rrce-workflow 0.2.89 → 0.2.92

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -5,13 +5,14 @@
5
5
  [![npm version](https://badge.fury.io/js/rrce-workflow.svg)](https://www.npmjs.com/package/rrce-workflow)
6
6
  [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
7
7
 
8
- RRCE-Workflow is a tool that turns your AI coding assistant (GitHub Copilot, Claude Desktop, Antigravity IDE, etc.) into a **context-aware agent**.
8
+ RRCE-Workflow transforms your AI coding assistant (GitHub Copilot, OpenCode, Claude Desktop, Antigravity IDE) into a **context-aware agent** with persistent project knowledge.
9
9
 
10
- It standardizes how AI agents understand your project through:
11
- 1. **Global Knowledge Base**: Centralized context management across all your projects.
12
- 2. **MCP Hub**: A Model Context Protocol server that exposes your code and knowledge to any MCP-compatible client.
13
- 3. **Semantic Search (RAG)**: Local, privacy-first vector indexing for deep codebase understanding.
14
- 4. **Structured Agent Pipelines**: Reusable prompts for Research, Planning, Execution, and Documentation.
10
+ **Key Features:**
11
+ - **Global Knowledge Base**: Centralized context management across all your projects (`~/.rrce-workflow/`).
12
+ - **MCP Hub**: A Model Context Protocol server exposing tools, resources, and prompts to any MCP-compatible client.
13
+ - **Semantic Search (RAG)**: Local, privacy-first vector indexing powered by `@xenova/transformers` for deep codebase understanding.
14
+ - **Structured Agent Pipelines**: 7 specialized agents (Init, Research, Planning, Executor, Docs, Sync, Doctor) for end-to-end development workflows.
15
+ - **Task Management**: Built-in CRUD operations for tracking high-level tasks via MCP tools.
15
16
 
16
17
  ---
17
18
 
@@ -58,7 +59,24 @@ RRCE-Workflow uses the [Model Context Protocol](https://modelcontextprotocol.io/
58
59
  ### Features
59
60
  * **Universal Context**: Access your project's `project-context.md`, architecture docs, and task history from *any* MCP-enabled tool.
60
61
  * **Cross-Project References**: Your AI can read documentation from Project A while working on Project B (perfect for monorepos or microservices).
61
- * **Tools & Resources**: Exposes tools like `search_knowledge` and `get_project_context` directly to the model.
62
+ * **12 MCP Tools**: Including `search_knowledge`, `get_project_context`, `resolve_path`, task CRUD operations, and more.
63
+
64
+ ### MCP Tools Reference
65
+
66
+ | Tool | Description |
67
+ |------|-------------|
68
+ | `resolve_path` | Resolve RRCE configuration paths (RRCE_DATA, WORKSPACE_ROOT, etc.) for a project |
69
+ | `list_projects` | List all projects exposed via MCP |
70
+ | `get_project_context` | Get the project-context.md for a specific project |
71
+ | `search_knowledge` | Semantic search (RAG) across project knowledge bases |
72
+ | `index_knowledge` | Update the semantic search index for a project |
73
+ | `list_agents` | List available RRCE agents and their arguments |
74
+ | `get_agent_prompt` | Get the system prompt for a specific agent with context injection |
75
+ | `list_tasks` | List all tasks for a project |
76
+ | `get_task` | Get details of a specific task |
77
+ | `create_task` | Create a new task in the project |
78
+ | `update_task` | Update an existing task's meta.json |
79
+ | `delete_task` | Delete a task from the project |
62
80
 
63
81
  ### Connecting Your IDE
64
82
 
@@ -149,36 +167,40 @@ Stores everything in a `.rrce-workflow` folder inside your project root.
149
167
 
150
168
  ---
151
169
 
152
- ## 🤖 The Agent Pipeline
170
+ ## The Agent Pipeline
153
171
 
154
- Once installed, you gain access to powerful agent workflows. Invoke them using your AI assistant's chat interface (if supported) or by pasting the prompts.
172
+ Once installed, you gain access to 7 specialized agent workflows. Invoke them via your AI assistant's chat interface or through MCP tools.
155
173
 
156
- | Agent | Purpose | Recommended Use |
157
- |-------|---------|-----------------|
158
- | **Init** | **Context Establishment** | Run once at project start to analyze tech stack & architecture. |
159
- | **Research** | **Scope Definition** | Use when starting a complex feature to clarify requirements & risks. |
160
- | **Planning** | **Execution Strategy** | Generates a step-by-step implementation plan (checklist). |
161
- | **Execute** | **Implementation** | The "coding" phase. Implements the plan created by the Planning agent. |
162
- | **Docs** | **Documentation** | Generates tailored docs (API refs, guides) from code. |
163
- | **Sync** | **Knowledge Maintenance** | Scans code changes to update the `knowledge/` folder. |
164
- | **Doctor** | **Health Analysis** | Analyzes codebase for issues, tech debt, and improvement opportunities. |
174
+ | Agent | ID | Purpose | Key Arguments |
175
+ |-------|----|---------|---------------|
176
+ | **Init** | `init` | Analyze codebase, establish project context and semantic index | `PROJECT_NAME` (optional) |
177
+ | **Research** | `research_discussion` | Interactive requirements clarification through dialogue | `TASK_SLUG`, `REQUEST` |
178
+ | **Planning** | `planning_discussion` | Transform research into actionable execution plan | `TASK_SLUG` |
179
+ | **Executor** | `executor` | Implement the plan - the ONLY agent authorized to modify code | `TASK_SLUG`, `BRANCH` |
180
+ | **Docs** | `documentation` | Generate project documentation (API, architecture, changelog) | `DOC_TYPE`, `TASK_SLUG` |
181
+ | **Sync** | `sync` | Reconcile knowledge base with current codebase state | `SCOPE` (optional) |
182
+ | **Doctor** | `doctor` | Analyze codebase health, identify issues, recommend improvements | `PROJECT_NAME`, `FOCUS_AREA` |
165
183
 
166
184
  ### Recommended Workflow
167
- 1. **`/init`**: "Analyze this codebase." -> Creates `project-context.md`.
168
- 2. **`/research`**: "I need to add user auth." -> Generates a Research Brief.
169
- 3. **`/plan`**: "Create a plan for user auth." -> Generates an Implementation Plan.
170
- 4. **`/execute`**: "Implement the auth plan." -> Writes code across files.
171
- 5. **`/sync`**: "Update knowledge." -> Refreshes context for the next task.
185
+ 1. **`init`**: "Analyze this codebase." Creates `project-context.md` and semantic index.
186
+ 2. **`research_discussion`**: "I need to add user auth." Interactive requirements gathering.
187
+ 3. **`planning_discussion`**: "Create a plan for user auth." Generates implementation checklist.
188
+ 4. **`executor`**: "Implement the auth plan." Writes code, runs tests.
189
+ 5. **`documentation`**: "Generate API docs." Produces release-ready documentation.
190
+ 6. **`sync`**: "Update knowledge." → Refreshes context for the next task.
172
191
 
173
192
  ---
174
193
 
175
- ## 🔍 Semantic Search (RAG)
194
+ ## Semantic Search (RAG)
176
195
 
177
- RRCE-Workflow includes a local, embedding-based search engine.
178
- - **Privacy First**: All embeddings are calculated locally on your CPU/GPU. No code leaves your machine.
179
- - **Smart Context**: Allows the agent to find relevant code snippets via natural language queries (e.g., "Find the authentication middleware logic") even if keywords don't match exactly.
196
+ RRCE-Workflow includes a local, embedding-based search engine powered by `@xenova/transformers`.
180
197
 
181
- RAG is enabled by default in Express Setup. You can toggle it per-project in the MCP Dashboard.
198
+ - **Privacy First**: All embeddings are calculated locally. No code leaves your machine.
199
+ - **Full Codebase Indexing**: The `index_knowledge` tool scans your entire source tree (respecting skip lists like `node_modules`, `.git`).
200
+ - **Smart Fallback**: If RAG fails or isn't enabled, `search_knowledge` performs line-by-line text matching.
201
+ - **Model**: Uses `Xenova/all-MiniLM-L6-v2` by default (configurable per-project).
202
+
203
+ RAG is enabled by default in Express Setup. You can toggle it per-project in the MCP Dashboard or via `config.yaml`.
182
204
 
183
205
  ---
184
206
 
@@ -187,6 +209,16 @@ RAG is enabled by default in Express Setup. You can toggle it per-project in the
187
209
  - **Node.js 18+**
188
210
  - **Git**
189
211
 
212
+ ## Tech Stack
213
+
214
+ | Component | Technology |
215
+ |-----------|------------|
216
+ | TUI Framework | Ink ^6.6.0 (React-based) |
217
+ | MCP Server | @modelcontextprotocol/sdk ^1.25.1 |
218
+ | Embeddings | @xenova/transformers ^2.17.2 |
219
+ | Build | esbuild |
220
+ | Runtime | Node.js >= 18 |
221
+
190
222
  ## License
191
223
 
192
224
  MIT © RRCE Team
@@ -42,10 +42,23 @@ Tool: search_knowledge
42
42
  Args: { query: "your query", project: "<other-project>" }
43
43
  ```
44
44
 
45
- Using the tool is preferred because it:
46
- - Respects project permissions
47
- - Uses semantic search when enabled
48
- - Works across storage modes
45
+ ## Resolution via MCP Tool (Highly Recommended)
46
+
47
+ If the "System Resolved Paths" table is missing or you suspect it might be outdated, use the `resolve_path` tool. This is the most robust way to determine the correct configuration, as it handles the logic for detecting global vs. local workspace modes.
48
+
49
+ ```
50
+ Tool: resolve_path
51
+ Args: { path: "/absolute/path/to/workspace/root" }
52
+ ```
53
+
54
+ Or if you only know the project name:
55
+
56
+ ```
57
+ Tool: resolve_path
58
+ Args: { project: "project-name" }
59
+ ```
60
+
61
+ The tool returns a JSON object containing `RRCE_DATA`, `RRCE_HOME`, `WORKSPACE_ROOT`, and `storage_mode`.
49
62
 
50
63
  ## Common Paths Reference
51
64