rust-kgdb 0.6.36 → 0.6.37

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -10,16 +10,19 @@
10
10
 
11
11
  ## Executive Summary (Verified Results)
12
12
 
13
- **Schema injection + grammar-based predicate resolution improves ALL frameworks by +80.9 percentage points.**
13
+ **Two-stage improvement:**
14
+ 1. **Schema injection** brings all frameworks from 0-14% → **71.4%** (+66.7 pp average)
15
+ 2. **HyperMind predicate resolver** adds another **+14.3 pp** → **85.7%**
14
16
 
15
- | Framework | No Schema | With Schema | Improvement |
16
- |-----------|-----------|-------------|-------------|
17
- | **Vanilla OpenAI** | 0.0% | 85.7% | +85.7 pp |
18
- | **LangChain** | 0.0% | 85.7% | +85.7 pp |
19
- | **DSPy** | 14.3% | 85.7% | +71.4 pp |
20
- | **Average** | 4.8% | **85.7%** | **+80.9 pp** |
17
+ | Framework | No Schema | With Schema | With HyperMind |
18
+ |-----------|-----------|-------------|----------------|
19
+ | **Vanilla OpenAI** | 0.0% | 71.4% | 85.7% |
20
+ | **LangChain** | 0.0% | 71.4% | 85.7% |
21
+ | **DSPy** | 14.3% | 71.4% | 85.7% |
21
22
 
22
- *GPT-4o, 7 LUBM queries, real API calls, no mocking. See `hypermind_improved_benchmark_*.json`.*
23
+ *GPT-4o, 7 LUBM queries (5→6 passed), real API calls, no mocking. See `hypermind_improved_benchmark_*.json`.*
24
+
25
+ **What the resolver fixed:** Query A1 used "teacher" instead of "teacherOf" - predicate resolver corrected this.
23
26
 
24
27
  **Key Insight**: The value is in the ARCHITECTURE (schema injection, type contracts), not the specific framework.
25
28
 
package/README.md CHANGED
@@ -57,13 +57,13 @@
57
57
  │ MODEL: GPT-4o │ Real API calls │ No mocking │
58
58
  ├─────────────────────────────────────────────────────────────────────────────┤
59
59
  │ │
60
- │ FRAMEWORK NO SCHEMA WITH SCHEMA IMPROVEMENT
60
+ │ FRAMEWORK NO SCHEMA WITH SCHEMA WITH HYPERMIND
61
61
  │ ───────────────────────────────────────────────────────────── │
62
- │ Vanilla OpenAI 0.0% 85.7% +85.7 pp
63
- │ LangChain 0.0% 85.7% +85.7 pp
64
- │ DSPy 14.3% 85.7% +71.4 pp
62
+ │ Vanilla OpenAI 0.0% 71.4% 85.7% (+14.3 pp)
63
+ │ LangChain 0.0% 71.4% 85.7% (+14.3 pp)
64
+ │ DSPy 14.3% 71.4% 85.7% (+14.3 pp)
65
65
  │ ───────────────────────────────────────────────────────────── │
66
- AVERAGE 4.8% 85.7% +80.9 pp
66
+ KEY: Schema-aware predicate resolver adds +14.3 pp over schema alone
67
67
  │ │
68
68
  │ NOTE: Schema injection improves ALL frameworks equally on generation. │
69
69
  │ HyperMind's value = full execution stack, not just generation. │
@@ -1027,12 +1027,13 @@ console.log('Supersteps:', result.supersteps) // 5
1027
1027
 
1028
1028
  ### AI Agent Accuracy (Verified December 2025)
1029
1029
 
1030
- | Framework | No Schema | With Schema (HyperMind) | Improvement |
1031
- |-----------|-----------|-------------------------|-------------|
1032
- | **Vanilla OpenAI** | 0.0% | 85.7% | +85.7 pp |
1033
- | **LangChain** | 0.0% | 85.7% | +85.7 pp |
1034
- | **DSPy** | 14.3% | 85.7% | +71.4 pp |
1035
- | **Average** | 4.8% | **85.7%** | **+80.9 pp** |
1030
+ | Framework | No Schema | With Schema | With HyperMind |
1031
+ |-----------|-----------|-------------|----------------|
1032
+ | **Vanilla OpenAI** | 0.0% | 71.4% | 85.7% (+14.3 pp) |
1033
+ | **LangChain** | 0.0% | 71.4% | 85.7% (+14.3 pp) |
1034
+ | **DSPy** | 14.3% | 71.4% | 85.7% (+14.3 pp) |
1035
+
1036
+ *HyperMind's predicate resolver adds +14.3 pp over schema injection alone.*
1036
1037
 
1037
1038
  *Tested: GPT-4o, 7 LUBM queries, real API calls. See `framework_benchmark_*.json` for raw data.*
1038
1039
 
@@ -1451,7 +1452,7 @@ Result: ❌ PARSER ERROR - Invalid SPARQL syntax
1451
1452
  | LangChain | ❌ No | ❌ No | ❌ No | ❌ No |
1452
1453
  | DSPy | ⚠️ Partial | ❌ No | ❌ No | ❌ No |
1453
1454
 
1454
- **Note**: This compares architectural features. Benchmark (Dec 2025): Schema injection improves all frameworks by +80.9 pp (Vanilla: 0%→85.7%, LangChain: 0%→85.7%, DSPy: 14.3%→85.7%).
1455
+ **Note**: This compares architectural features. Benchmark (Dec 2025): Schema injection brings all frameworks to 71.4%. HyperMind's predicate resolver adds +14.3 pp to reach 85.7%.
1455
1456
 
1456
1457
  ```
1457
1458
  ┌─────────────────────────────────────────────────────────────────┐
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "rust-kgdb",
3
- "version": "0.6.36",
3
+ "version": "0.6.37",
4
4
  "description": "Production-grade Neuro-Symbolic AI Framework with Schema-Aware GraphDB, Context Theory, and Memory Hypergraph: +86.4% accuracy over vanilla LLMs. Features Schema-Aware GraphDB (auto schema extraction), BYOO (Bring Your Own Ontology) for enterprise, cross-agent schema caching, LLM Planner for natural language to typed SPARQL, ProofDAG with Curry-Howard witnesses. High-performance (2.78µs lookups, 35x faster than RDFox). W3C SPARQL 1.1 compliant.",
5
5
  "main": "index.js",
6
6
  "types": "index.d.ts",