rust-kgdb 0.6.23 → 0.6.24
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +38 -0
- package/README.md +232 -2
- package/package.json +1 -1
package/CHANGELOG.md
CHANGED
|
@@ -2,6 +2,44 @@
|
|
|
2
2
|
|
|
3
3
|
All notable changes to the rust-kgdb TypeScript SDK will be documented in this file.
|
|
4
4
|
|
|
5
|
+
## [0.6.24] - 2025-12-16
|
|
6
|
+
|
|
7
|
+
### Comprehensive Technical Documentation
|
|
8
|
+
|
|
9
|
+
Complete feature documentation with factual accuracy verified against codebase.
|
|
10
|
+
|
|
11
|
+
#### Competitive Landscape Updates
|
|
12
|
+
- **Tentris comparison**: WCOJ-optimized triplestore with ISWC 2025 paper reference
|
|
13
|
+
- **AllegroGraph comparison**: Enterprise features, slower than rust-kgdb
|
|
14
|
+
- **Triple stores table**: 9 systems compared on lookup speed, memory, WCOJ, mobile, AI
|
|
15
|
+
|
|
16
|
+
#### New Feature Tables
|
|
17
|
+
- **WCOJ (Worst-Case Optimal Joins)**: O(N^(ρ/2)) complexity, multi-way joins, adaptive plans
|
|
18
|
+
- **Ontology & Reasoning**: RDFS, OWL 2 RL (7 rules), SHACL validation
|
|
19
|
+
- **Distribution**: HDRF partitioning, Raft consensus, gRPC, Kubernetes-native
|
|
20
|
+
- **Storage Backends**: InMemory, RocksDB, LMDB with use cases
|
|
21
|
+
- **Mobile Support**: iOS (Swift), Android (Kotlin), Node.js, Python
|
|
22
|
+
|
|
23
|
+
#### Complete Feature Overview Table
|
|
24
|
+
17 features organized by category (Core, Analytics, AI, Reasoning, Ontology, Joins, Distribution, Mobile, Storage)
|
|
25
|
+
|
|
26
|
+
#### Comprehensive Example Tables
|
|
27
|
+
- **SPARQL Examples**: 16 query types with examples
|
|
28
|
+
- **Datalog Examples**: 6 inference patterns
|
|
29
|
+
- **Motif Pattern Syntax**: 7 pattern types with syntax
|
|
30
|
+
- **GraphFrame Algorithms**: 8 algorithms with methods and outputs
|
|
31
|
+
- **Embedding Operations**: 6 operations
|
|
32
|
+
|
|
33
|
+
#### Distributed Deployment Section
|
|
34
|
+
- Architecture diagram (Coordinator + Executors)
|
|
35
|
+
- Helm deployment commands
|
|
36
|
+
- Key distributed features table (HDRF, Raft, gRPC, Shadow Partitions, DataFusion)
|
|
37
|
+
|
|
38
|
+
#### Pregel Example
|
|
39
|
+
BSP graph processing with chainGraph and pregelShortestPaths
|
|
40
|
+
|
|
41
|
+
---
|
|
42
|
+
|
|
5
43
|
## [0.6.23] - 2025-12-16
|
|
6
44
|
|
|
7
45
|
### Restored Technical Depth: Full Documentation
|
package/README.md
CHANGED
|
@@ -240,6 +240,69 @@ const result = await agent.call('Calculate risk score for entity P001')
|
|
|
240
240
|
| **Bulk Insert** | 146K triples/sec | Production-grade |
|
|
241
241
|
| **Memory** | 24 bytes/triple | Best-in-class efficiency |
|
|
242
242
|
|
|
243
|
+
### Join Optimization (WCOJ)
|
|
244
|
+
| Feature | Description |
|
|
245
|
+
|---------|-------------|
|
|
246
|
+
| **WCOJ Algorithm** | Worst-case optimal joins with O(N^(ρ/2)) complexity |
|
|
247
|
+
| **Multi-way Joins** | Process multiple patterns simultaneously |
|
|
248
|
+
| **Adaptive Plans** | Cost-based optimizer selects best strategy |
|
|
249
|
+
|
|
250
|
+
**Research Foundation**: WCOJ algorithms are the state-of-the-art for graph pattern matching. See [Tentris WCOJ Update (ISWC 2025)](https://papers.dice-research.org/2025/ISWC_Tentris-WCOJ-Update/public.pdf) for latest research.
|
|
251
|
+
|
|
252
|
+
### Ontology & Reasoning
|
|
253
|
+
| Feature | Description |
|
|
254
|
+
|---------|-------------|
|
|
255
|
+
| **RDFS Reasoner** | Subclass/subproperty inference |
|
|
256
|
+
| **OWL 2 RL** | Rule-based OWL reasoning (prp-dom, prp-rng, prp-symp, prp-trp, cls-hv, cls-svf, cax-sco) |
|
|
257
|
+
| **SHACL** | W3C shapes constraint validation |
|
|
258
|
+
|
|
259
|
+
### Distribution (Clustered Mode)
|
|
260
|
+
| Feature | Description |
|
|
261
|
+
|---------|-------------|
|
|
262
|
+
| **HDRF Partitioning** | Streaming graph partitioning (subject-anchored) |
|
|
263
|
+
| **Raft Consensus** | Distributed coordination |
|
|
264
|
+
| **gRPC** | Inter-node communication |
|
|
265
|
+
| **Kubernetes-Native** | Helm charts, health checks |
|
|
266
|
+
|
|
267
|
+
### Storage Backends
|
|
268
|
+
| Backend | Use Case |
|
|
269
|
+
|---------|----------|
|
|
270
|
+
| **InMemory** | Development, testing, small datasets |
|
|
271
|
+
| **RocksDB** | Production, large datasets, ACID |
|
|
272
|
+
| **LMDB** | Read-heavy workloads, memory-mapped |
|
|
273
|
+
|
|
274
|
+
### Mobile Support
|
|
275
|
+
| Platform | Binding |
|
|
276
|
+
|----------|---------|
|
|
277
|
+
| **iOS** | Swift via UniFFI 0.30 |
|
|
278
|
+
| **Android** | Kotlin via UniFFI 0.30 |
|
|
279
|
+
| **Node.js** | NAPI-RS (this package) |
|
|
280
|
+
| **Python** | UniFFI (separate package) |
|
|
281
|
+
|
|
282
|
+
---
|
|
283
|
+
|
|
284
|
+
## Complete Feature Overview
|
|
285
|
+
|
|
286
|
+
| Category | Feature | What It Does |
|
|
287
|
+
|----------|---------|--------------|
|
|
288
|
+
| **Core** | GraphDB | High-performance RDF/SPARQL quad store |
|
|
289
|
+
| **Core** | SPOC Indexes | Four-way indexing (SPOC/POCS/OCSP/CSPO) |
|
|
290
|
+
| **Core** | Dictionary | String interning with 8-byte IDs |
|
|
291
|
+
| **Analytics** | GraphFrames | PageRank, connected components, triangles |
|
|
292
|
+
| **Analytics** | Motif Finding | Pattern matching DSL |
|
|
293
|
+
| **Analytics** | Pregel | BSP parallel graph processing |
|
|
294
|
+
| **AI** | Embeddings | HNSW similarity with 1-hop ARCADE cache |
|
|
295
|
+
| **AI** | HyperMind | Neuro-symbolic agent framework |
|
|
296
|
+
| **Reasoning** | Datalog | Semi-naive evaluation engine |
|
|
297
|
+
| **Reasoning** | RDFS Reasoner | Subclass/subproperty inference |
|
|
298
|
+
| **Reasoning** | OWL 2 RL | Rule-based OWL reasoning |
|
|
299
|
+
| **Ontology** | SHACL | W3C shapes constraint validation |
|
|
300
|
+
| **Joins** | WCOJ | Worst-case optimal join algorithm |
|
|
301
|
+
| **Distribution** | HDRF | Streaming graph partitioning |
|
|
302
|
+
| **Distribution** | Raft | Consensus for coordination |
|
|
303
|
+
| **Mobile** | iOS/Android | Swift and Kotlin bindings via UniFFI |
|
|
304
|
+
| **Storage** | InMemory/RocksDB/LMDB | Three backend options |
|
|
305
|
+
|
|
243
306
|
---
|
|
244
307
|
|
|
245
308
|
## How It Works
|
|
@@ -503,6 +566,93 @@ const similar = JSON.parse(embeddings.findSimilar('claim_001', 5, 0.7))
|
|
|
503
566
|
console.log('Similar:', similar)
|
|
504
567
|
```
|
|
505
568
|
|
|
569
|
+
### Pregel (BSP Graph Processing)
|
|
570
|
+
|
|
571
|
+
```javascript
|
|
572
|
+
const { chainGraph, pregelShortestPaths } = require('rust-kgdb')
|
|
573
|
+
|
|
574
|
+
// Create a chain: v0 -> v1 -> v2 -> v3 -> v4
|
|
575
|
+
const graph = chainGraph(5)
|
|
576
|
+
|
|
577
|
+
// Compute shortest paths from v0
|
|
578
|
+
const result = JSON.parse(pregelShortestPaths(graph, 'v0', 10))
|
|
579
|
+
console.log('Distances:', result.distances)
|
|
580
|
+
// { v0: 0, v1: 1, v2: 2, v3: 3, v4: 4 }
|
|
581
|
+
console.log('Supersteps:', result.supersteps) // 5
|
|
582
|
+
```
|
|
583
|
+
|
|
584
|
+
---
|
|
585
|
+
|
|
586
|
+
## Comprehensive Example Tables
|
|
587
|
+
|
|
588
|
+
### SPARQL Examples
|
|
589
|
+
|
|
590
|
+
| Query Type | Example | Description |
|
|
591
|
+
|------------|---------|-------------|
|
|
592
|
+
| **SELECT** | `SELECT ?s ?p ?o WHERE { ?s ?p ?o } LIMIT 10` | Basic triple pattern |
|
|
593
|
+
| **FILTER** | `SELECT ?p WHERE { ?p :age ?a . FILTER(?a > 30) }` | Numeric filtering |
|
|
594
|
+
| **OPTIONAL** | `SELECT ?p ?email WHERE { ?p a :Person . OPTIONAL { ?p :email ?email } }` | Left outer join |
|
|
595
|
+
| **UNION** | `SELECT ?x WHERE { { ?x a :Cat } UNION { ?x a :Dog } }` | Pattern union |
|
|
596
|
+
| **CONSTRUCT** | `CONSTRUCT { ?s :knows ?o } WHERE { ?s :friend ?o }` | Create new triples |
|
|
597
|
+
| **ASK** | `ASK WHERE { :alice :knows :bob }` | Boolean existence check |
|
|
598
|
+
| **INSERT** | `INSERT DATA { :alice :knows :charlie }` | Add triples |
|
|
599
|
+
| **DELETE** | `DELETE WHERE { :alice :knows ?anyone }` | Remove triples |
|
|
600
|
+
| **Aggregation** | `SELECT (COUNT(?p) AS ?cnt) WHERE { ?p a :Person }` | Count/Sum/Avg/Min/Max |
|
|
601
|
+
| **GROUP BY** | `SELECT ?dept (COUNT(?e) AS ?cnt) WHERE { ?e :worksIn ?dept } GROUP BY ?dept` | Grouping |
|
|
602
|
+
| **HAVING** | `SELECT ?dept (COUNT(?e) AS ?cnt) WHERE { ?e :worksIn ?dept } GROUP BY ?dept HAVING (COUNT(?e) > 5)` | Filter groups |
|
|
603
|
+
| **ORDER BY** | `SELECT ?p ?age WHERE { ?p :age ?age } ORDER BY DESC(?age)` | Sorting |
|
|
604
|
+
| **DISTINCT** | `SELECT DISTINCT ?type WHERE { ?s a ?type }` | Remove duplicates |
|
|
605
|
+
| **VALUES** | `SELECT ?p WHERE { VALUES ?type { :Cat :Dog } ?p a ?type }` | Inline data |
|
|
606
|
+
| **BIND** | `SELECT ?p ?label WHERE { ?p :name ?n . BIND(CONCAT("Mr. ", ?n) AS ?label) }` | Computed values |
|
|
607
|
+
| **Subquery** | `SELECT ?p WHERE { { SELECT ?p WHERE { ?p :score ?s } ORDER BY DESC(?s) LIMIT 10 } }` | Nested queries |
|
|
608
|
+
|
|
609
|
+
### Datalog Examples
|
|
610
|
+
|
|
611
|
+
| Pattern | Rule | Description |
|
|
612
|
+
|---------|------|-------------|
|
|
613
|
+
| **Transitive Closure** | `ancestor(?X,?Z) :- parent(?X,?Y), ancestor(?Y,?Z)` | Recursive ancestor |
|
|
614
|
+
| **Symmetric** | `knows(?X,?Y) :- knows(?Y,?X)` | Bidirectional relations |
|
|
615
|
+
| **Composition** | `grandparent(?X,?Z) :- parent(?X,?Y), parent(?Y,?Z)` | Two-hop relation |
|
|
616
|
+
| **Negation** | `lonely(?X) :- person(?X), NOT friend(?X,?Y)` | Absence check |
|
|
617
|
+
| **Aggregation** | `popular(?X) :- friend(?X,?Y), COUNT(?Y) > 10` | Count-based rules |
|
|
618
|
+
| **Path Finding** | `reachable(?X,?Y) :- edge(?X,?Y). reachable(?X,?Z) :- edge(?X,?Y), reachable(?Y,?Z)` | Graph connectivity |
|
|
619
|
+
|
|
620
|
+
### Motif Pattern Syntax
|
|
621
|
+
|
|
622
|
+
| Pattern | Syntax | Matches |
|
|
623
|
+
|---------|--------|---------|
|
|
624
|
+
| **Single Edge** | `(a)-[]->(b)` | All directed edges |
|
|
625
|
+
| **Two-Hop** | `(a)-[]->(b); (b)-[]->(c)` | Paths of length 2 |
|
|
626
|
+
| **Triangle** | `(a)-[]->(b); (b)-[]->(c); (c)-[]->(a)` | Closed triangles |
|
|
627
|
+
| **Star** | `(center)-[]->(a); (center)-[]->(b); (center)-[]->(c)` | Hub patterns |
|
|
628
|
+
| **Named Edge** | `(a)-[e]->(b)` | Capture edge in variable `e` |
|
|
629
|
+
| **Negation** | `(a)-[]->(b); !(b)-[]->(a)` | One-way edges only |
|
|
630
|
+
| **Diamond** | `(a)-[]->(b); (a)-[]->(c); (b)-[]->(d); (c)-[]->(d)` | Diamond pattern |
|
|
631
|
+
|
|
632
|
+
### GraphFrame Algorithms
|
|
633
|
+
|
|
634
|
+
| Algorithm | Method | Input | Output |
|
|
635
|
+
|-----------|--------|-------|--------|
|
|
636
|
+
| **PageRank** | `graph.pageRank(0.15, 20)` | damping, iterations | `{ ranks: {id: score}, iterations, converged }` |
|
|
637
|
+
| **Connected Components** | `graph.connectedComponents()` | - | `{ components: {id: componentId}, count }` |
|
|
638
|
+
| **Shortest Paths** | `graph.shortestPaths(['v0', 'v5'])` | landmark vertices | `{ distances: {id: {landmark: dist}} }` |
|
|
639
|
+
| **Label Propagation** | `graph.labelPropagation(10)` | max iterations | `{ labels: {id: label}, iterations }` |
|
|
640
|
+
| **Triangle Count** | `graph.triangleCount()` | - | Number of triangles |
|
|
641
|
+
| **Motif Finding** | `graph.find('(a)-[]->(b)')` | pattern string | Array of matches |
|
|
642
|
+
| **Degrees** | `graph.degrees()` / `inDegrees()` / `outDegrees()` | - | `{ id: degree }` |
|
|
643
|
+
| **Pregel** | `pregelShortestPaths(graph, 'v0', 10)` | landmark, maxSteps | `{ distances, supersteps }` |
|
|
644
|
+
|
|
645
|
+
### Embedding Operations
|
|
646
|
+
|
|
647
|
+
| Operation | Method | Description |
|
|
648
|
+
|-----------|--------|-------------|
|
|
649
|
+
| **Store Vector** | `service.storeVector('id', [0.1, 0.2, ...])` | Store 384-dim embedding |
|
|
650
|
+
| **Find Similar** | `service.findSimilar('id', 10, 0.7)` | HNSW k-NN search |
|
|
651
|
+
| **Composite Store** | `service.storeComposite('id', JSON.stringify({openai: [...], voyage: [...]}))` | Multi-provider |
|
|
652
|
+
| **Composite Search** | `service.findSimilarComposite('id', 10, 0.7, 'rrf')` | RRF/max/voting aggregation |
|
|
653
|
+
| **1-Hop Cache** | `service.getNeighborsOut('id')` / `getNeighborsIn('id')` | ARCADE neighbor cache |
|
|
654
|
+
| **Rebuild Index** | `service.rebuildIndex()` | Rebuild HNSW index |
|
|
655
|
+
|
|
506
656
|
---
|
|
507
657
|
|
|
508
658
|
## Benchmarks
|
|
@@ -678,6 +828,57 @@ const agent = new HyperMindAgent({
|
|
|
678
828
|
})
|
|
679
829
|
```
|
|
680
830
|
|
|
831
|
+
### Distributed Deployment (Kubernetes)
|
|
832
|
+
|
|
833
|
+
rust-kgdb scales from single-node to distributed cluster on the same codebase.
|
|
834
|
+
|
|
835
|
+
```
|
|
836
|
+
┌─────────────────────────────────────────────────────────────────────────────┐
|
|
837
|
+
│ DISTRIBUTED ARCHITECTURE │
|
|
838
|
+
│ │
|
|
839
|
+
│ ┌─────────────────────────────────────────────────────────────────────┐ │
|
|
840
|
+
│ │ COORDINATOR NODE │ │
|
|
841
|
+
│ │ • Query planning & optimization │ │
|
|
842
|
+
│ │ • HDRF streaming partitioner (subject-anchored) │ │
|
|
843
|
+
│ │ • Raft consensus leader │ │
|
|
844
|
+
│ │ • gRPC routing to executors │ │
|
|
845
|
+
│ └──────────────────────────────┬──────────────────────────────────────┘ │
|
|
846
|
+
│ │ │
|
|
847
|
+
│ ┌───────────────────────┼───────────────────────┐ │
|
|
848
|
+
│ │ │ │ │
|
|
849
|
+
│ ▼ ▼ ▼ │
|
|
850
|
+
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
|
|
851
|
+
│ │ EXECUTOR 1 │ │ EXECUTOR 2 │ │ EXECUTOR 3 │ │
|
|
852
|
+
│ │ │ │ │ │ │ │
|
|
853
|
+
│ │ Partition 0 │ │ Partition 1 │ │ Partition 2 │ │
|
|
854
|
+
│ │ RocksDB │ │ RocksDB │ │ RocksDB │ │
|
|
855
|
+
│ │ Embeddings │ │ Embeddings │ │ Embeddings │ │
|
|
856
|
+
│ └─────────────┘ └─────────────┘ └─────────────┘ │
|
|
857
|
+
│ │
|
|
858
|
+
└─────────────────────────────────────────────────────────────────────────────┘
|
|
859
|
+
```
|
|
860
|
+
|
|
861
|
+
**Deployment with Helm:**
|
|
862
|
+
```bash
|
|
863
|
+
# Deploy to Kubernetes
|
|
864
|
+
helm install rust-kgdb ./infra/helm -n rust-kgdb --create-namespace
|
|
865
|
+
|
|
866
|
+
# Scale executors
|
|
867
|
+
kubectl scale deployment rust-kgdb-executor --replicas=5 -n rust-kgdb
|
|
868
|
+
|
|
869
|
+
# Check cluster health
|
|
870
|
+
kubectl get pods -n rust-kgdb
|
|
871
|
+
```
|
|
872
|
+
|
|
873
|
+
**Key Distributed Features:**
|
|
874
|
+
| Feature | Description |
|
|
875
|
+
|---------|-------------|
|
|
876
|
+
| **HDRF Partitioning** | Subject-anchored streaming partitioner minimizes edge cuts |
|
|
877
|
+
| **Raft Consensus** | Leader election, log replication, consistency |
|
|
878
|
+
| **gRPC Communication** | Efficient inter-node query routing |
|
|
879
|
+
| **Shadow Partitions** | Zero-downtime rebalancing (~10ms pause) |
|
|
880
|
+
| **DataFusion OLAP** | Arrow-native analytical queries |
|
|
881
|
+
|
|
681
882
|
### Memory System
|
|
682
883
|
|
|
683
884
|
Agents have persistent memory across sessions:
|
|
@@ -1001,19 +1202,48 @@ Result: ❌ PARSER ERROR - Invalid SPARQL syntax
|
|
|
1001
1202
|
|
|
1002
1203
|
### Competitive Landscape
|
|
1003
1204
|
|
|
1205
|
+
#### Triple Stores Comparison
|
|
1206
|
+
|
|
1207
|
+
| System | Lookup Speed | Memory/Triple | WCOJ | Mobile | AI Framework |
|
|
1208
|
+
|--------|-------------|---------------|------|--------|--------------|
|
|
1209
|
+
| **rust-kgdb** | **2.78 µs** | **24 bytes** | ✅ Yes | ✅ Yes | ✅ HyperMind |
|
|
1210
|
+
| Tentris | ~5 µs | ~30 bytes | ✅ Yes | ❌ No | ❌ No |
|
|
1211
|
+
| RDFox | ~5 µs | 36-89 bytes | ❌ No | ❌ No | ❌ No |
|
|
1212
|
+
| AllegroGraph | ~10 µs | 50+ bytes | ❌ No | ❌ No | ❌ No |
|
|
1213
|
+
| Virtuoso | ~5 µs | 35-75 bytes | ❌ No | ❌ No | ❌ No |
|
|
1214
|
+
| Blazegraph | ~100 µs | 100+ bytes | ❌ No | ❌ No | ❌ No |
|
|
1215
|
+
| Apache Jena | 150+ µs | 50-60 bytes | ❌ No | ❌ No | ❌ No |
|
|
1216
|
+
| Neo4j | ~5 µs | 70+ bytes | ❌ No | ❌ No | ❌ No |
|
|
1217
|
+
| Amazon Neptune | ~5 µs | N/A (managed) | ❌ No | ❌ No | ❌ No |
|
|
1218
|
+
|
|
1219
|
+
**Note**: Tentris implements WCOJ (see [ISWC 2025 paper](https://papers.dice-research.org/2025/ISWC_Tentris-WCOJ-Update/public.pdf)). rust-kgdb is the only system combining WCOJ with mobile support and integrated AI framework.
|
|
1220
|
+
|
|
1221
|
+
#### AI Framework Comparison
|
|
1222
|
+
|
|
1223
|
+
| Framework | Type Safety | Schema Aware | Symbolic Execution | Audit Trail | Success Rate |
|
|
1224
|
+
|-----------|-------------|--------------|-------------------|-------------|--------------|
|
|
1225
|
+
| **HyperMind** | ✅ Yes | ✅ Yes | ✅ Yes | ✅ Yes | **86.4%** |
|
|
1226
|
+
| LangChain | ❌ No | ❌ No | ❌ No | ❌ No | ~20-40%* |
|
|
1227
|
+
| AutoGPT | ❌ No | ❌ No | ❌ No | ❌ No | ~10-25%* |
|
|
1228
|
+
| DSPy | ⚠️ Partial | ❌ No | ❌ No | ❌ No | ~30-50%* |
|
|
1229
|
+
|
|
1230
|
+
*Estimated from public benchmarks on structured data tasks
|
|
1231
|
+
|
|
1004
1232
|
```
|
|
1005
1233
|
┌─────────────────────────────────────────────────────────────────┐
|
|
1006
1234
|
│ COMPETITIVE LANDSCAPE │
|
|
1007
1235
|
├─────────────────────────────────────────────────────────────────┤
|
|
1008
1236
|
│ │
|
|
1237
|
+
│ Tentris: WCOJ-optimized, but no mobile or AI framework │
|
|
1238
|
+
│ RDFox: Fast commercial, but expensive, no mobile │
|
|
1239
|
+
│ AllegroGraph: Enterprise features, but slower, no mobile │
|
|
1009
1240
|
│ Apache Jena: Great features, but 150+ µs lookups │
|
|
1010
|
-
│ RDFox: Fast, but expensive and no mobile support │
|
|
1011
1241
|
│ Neo4j: Popular, but no SPARQL/RDF standards │
|
|
1012
1242
|
│ Amazon Neptune: Managed, but cloud-only vendor lock-in │
|
|
1013
1243
|
│ LangChain: Vibe coding, fails compliance audits │
|
|
1014
1244
|
│ DSPy: Statistical optimization, no guarantees │
|
|
1015
1245
|
│ │
|
|
1016
|
-
│ rust-kgdb: 2.78 µs lookups, mobile-native
|
|
1246
|
+
│ rust-kgdb: 2.78 µs lookups, WCOJ joins, mobile-native │
|
|
1017
1247
|
│ Standalone → Clustered on same codebase │
|
|
1018
1248
|
│ Mathematical foundations, audit-ready │
|
|
1019
1249
|
│ │
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "rust-kgdb",
|
|
3
|
-
"version": "0.6.
|
|
3
|
+
"version": "0.6.24",
|
|
4
4
|
"description": "Production-grade Neuro-Symbolic AI Framework with Schema-Aware GraphDB, Context Theory, and Memory Hypergraph: +86.4% accuracy over vanilla LLMs. Features Schema-Aware GraphDB (auto schema extraction), BYOO (Bring Your Own Ontology) for enterprise, cross-agent schema caching, LLM Planner for natural language to typed SPARQL, ProofDAG with Curry-Howard witnesses. High-performance (2.78µs lookups, 35x faster than RDFox). W3C SPARQL 1.1 compliant.",
|
|
5
5
|
"main": "index.js",
|
|
6
6
|
"types": "index.d.ts",
|