rust-kgdb 0.6.32 → 0.6.33

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (3) hide show
  1. package/CHANGELOG.md +42 -0
  2. package/README.md +143 -0
  3. package/package.json +1 -1
package/CHANGELOG.md CHANGED
@@ -2,6 +2,48 @@
2
2
 
3
3
  All notable changes to the rust-kgdb TypeScript SDK will be documented in this file.
4
4
 
5
+ ## [0.6.33] - 2025-12-16
6
+
7
+ ### Framework Comparison Code Snippets
8
+
9
+ Added clear, reproducible benchmark setup with side-by-side code comparisons.
10
+
11
+ #### Added
12
+ - **Framework Comparison Section**: New section in README showing exact code for each framework
13
+ - Vanilla OpenAI: With and without schema (0% → 71.4%)
14
+ - LangChain: With and without schema (0% → 71.4%)
15
+ - DSPy: With and without schema (14.3% → 71.4%)
16
+ - HyperMind: Auto schema extraction
17
+ - **Reproducible Examples**: All code snippets are copy-paste ready
18
+ - **Clear Results Comments**: Each snippet shows expected output
19
+
20
+ #### Key Insight Documented
21
+ All frameworks achieve SAME accuracy (71.4%) when given schema. HyperMind's value = automatic schema extraction from your data.
22
+
23
+ ---
24
+
25
+ ## [0.6.32] - 2025-12-16
26
+
27
+ ### Verified Benchmark Results
28
+
29
+ Real API testing with GPT-4o on LUBM dataset—no mocking.
30
+
31
+ #### Added
32
+ - `benchmark-frameworks.py`: Python benchmark comparing Vanilla/LangChain/DSPy
33
+ - `verified_benchmark_results.json`: Raw results from real API calls
34
+ - Updated README with verified accuracy numbers
35
+ - Updated HYPERMIND_BENCHMARK_REPORT.md with complete code snippets
36
+
37
+ #### Verified Results
38
+ | Framework | No Schema | With Schema | Improvement |
39
+ |-----------|-----------|-------------|-------------|
40
+ | Vanilla OpenAI | 0.0% | 71.4% | +71.4 pp |
41
+ | LangChain | 0.0% | 71.4% | +71.4 pp |
42
+ | DSPy | 14.3% | 71.4% | +57.1 pp |
43
+ | Average | 4.8% | 71.4% | +66.7 pp |
44
+
45
+ ---
46
+
5
47
  ## [0.6.25] - 2025-12-16
6
48
 
7
49
  ### Documentation Cleanup
package/README.md CHANGED
@@ -275,6 +275,149 @@ console.log(result.reasoningTrace) // Full audit trail
275
275
 
276
276
  ---
277
277
 
278
+ ## Framework Comparison (Verified Benchmark Setup)
279
+
280
+ The following code snippets show EXACTLY how each framework was tested. All tests use the same LUBM dataset (3,272 triples) and GPT-4o model with real API calls—no mocking.
281
+
282
+ **Reproduce yourself**: `python3 benchmark-frameworks.py` (included in package)
283
+
284
+ ### Vanilla OpenAI (0% → 71.4% with schema)
285
+
286
+ ```python
287
+ # WITHOUT SCHEMA: 0% accuracy
288
+ from openai import OpenAI
289
+ client = OpenAI()
290
+
291
+ response = client.chat.completions.create(
292
+ model="gpt-4o",
293
+ messages=[{"role": "user", "content": "Find all teachers"}]
294
+ )
295
+ # Returns: Long explanation with markdown code blocks
296
+ # FAILS: No usable SPARQL query
297
+ ```
298
+
299
+ ```python
300
+ # WITH SCHEMA: 71.4% accuracy (+71.4 pp improvement)
301
+ LUBM_SCHEMA = """
302
+ PREFIX ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>
303
+ Classes: University, Department, Professor, Student, Course, Publication
304
+ Properties: teacherOf(Faculty→Course), worksFor(Faculty→Department)
305
+ """
306
+
307
+ response = client.chat.completions.create(
308
+ model="gpt-4o",
309
+ messages=[{
310
+ "role": "system",
311
+ "content": f"{LUBM_SCHEMA}\nOutput raw SPARQL only, no markdown."
312
+ }, {
313
+ "role": "user",
314
+ "content": "Find all teachers"
315
+ }]
316
+ )
317
+ # Returns: SELECT DISTINCT ?teacher WHERE { ?teacher a ub:Professor . }
318
+ # WORKS: Valid SPARQL using correct ontology terms
319
+ ```
320
+
321
+ ### LangChain (0% → 71.4% with schema)
322
+
323
+ ```python
324
+ # WITHOUT SCHEMA: 0% accuracy
325
+ from langchain_openai import ChatOpenAI
326
+ from langchain_core.prompts import PromptTemplate
327
+ from langchain_core.output_parsers import StrOutputParser
328
+
329
+ llm = ChatOpenAI(model="gpt-4o")
330
+ template = PromptTemplate(
331
+ input_variables=["question"],
332
+ template="Generate SPARQL for: {question}"
333
+ )
334
+ chain = template | llm | StrOutputParser()
335
+ result = chain.invoke({"question": "Find all teachers"})
336
+ # Returns: Explanation + markdown code blocks
337
+ # FAILS: Not executable SPARQL
338
+ ```
339
+
340
+ ```python
341
+ # WITH SCHEMA: 71.4% accuracy (+71.4 pp improvement)
342
+ template = PromptTemplate(
343
+ input_variables=["question", "schema"],
344
+ template="""You are a SPARQL query generator.
345
+ {schema}
346
+ TYPE CONTRACT: Output raw SPARQL only, NO markdown, NO explanation.
347
+ Query: {question}
348
+ Output raw SPARQL only:"""
349
+ )
350
+ chain = template | llm | StrOutputParser()
351
+ result = chain.invoke({"question": "Find all teachers", "schema": LUBM_SCHEMA})
352
+ # Returns: SELECT DISTINCT ?teacher WHERE { ?teacher a ub:Professor . }
353
+ # WORKS: Schema injection guides correct predicate selection
354
+ ```
355
+
356
+ ### DSPy (14.3% → 71.4% with schema)
357
+
358
+ ```python
359
+ # WITHOUT SCHEMA: 14.3% accuracy (best without schema!)
360
+ import dspy
361
+ from dspy import LM
362
+
363
+ lm = LM("openai/gpt-4o")
364
+ dspy.configure(lm=lm)
365
+
366
+ class SPARQLGenerator(dspy.Signature):
367
+ """Generate SPARQL query."""
368
+ question = dspy.InputField()
369
+ sparql = dspy.OutputField(desc="Raw SPARQL query only")
370
+
371
+ generator = dspy.Predict(SPARQLGenerator)
372
+ result = generator(question="Find all teachers")
373
+ # Returns: SELECT ?teacher WHERE { ?teacher a :Teacher . }
374
+ # PARTIAL: Sometimes works due to DSPy's structured output
375
+ ```
376
+
377
+ ```python
378
+ # WITH SCHEMA: 71.4% accuracy (+57.1 pp improvement)
379
+ class SchemaSPARQLGenerator(dspy.Signature):
380
+ """Generate SPARQL query using the provided schema."""
381
+ schema = dspy.InputField(desc="Database schema with classes and properties")
382
+ question = dspy.InputField(desc="Natural language question")
383
+ sparql = dspy.OutputField(desc="Raw SPARQL query, no markdown")
384
+
385
+ generator = dspy.Predict(SchemaSPARQLGenerator)
386
+ result = generator(schema=LUBM_SCHEMA, question="Find all teachers")
387
+ # Returns: SELECT DISTINCT ?teacher WHERE { ?teacher a ub:Professor . }
388
+ # WORKS: Schema + DSPy structured output = reliable queries
389
+ ```
390
+
391
+ ### HyperMind (Built-in Schema Awareness)
392
+
393
+ ```javascript
394
+ // HyperMind auto-extracts schema from your data
395
+ const { HyperMindAgent, createSchemaAwareGraphDB } = require('rust-kgdb');
396
+
397
+ const db = createSchemaAwareGraphDB('http://university.org/');
398
+ db.loadTtl(lubmData, null); // Load LUBM 3,272 triples
399
+
400
+ const agent = new HyperMindAgent({
401
+ kg: db,
402
+ model: 'gpt-4o',
403
+ apiKey: process.env.OPENAI_API_KEY
404
+ });
405
+
406
+ const result = await agent.call('Find all teachers');
407
+ // Schema auto-extracted: { classes: Set(30), properties: Map(23) }
408
+ // Query generated: SELECT ?x WHERE { ?x ub:teacherOf ?course . }
409
+ // Result: 39 faculty members who teach courses
410
+
411
+ console.log(result.reasoningTrace);
412
+ // [{ tool: 'kg.sparql.query', query: 'SELECT...', bindings: 39 }]
413
+ console.log(result.hash);
414
+ // "sha256:a7b2c3..." - Reproducible answer
415
+ ```
416
+
417
+ **Key Insight**: All frameworks achieve the SAME accuracy (71.4%) when given schema. HyperMind's value is that it extracts and injects schema AUTOMATICALLY from your data—no manual prompt engineering required.
418
+
419
+ ---
420
+
278
421
  ## Use Cases
279
422
 
280
423
  ### Fraud Detection
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "rust-kgdb",
3
- "version": "0.6.32",
3
+ "version": "0.6.33",
4
4
  "description": "Production-grade Neuro-Symbolic AI Framework with Schema-Aware GraphDB, Context Theory, and Memory Hypergraph: +86.4% accuracy over vanilla LLMs. Features Schema-Aware GraphDB (auto schema extraction), BYOO (Bring Your Own Ontology) for enterprise, cross-agent schema caching, LLM Planner for natural language to typed SPARQL, ProofDAG with Curry-Howard witnesses. High-performance (2.78µs lookups, 35x faster than RDFox). W3C SPARQL 1.1 compliant.",
5
5
  "main": "index.js",
6
6
  "types": "index.d.ts",