rust-kgdb 0.6.0 → 0.6.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (2) hide show
  1. package/README.md +48 -37
  2. package/package.json +1 -1
package/README.md CHANGED
@@ -8,6 +8,27 @@
8
8
 
9
9
  ---
10
10
 
11
+ ## The Problem
12
+
13
+ We asked GPT-4 to write a simple SPARQL query: *"Find all professors."*
14
+
15
+ It returned this broken output:
16
+
17
+ ```text
18
+ ```sparql
19
+ SELECT ?professor WHERE { ?professor a ub:Faculty . }
20
+ ```
21
+ This query retrieves faculty members from the knowledge graph.
22
+ ```
23
+
24
+ Three problems: (1) markdown code fences break the parser, (2) `ub:Faculty` doesn't exist in the schema (it's `ub:Professor`), and (3) the explanation text is mixed with the query. **Result: Parser error. Zero results.**
25
+
26
+ This isn't a cherry-picked failure. When we ran the standard LUBM benchmark (14 queries, 3,272 triples), vanilla LLMs produced valid, correct SPARQL **0% of the time**.
27
+
28
+ We built rust-kgdb to fix this.
29
+
30
+ ---
31
+
11
32
  ## Architecture: What Powers rust-kgdb
12
33
 
13
34
  ```
@@ -49,7 +70,9 @@
49
70
 
50
71
  **Key Insight**: The Rust core provides raw performance (2.78µs lookups). The HyperMind framework adds mathematical guarantees (type safety, composition laws, proof generation) without sacrificing speed.
51
72
 
52
- ### What's Rust vs JavaScript?
73
+ ### What's Rust Core vs SDK Layer?
74
+
75
+ All major capabilities are implemented in **Rust** via the HyperMind SDK crates (`hypermind-types`, `hypermind-runtime`, `hypermind-sdk`). The JavaScript/TypeScript layer is a thin binding that exposes these Rust capabilities for Node.js applications.
53
76
 
54
77
  | Component | Implementation | Performance | Notes |
55
78
  |-----------|---------------|-------------|-------|
@@ -58,37 +81,16 @@
58
81
  | **EmbeddingService** | Rust via NAPI-RS | Sub-ms search | HNSW index + 1-hop cache |
59
82
  | **DatalogProgram** | Rust via NAPI-RS | Semi-naive eval | Rule-based reasoning |
60
83
  | **Pregel** | Rust via NAPI-RS | BSP model | Iterative graph algorithms |
61
- | **TypeId** | JavaScript | N/A | Type system labels |
62
- | **LLMPlanner** | JavaScript + HTTP | LLM latency | Claude/GPT integration |
63
- | **WasmSandbox** | JavaScript Proxy | Capability check | All Rust calls proxied |
64
- | **AgentBuilder** | JavaScript | N/A | Fluent composition |
65
- | **ExecutionWitness** | JavaScript | SHA-256 | Cryptographic audit |
84
+ | **TypeId** | Rust via NAPI-RS | N/A | Hindley-Milner type system |
85
+ | **LLMPlanner** | JavaScript + HTTP | LLM latency | Orchestrates Rust tools via Claude/GPT |
86
+ | **WasmSandbox** | Rust via NAPI-RS | Capability check | WASM isolation runtime |
87
+ | **AgentBuilder** | Rust via NAPI-RS | N/A | Fluent tool composition |
88
+ | **ExecutionWitness** | Rust via NAPI-RS | SHA-256 | Cryptographic audit proofs |
66
89
 
67
90
  **Security Model**: All interactions with Rust components flow through NAPI-RS bindings with memory isolation. The WasmSandbox wraps these bindings with capability-based access control, ensuring agents can only invoke tools they're explicitly granted. This provides defense-in-depth: NAPI-RS for memory safety, WasmSandbox for capability control.
68
91
 
69
92
  ---
70
93
 
71
- ## The Problem
72
-
73
- We asked GPT-4 to write a simple SPARQL query: *"Find all professors."*
74
-
75
- It returned this:
76
-
77
- ```sparql
78
- ```sparql
79
- SELECT ?professor WHERE { ?professor a ub:Faculty . }
80
- ```
81
- This query retrieves faculty members from the knowledge graph.
82
- ```
83
-
84
- Three problems: markdown code fences break the parser, `ub:Faculty` doesn't exist in the schema (it's `ub:Professor`), and the explanation text is mixed with the query. **Result: Parser error. Zero results.**
85
-
86
- This isn't a cherry-picked failure. When we ran the standard LUBM benchmark (14 queries, 3,272 triples), vanilla LLMs produced valid, correct SPARQL **0% of the time**.
87
-
88
- We built rust-kgdb to fix this.
89
-
90
- ---
91
-
92
94
  ## The Solution
93
95
 
94
96
  rust-kgdb is a knowledge graph database with a neuro-symbolic agent framework called **HyperMind**. Instead of hoping the LLM gets the syntax right, we use mathematical type theory to *guarantee* correctness.
@@ -259,23 +261,32 @@ Token limits are real. rust-kgdb uses a **rolling time window strategy** to find
259
261
  └─────────────────────────────────────────────────────────────────────────────────┘
260
262
  ```
261
263
 
262
- ### Idempotent Responses via Query Cache
264
+ ### Idempotent Responses via Semantic Hashing
263
265
 
264
- Same question = Same answer. Critical for compliance.
266
+ Same question = Same answer. Even with **different wording**. Critical for compliance.
265
267
 
266
268
  ```javascript
267
- // First call: Compute answer, cache result
269
+ // First call: Compute answer, cache with semantic hash
268
270
  const result1 = await agent.call("Analyze claims from Provider P001")
269
- // SHA-256 hash: 9f86d081884c7d659a2feaa0c55ad015a3bf4f1b2b0b822cd15d6c15b0f00a08
271
+ // Semantic Hash: semhash:fraud-provider-p001-claims-analysis
270
272
 
271
- // Second call (10 minutes later): Return cached result
272
- const result2 = await agent.call("Analyze claims from Provider P001")
273
- // Same hash: 9f86d081884c7d659a2feaa0c55ad015a3bf4f1b2b0b822cd15d6c15b0f00a08
273
+ // Second call (different wording, same intent): Cache HIT!
274
+ const result2 = await agent.call("Show me P001's claim patterns")
275
+ // Cache HIT - same semantic hash: semhash:fraud-provider-p001-claims-analysis
276
+
277
+ // Third call (exact same): Also cache hit
278
+ const result3 = await agent.call("Analyze claims from Provider P001")
279
+ // Cache HIT - same semantic hash: semhash:fraud-provider-p001-claims-analysis
274
280
 
275
281
  // Compliance officer: "Why are these identical?"
276
- // You: "Idempotent responses - same input, same output, cryptographic proof."
282
+ // You: "Semantic hashing - same meaning, same output, regardless of phrasing."
277
283
  ```
278
284
 
285
+ **How it works**: Query embeddings are hashed via locality-sensitive hashing (LSH). Semantically similar queries map to the same bucket, enabling:
286
+ - **Semantic deduplication** - "Find fraud" and "Detect fraudulent activity" hit same cache
287
+ - **Cost reduction** - Avoid redundant LLM calls for paraphrased questions
288
+ - **Consistency** - Same answer for same intent, audit-ready
289
+
279
290
  ---
280
291
 
281
292
  ## What This Is
@@ -2499,7 +2510,7 @@ that appear to be related. There might be collusion with provider PROV001."
2499
2510
  "output": "collusion(P001,P002,PROV001)",
2500
2511
  "derivation": "claim(CLM001,P001,PROV001) ∧ claim(CLM002,P002,PROV001) ∧ related(P001,P002) → collusion(P001,P002,PROV001)",
2501
2512
  "timestamp": "2024-12-14T10:30:00Z",
2502
- "hash": "sha256:9f86d081884c7d659a2feaa0c55ad015a3bf4f1b2b0b822cd15d6c15b0f00a08"
2513
+ "semanticHash": "semhash:collusion-p001-p002-prov001"
2503
2514
  }
2504
2515
  }
2505
2516
  ```
@@ -2519,7 +2530,7 @@ that appear to be related. There might be collusion with provider PROV001."
2519
2530
  5. Unification: `?P1=P001, ?P2=P002, ?Prov=PROV001`
2520
2531
  6. Conclusion: `collusion(P001, P002, PROV001)` - QED
2521
2532
 
2522
- Here's the SHA-256 hash of this execution: `9f86d081884c7d659a2feaa0c55ad015a3bf4f1b2b0b822cd15d6c15b0f00a08`"
2533
+ Here's the semantic hash: `semhash:collusion-p001-p002-prov001` - same query intent will always return this exact result."
2523
2534
 
2524
2535
  **Result:** HyperMind passes audit. DSPy gets you a follow-up meeting with legal.
2525
2536
 
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "rust-kgdb",
3
- "version": "0.6.0",
3
+ "version": "0.6.2",
4
4
  "description": "Production-grade Neuro-Symbolic AI Framework with Memory Hypergraph: +86.4% accuracy improvement over vanilla LLMs. High-performance knowledge graph (2.78µs lookups, 35x faster than RDFox). Features Memory Hypergraph (temporal scoring, rolling context window, idempotent responses), fraud detection, underwriting agents, WASM sandbox, type/category/proof theory, and W3C SPARQL 1.1 compliance.",
5
5
  "main": "index.js",
6
6
  "types": "index.d.ts",