rust-kgdb 0.6.16 → 0.6.18
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +159 -0
- package/HYPERMIND_BENCHMARK_REPORT.md +32 -35
- package/README.md +324 -3335
- package/package.json +1 -1
package/CHANGELOG.md
CHANGED
|
@@ -2,6 +2,165 @@
|
|
|
2
2
|
|
|
3
3
|
All notable changes to the rust-kgdb TypeScript SDK will be documented in this file.
|
|
4
4
|
|
|
5
|
+
## [0.6.18] - 2025-12-16
|
|
6
|
+
|
|
7
|
+
### Documentation: Progressive Disclosure Structure
|
|
8
|
+
|
|
9
|
+
Inspired by Symbolica's approach - content gradually steps up from simple to advanced.
|
|
10
|
+
|
|
11
|
+
#### docs/CORE_CONCEPTS.md - Complete Restructure
|
|
12
|
+
- **Problem/Solution code examples** at the very top
|
|
13
|
+
- **Plain English intro** for every technical section
|
|
14
|
+
- **Practical examples** before theory
|
|
15
|
+
- **Technical depth preserved** in clearly marked subsections
|
|
16
|
+
- **Gradual progression**: Simple → Practical → Why it matters → Deep Dive
|
|
17
|
+
|
|
18
|
+
#### Section Renames (Practical First)
|
|
19
|
+
| Before | After |
|
|
20
|
+
|--------|-------|
|
|
21
|
+
| Type Theory Foundation | Typed Tools: Input/Output Validation |
|
|
22
|
+
| Category Theory: Tools as Morphisms | Tool Chaining: Connecting Tools Together |
|
|
23
|
+
| Proof Theory: Execution Witnesses | Reasoning Trace: Audit Trail for Every Answer |
|
|
24
|
+
| Concept Lookup: The Cmd+/ Analogy | Schema Discovery: How Agents Find Your Data |
|
|
25
|
+
|
|
26
|
+
#### Structure Pattern (Each Section)
|
|
27
|
+
```
|
|
28
|
+
## Practical Title
|
|
29
|
+
> Plain English: What it does in one sentence
|
|
30
|
+
|
|
31
|
+
### How to Use It (code example)
|
|
32
|
+
### Why It Matters (business value)
|
|
33
|
+
### Technical Foundation (optional deep dive)
|
|
34
|
+
[Full mathematical depth preserved here]
|
|
35
|
+
```
|
|
36
|
+
|
|
37
|
+
**All Curry-Howard, Category Theory, Morphism definitions, TypeId system, Refinement Types, Session Types content preserved** - just better organized for progressive learning.
|
|
38
|
+
|
|
39
|
+
---
|
|
40
|
+
|
|
41
|
+
## [0.6.17] - 2025-12-16
|
|
42
|
+
|
|
43
|
+
### Documentation Restructure: Practical First
|
|
44
|
+
|
|
45
|
+
Complete documentation overhaul to lead with practical value and business outcomes.
|
|
46
|
+
|
|
47
|
+
#### README.md - Complete Restructure
|
|
48
|
+
- **New opening**: "AI Answers You Can Trust" - Problem/Solution/Results in first 30 seconds
|
|
49
|
+
- **Quick Start moved to top** - 5 lines of code immediately after installation
|
|
50
|
+
- **Use Cases prominent** - Fraud Detection, Regulatory Compliance, Risk Assessment
|
|
51
|
+
- **Academic content moved to "Advanced Topics"** - Mathematical foundations available but optional
|
|
52
|
+
- **Simplified language** - "Audit Trail" instead of "Curry-Howard correspondence"
|
|
53
|
+
|
|
54
|
+
#### Terminology Translation
|
|
55
|
+
| Before (Academic) | After (Practical) |
|
|
56
|
+
|-------------------|-------------------|
|
|
57
|
+
| Spivak's Ologs | Schema awareness |
|
|
58
|
+
| Hindley-Milner | Typed tools |
|
|
59
|
+
| Curry-Howard | Audit trail |
|
|
60
|
+
| Morphism composition | Tool chaining |
|
|
61
|
+
| Neuro-symbolic | Hybrid AI |
|
|
62
|
+
| Proof DAG | Reasoning trace |
|
|
63
|
+
|
|
64
|
+
#### Benchmark Report - Results First
|
|
65
|
+
- Lead with "86.4% accuracy where vanilla LLMs achieve 0%"
|
|
66
|
+
- "Why Vanilla LLMs Fail" in plain language
|
|
67
|
+
- "How HyperMind Fixes This" with practical explanations
|
|
68
|
+
- Methodology moved to appendix
|
|
69
|
+
|
|
70
|
+
#### Key Insight
|
|
71
|
+
> **FROM**: "We use Curry-Howard correspondence to create proof-carrying code"
|
|
72
|
+
> **TO**: "Every AI answer includes a complete audit trail showing exactly how the conclusion was reached"
|
|
73
|
+
|
|
74
|
+
Both say the same thing. One is academic. One sells.
|
|
75
|
+
|
|
76
|
+
---
|
|
77
|
+
|
|
78
|
+
## [0.6.16] - 2025-12-15
|
|
79
|
+
|
|
80
|
+
### The Power of Abstraction: Making LLMs Deterministic
|
|
81
|
+
|
|
82
|
+
#### New Introduction Section
|
|
83
|
+
- **"The Power of Abstraction: Making LLMs Deterministic"** - New comprehensive introduction explaining how mathematical foundations transform probabilistic LLMs into deterministic reasoning systems
|
|
84
|
+
- Visual architecture diagram showing the complete flow from User Query → Intelligence Control Plane → HyperMind Agent → rust-kgdb Engine → ProofDAG Output
|
|
85
|
+
|
|
86
|
+
#### Mathematical Foundations Table
|
|
87
|
+
| Foundation | Role | What It Provides |
|
|
88
|
+
|------------|------|-----------------|
|
|
89
|
+
| **Context Theory** (Spivak's Ologs) | Schema as Category | Automatic schema detection, semantic validation |
|
|
90
|
+
| **Type Theory** (Hindley-Milner) | Typed Tool Signatures | Compile-time validation, prevents invalid compositions |
|
|
91
|
+
| **Proof Theory** (Curry-Howard) | Proofs = Programs | Derivation chains, reproducible reasoning |
|
|
92
|
+
| **Category Theory** | Morphism Composition | Tools as morphisms, guaranteed well-formedness |
|
|
93
|
+
|
|
94
|
+
#### Three-Layer Stack
|
|
95
|
+
1. **rust-kgdb** (Foundation) - High-performance knowledge graph database (2.78µs lookups, 35x faster than RDFox)
|
|
96
|
+
2. **HyperMind Agent** (Execution) - Schema-aware agent framework with LLM Planner
|
|
97
|
+
3. **Intelligence Control Plane** (Orchestration) - Neuro-symbolic integration with ProofDAG generation
|
|
98
|
+
|
|
99
|
+
#### Key Message
|
|
100
|
+
Transform any LLM from a "black box" into a **verifiable reasoning system** where every answer comes with mathematical proof of correctness.
|
|
101
|
+
|
|
102
|
+
---
|
|
103
|
+
|
|
104
|
+
## [0.6.15] - 2025-12-15
|
|
105
|
+
|
|
106
|
+
### Comprehensive Documentation Enhancements
|
|
107
|
+
|
|
108
|
+
#### ProofDAG Visualization (Prominent at Top)
|
|
109
|
+
- Large ASCII visualization of ProofDAG structure at top of README
|
|
110
|
+
- Shows CONCLUSION (Root) → Evidence nodes (SPARQL, Datalog, Embeddings)
|
|
111
|
+
- Proof hash and timestamp for auditability
|
|
112
|
+
- Verification statement: "Anyone can replay this exact derivation"
|
|
113
|
+
|
|
114
|
+
#### LLM Evaluation Problem & Solution
|
|
115
|
+
- Detailed section on how vanilla LLMs fail (no verification, hallucinations, no audit trail)
|
|
116
|
+
- Three mathematical solutions: Type Theory, Category Theory, Proof Theory
|
|
117
|
+
- Visual diagram showing how each addresses LLM weaknesses
|
|
118
|
+
- Metrics improvement table (+66% factual accuracy, ∞ reproducibility)
|
|
119
|
+
|
|
120
|
+
#### Deep Dive Sections (All Enhanced)
|
|
121
|
+
- **Pregel BSP**: Step-by-step superstep execution with ASCII diagrams
|
|
122
|
+
- **Motif Pattern Matching**: Fraud ring detection examples with DSL syntax
|
|
123
|
+
- **Datalog Rule Engine**: Semi-naive evaluation, stratified negation, distributed mode
|
|
124
|
+
- **ARCADE 1-Hop Cache**: Adaptive Retrieval Cache for Approximate Dense Embeddings explanation
|
|
125
|
+
|
|
126
|
+
#### GraphFrames + SQL vs SPARQL Comparison Table
|
|
127
|
+
| Use Case | GraphFrames + SQL | SPARQL |
|
|
128
|
+
|----------|-------------------|--------|
|
|
129
|
+
| PageRank on subgraph | `graph.pageRank(0.15, 20)` | Complex multi-query workflow |
|
|
130
|
+
| Shortest paths | `pregelShortestPaths(graph, landmarks)` | BFS with recursive CTE |
|
|
131
|
+
| Triangle counting | `graph.triangleCount()` | CONSTRUCT + COUNT pattern |
|
|
132
|
+
|
|
133
|
+
#### Fuel = CPU Budget Relationship
|
|
134
|
+
- Prepaid phone card analogy for fuel metering
|
|
135
|
+
- Table: 100K fuel ≈ 100ms, 1M fuel ≈ 1 second, 10M fuel ≈ 10 seconds
|
|
136
|
+
- Clear explanation of CPU budget control
|
|
137
|
+
|
|
138
|
+
#### Session Management
|
|
139
|
+
- Agent name, userId, sessionId persistence
|
|
140
|
+
- Multi-tenant support with user identity
|
|
141
|
+
- Session tracking for audit trails
|
|
142
|
+
|
|
143
|
+
#### Automatic Schema Detection (Mathematical Foundations)
|
|
144
|
+
- Spivak's Ologs: Categories for schema representation
|
|
145
|
+
- Statistical inference: predicate → range type detection
|
|
146
|
+
- Confidence thresholds for type assignment
|
|
147
|
+
|
|
148
|
+
#### Intelligence Control Plane
|
|
149
|
+
- Referenced MIT/Stanford research on neuro-symbolic AI
|
|
150
|
+
- ProofDAG as key differentiator for regulated industries
|
|
151
|
+
- GDPR Art. 22 / SOX compliance enablement
|
|
152
|
+
|
|
153
|
+
#### Deterministic LLM Usage in Planner
|
|
154
|
+
- Schema injection makes LLM outputs predictable
|
|
155
|
+
- Same intent → Same SPARQL regardless of wording
|
|
156
|
+
- Type system validates tool compositions
|
|
157
|
+
|
|
158
|
+
#### No Apache Spark Required
|
|
159
|
+
- Clarified that distributed OLAP runs natively in rust-kgdb
|
|
160
|
+
- GraphFrames, Pregel, analytics without Spark infrastructure
|
|
161
|
+
|
|
162
|
+
---
|
|
163
|
+
|
|
5
164
|
## [0.6.14] - 2025-12-15
|
|
6
165
|
|
|
7
166
|
### Industry Benchmarks, Control Plane Architecture & ProofDAG Visualization
|
|
@@ -1,53 +1,50 @@
|
|
|
1
|
-
# HyperMind
|
|
2
|
-
## Benchmark Report: Scientific Evaluation Against Industry Standards
|
|
1
|
+
# HyperMind Benchmark Report
|
|
3
2
|
|
|
4
|
-
|
|
5
|
-
**Date**: December 12, 2025
|
|
6
|
-
**Authors**: Gonnect Research Team
|
|
3
|
+
## AI That Doesn't Hallucinate: The Results
|
|
7
4
|
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
5
|
+
**Version**: 0.6.17
|
|
6
|
+
**Date**: December 16, 2025
|
|
7
|
+
**SDK**: rust-kgdb@0.6.17
|
|
11
8
|
|
|
12
|
-
|
|
9
|
+
---
|
|
13
10
|
|
|
14
|
-
|
|
15
|
-
- Production knowledge graph operations (LUBM dataset)
|
|
16
|
-
- Multi-model evaluation (Claude Sonnet 4, GPT-4o)
|
|
11
|
+
## The Bottom Line
|
|
17
12
|
|
|
18
|
-
|
|
13
|
+
**HyperMind achieves 86.4% accuracy where vanilla LLMs achieve 0%.**
|
|
19
14
|
|
|
20
15
|
| Metric | Vanilla LLM | HyperMind | Improvement |
|
|
21
16
|
|--------|-------------|-----------|-------------|
|
|
22
|
-
| **
|
|
23
|
-
| **
|
|
24
|
-
| **
|
|
25
|
-
| **Claude Sonnet 4** | 0
|
|
26
|
-
| **GPT-4o** | 0
|
|
17
|
+
| **Accuracy** | 0% | 86.4% | +86.4 pp |
|
|
18
|
+
| **Hallucinations** | 100% | 0% | Eliminated |
|
|
19
|
+
| **Audit Trail** | None | Complete | Full provenance |
|
|
20
|
+
| **Claude Sonnet 4** | 0% | 90.9% | +90.9 pp |
|
|
21
|
+
| **GPT-4o** | 0% | 81.8% | +81.8 pp |
|
|
27
22
|
|
|
28
23
|
---
|
|
29
24
|
|
|
30
|
-
##
|
|
25
|
+
## Why Vanilla LLMs Fail
|
|
31
26
|
|
|
32
|
-
|
|
27
|
+
When you ask a vanilla LLM to query your database:
|
|
33
28
|
|
|
34
|
-
|
|
29
|
+
1. **They wrap queries in markdown** - Adding ```sparql breaks parsing
|
|
30
|
+
2. **They invent data fields** - Hallucinating predicates that don't exist
|
|
31
|
+
3. **They ignore your schema** - Guessing instead of checking
|
|
32
|
+
4. **No audit trail** - Can't verify how answers were derived
|
|
33
|
+
|
|
34
|
+
---
|
|
35
35
|
|
|
36
|
-
|
|
37
|
-
2. **Schema Violations**: LLMs invent non-existent predicates
|
|
38
|
-
3. **Type Mismatches**: LLMs ignore actual graph schema
|
|
39
|
-
4. **Ambiguous Interpretation**: No grounding in symbolic knowledge
|
|
36
|
+
## How HyperMind Fixes This
|
|
40
37
|
|
|
41
|
-
|
|
38
|
+
HyperMind grounds every answer in your actual data:
|
|
42
39
|
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
40
|
+
1. **Schema injection** - LLM sees your real data structure (30 classes, 23 properties)
|
|
41
|
+
2. **Input/output validation** - Prevents invalid query combinations
|
|
42
|
+
3. **Reasoning trace** - Every answer shows exactly how it was derived
|
|
43
|
+
4. **Reproducible** - Same question = Same answer = Same hash
|
|
47
44
|
|
|
48
45
|
```
|
|
49
46
|
┌─────────────────────────────────────────────────────────────────┐
|
|
50
|
-
│
|
|
47
|
+
│ YOUR QUESTION │
|
|
51
48
|
│ "Find professors who teach courses..." │
|
|
52
49
|
└───────────────────────────┬─────────────────────────────────────┘
|
|
53
50
|
│
|
|
@@ -63,10 +60,10 @@ HyperMind combines:
|
|
|
63
60
|
vs.
|
|
64
61
|
|
|
65
62
|
┌─────────────────────────────────────────────────────────────────┐
|
|
66
|
-
│ HYPERMIND
|
|
67
|
-
│ ✅
|
|
68
|
-
│ ✅
|
|
69
|
-
│ ✅
|
|
63
|
+
│ HYPERMIND │
|
|
64
|
+
│ ✅ Sees your actual schema (30 classes, 23 properties) │
|
|
65
|
+
│ ✅ Validates query structure before execution │
|
|
66
|
+
│ ✅ Provides complete reasoning trace │
|
|
70
67
|
│ ✅ 86.4% success rate │
|
|
71
68
|
└─────────────────────────────────────────────────────────────────┘
|
|
72
69
|
```
|