9 +233,9 @@ console.log(result.hash);
|
|
|
233
233
|
│ │
|
|
234
234
|
│ TRADITIONAL (Code Gen) OUR APPROACH (Proxy Layer) │
|
|
235
235
|
│ • 2-5 seconds per query • <100ms per query (20-50x FASTER) │
|
|
236
|
-
│ •
|
|
236
|
+
│ • 0-14% accuracy (no schema) • 71% accuracy (schema auto-injected) │
|
|
237
237
|
│ • Retry loops on errors • No retries needed │
|
|
238
|
-
│ • $0.01-0.05 per query • <$0.001 per query (
|
|
238
|
+
│ • $0.01-0.05 per query • <$0.001 per query (cached patterns) │
|
|
239
239
|
│ │
|
|
240
240
|
├───────────────────────────────────────────────────────────────────────────┤
|
|
241
241
|
│ WHY NO CODE GENERATION: │
|
|
@@ -286,7 +286,7 @@ OUR APPROACH: User → Proxied Objects → WASM Sandbox → RPC → Real S
|
|
|
286
286
|
└── Every answer has derivation chain
|
|
287
287
|
└── Deterministic hash for reproducibility
|
|
288
288
|
|
|
289
|
-
(
|
|
289
|
+
(71% accuracy with schema, <100ms/query, <$0.001/query)
|
|
290
290
|
```
|
|
291
291
|
|
|
292
292
|
**The Three Pillars** (all as OBJECTS, not strings):
|
|
@@ -362,7 +362,7 @@ The following code snippets show EXACTLY how each framework was tested. All test
|
|
|
362
362
|
|
|
363
363
|
**Reproduce yourself**: `python3 benchmark-frameworks.py` (included in package)
|
|
364
364
|
|
|
365
|
-
### Vanilla OpenAI (0% →
|
|
365
|
+
### Vanilla OpenAI (0% → 71.4% with schema)
|
|
366
366
|
|
|
367
367
|
```python
|
|
368
368
|
# WITHOUT SCHEMA: 0% accuracy
|
|
@@ -378,7 +378,7 @@ response = client.chat.completions.create(
|
|
|
378
378
|
```
|
|
379
379
|
|
|
380
380
|
```python
|
|
381
|
-
# WITH SCHEMA:
|
|
381
|
+
# WITH SCHEMA: 71.4% accuracy (+71.4 pp improvement)
|
|
382
382
|
LUBM_SCHEMA = """
|
|
383
383
|
PREFIX ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>
|
|
384
384
|
Classes: University, Department, Professor, Student, Course, Publication
|
|
@@ -399,7 +399,7 @@ response = client.chat.completions.create(
|
|
|
399
399
|
# WORKS: Valid SPARQL using correct ontology terms
|
|
400
400
|
```
|
|
401
401
|
|
|
402
|
-
### LangChain (0% →
|
|
402
|
+
### LangChain (0% → 71.4% with schema)
|
|
403
403
|
|
|
404
404
|
```python
|
|
405
405
|
# WITHOUT SCHEMA: 0% accuracy
|
|
@@ -419,7 +419,7 @@ result = chain.invoke({"question": "Find all teachers"})
|
|
|
419
419
|
```
|
|
420
420
|
|
|
421
421
|
```python
|
|
422
|
-
# WITH SCHEMA:
|
|
422
|
+
# WITH SCHEMA: 71.4% accuracy (+71.4 pp improvement)
|
|
423
423
|
template = PromptTemplate(
|
|
424
424
|
input_variables=["question", "schema"],
|
|
425
425
|
template="""You are a SPARQL query generator.
|
|
@@ -434,7 +434,7 @@ result = chain.invoke({"question": "Find all teachers", "schema": LUBM_SCHEMA})
|
|
|
434
434
|
# WORKS: Schema injection guides correct predicate selection
|
|
435
435
|
```
|
|
436
436
|
|
|
437
|
-
### DSPy (14.3% →
|
|
437
|
+
### DSPy (14.3% → 71.4% with schema)
|
|
438
438
|
|
|
439
439
|
```python
|
|
440
440
|
# WITHOUT SCHEMA: 14.3% accuracy (best without schema!)
|
|
@@ -456,7 +456,7 @@ result = generator(question="Find all teachers")
|
|
|
456
456
|
```
|
|
457
457
|
|
|
458
458
|
```python
|
|
459
|
-
# WITH SCHEMA:
|
|
459
|
+
# WITH SCHEMA: 71.4% accuracy (+57.1 pp improvement)
|
|
460
460
|
class SchemaSPARQLGenerator(dspy.Signature):
|
|
461
461
|
"""Generate SPARQL query using the provided schema."""
|
|
462
462
|
schema = dspy.InputField(desc="Database schema with classes and properties")
|
|
@@ -495,7 +495,7 @@ console.log(result.hash);
|
|
|
495
495
|
// "sha256:a7b2c3..." - Reproducible answer
|
|
496
496
|
```
|
|
497
497
|
|
|
498
|
-
**Key Insight**: All frameworks achieve the SAME accuracy (
|
|
498
|
+
**Key Insight**: All frameworks achieve the SAME accuracy (~71%) when given schema. HyperMind's value is that it extracts and injects schema AUTOMATICALLY from your data—no manual prompt engineering required. Plus it includes the database to actually execute queries.
|
|
499
499
|
|
|
500
500
|
---
|
|
501
501
|
|
|
@@ -1072,15 +1072,15 @@ console.log('Supersteps:', result.supersteps) // 5
|
|
|
1072
1072
|
|
|
1073
1073
|
### AI Agent Accuracy (Verified December 2025)
|
|
1074
1074
|
|
|
1075
|
-
| Framework | No Schema | With Schema |
|
|
1076
|
-
|
|
1077
|
-
| **Vanilla OpenAI** | 0.0% | 71.4% |
|
|
1078
|
-
| **LangChain** | 0.0% | 71.4% |
|
|
1079
|
-
| **DSPy** | 14.3% | 71.4% |
|
|
1075
|
+
| Framework | No Schema | With Schema |
|
|
1076
|
+
|-----------|-----------|-------------|
|
|
1077
|
+
| **Vanilla OpenAI** | 0.0% | 71.4% |
|
|
1078
|
+
| **LangChain** | 0.0% | 71.4% |
|
|
1079
|
+
| **DSPy** | 14.3% | 71.4% |
|
|
1080
1080
|
|
|
1081
|
-
*
|
|
1081
|
+
*Schema injection improves ALL frameworks equally. See `verified_benchmark_results.json` for raw data.*
|
|
1082
1082
|
|
|
1083
|
-
*Tested: GPT-4o, 7 LUBM queries, real API calls
|
|
1083
|
+
*Tested: GPT-4o, 7 LUBM queries, real API calls.*
|
|
1084
1084
|
|
|
1085
1085
|
### AI Framework Architectural Comparison
|
|
1086
1086
|
|
|
@@ -1469,7 +1469,7 @@ Result: ❌ PARSER ERROR - Invalid SPARQL syntax
|
|
|
1469
1469
|
3. LLM hallucinates class names → `ub:Faculty` doesn't exist (it's `ub:Professor`)
|
|
1470
1470
|
4. LLM has no schema awareness → guesses predicates and classes
|
|
1471
1471
|
|
|
1472
|
-
**HyperMind fixes all of this** with schema injection and typed tools, achieving **
|
|
1472
|
+
**HyperMind fixes all of this** with schema injection and typed tools, achieving **71% accuracy** vs **0% for vanilla LLMs without schema**.
|
|
1473
1473
|
|
|
1474
1474
|
### Competitive Landscape
|
|
1475
1475
|
|
|
@@ -1497,7 +1497,7 @@ Result: ❌ PARSER ERROR - Invalid SPARQL syntax
|
|
|
1497
1497
|
| LangChain | ❌ No | ❌ No | ❌ No | ❌ No |
|
|
1498
1498
|
| DSPy | ⚠️ Partial | ❌ No | ❌ No | ❌ No |
|
|
1499
1499
|
|
|
1500
|
-
**Note**: This compares architectural features. Benchmark (Dec 2025): Schema injection brings all frameworks to 71
|
|
1500
|
+
**Note**: This compares architectural features. Benchmark (Dec 2025): Schema injection brings all frameworks to ~71% accuracy equally.
|
|
1501
1501
|
|
|
1502
1502
|
```
|
|
1503
1503
|
┌─────────────────────────────────────────────────────────────────┐
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "rust-kgdb",
|
|
3
|
-
"version": "0.6.
|
|
3
|
+
"version": "0.6.44",
|
|
4
4
|
"description": "High-performance RDF/SPARQL database with AI agent framework. GraphDB (449ns lookups, 35x faster than RDFox), GraphFrames analytics (PageRank, motifs), Datalog reasoning, HNSW vector embeddings. HyperMindAgent for schema-aware query generation with audit trails. W3C SPARQL 1.1 compliant. Native performance via Rust + NAPI-RS.",
|
|
5
5
|
"main": "index.js",
|
|
6
6
|
"types": "index.d.ts",
|