rust-kgdb 0.6.2 → 0.6.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (2) hide show
  1. package/README.md +11 -1
  2. package/package.json +1 -1
package/README.md CHANGED
@@ -282,10 +282,20 @@ const result3 = await agent.call("Analyze claims from Provider P001")
282
282
  // You: "Semantic hashing - same meaning, same output, regardless of phrasing."
283
283
  ```
284
284
 
285
- **How it works**: Query embeddings are hashed via locality-sensitive hashing (LSH). Semantically similar queries map to the same bucket, enabling:
285
+ **How it works**: Query embeddings are hashed via **Locality-Sensitive Hashing (LSH)** with random hyperplane projections. Semantically similar queries map to the same bucket.
286
+
287
+ **Research Foundation**:
288
+ - **SimHash** (Charikar, 2002) - Random hyperplane projections for cosine similarity
289
+ - **Semantic Hashing** (Salakhutdinov & Hinton, 2009) - Deep autoencoders for binary codes
290
+ - **Learning to Hash** (Wang et al., 2018) - Survey of neural hashing methods
291
+
292
+ **Implementation**: 384-dim embeddings → LSH with 64 hyperplanes → 64-bit semantic hash
293
+
294
+ **Benefits**:
286
295
  - **Semantic deduplication** - "Find fraud" and "Detect fraudulent activity" hit same cache
287
296
  - **Cost reduction** - Avoid redundant LLM calls for paraphrased questions
288
297
  - **Consistency** - Same answer for same intent, audit-ready
298
+ - **Sub-linear lookup** - O(1) hash lookup vs O(n) embedding comparison
289
299
 
290
300
  ---
291
301
 
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "rust-kgdb",
3
- "version": "0.6.2",
3
+ "version": "0.6.3",
4
4
  "description": "Production-grade Neuro-Symbolic AI Framework with Memory Hypergraph: +86.4% accuracy improvement over vanilla LLMs. High-performance knowledge graph (2.78µs lookups, 35x faster than RDFox). Features Memory Hypergraph (temporal scoring, rolling context window, idempotent responses), fraud detection, underwriting agents, WASM sandbox, type/category/proof theory, and W3C SPARQL 1.1 compliance.",
5
5
  "main": "index.js",
6
6
  "types": "index.d.ts",