rhachet-roles-bhrain 0.1.1 → 0.2.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (30) hide show
  1. package/dist/roles/architect/briefs/brains.replic/arc000.sources.[catalog].md +178 -0
  2. package/dist/roles/architect/briefs/brains.replic/arc101.concept.llm.[article].md +25 -0
  3. package/dist/roles/architect/briefs/brains.replic/arc102.concept.repl.[article].md +33 -0
  4. package/dist/roles/architect/briefs/brains.replic/arc103.concept.replic-brain.[article].md +35 -0
  5. package/dist/roles/architect/briefs/brains.replic/arc104.concept.context-window.[article].md +40 -0
  6. package/dist/roles/architect/briefs/brains.replic/arc105.concept.system-prompt.[article].md +44 -0
  7. package/dist/roles/architect/briefs/brains.replic/arc106.concept.tool-definition.[article].md +59 -0
  8. package/dist/roles/architect/briefs/brains.replic/arc107.concept.tool-call.[article].md +54 -0
  9. package/dist/roles/architect/briefs/brains.replic/arc108.concept.tool-result.[article].md +58 -0
  10. package/dist/roles/architect/briefs/brains.replic/arc109.concept.agentic-loop.[article].md +62 -0
  11. package/dist/roles/architect/briefs/brains.replic/arc110.concept.reasoning-trace.[article].md +58 -0
  12. package/dist/roles/architect/briefs/brains.replic/arc111.concept.react-pattern.[article].md +65 -0
  13. package/dist/roles/architect/briefs/brains.replic/arc112.concept.reflexion-pattern.[article].md +68 -0
  14. package/dist/roles/architect/briefs/brains.replic/arc113.concept.tree-of-thoughts.[article].md +76 -0
  15. package/dist/roles/architect/briefs/brains.replic/arc114.concept.self-consistency.[article].md +73 -0
  16. package/dist/roles/architect/briefs/brains.replic/arc115.concept.lats-pattern.[article].md +78 -0
  17. package/dist/roles/architect/briefs/brains.replic/arc116.concept.context-compaction.[article].md +71 -0
  18. package/dist/roles/architect/briefs/brains.replic/arc117.concept.subagent.[article].md +71 -0
  19. package/dist/roles/architect/briefs/brains.replic/arc118.concept.extended-thinking.[article].md +69 -0
  20. package/dist/roles/architect/briefs/brains.replic/arc119.concept.mcp.[article].md +78 -0
  21. package/dist/roles/architect/briefs/brains.replic/arc120.concept.session.[article].md +67 -0
  22. package/dist/roles/architect/briefs/brains.replic/arc121.concept.message.[article].md +79 -0
  23. package/dist/roles/architect/briefs/brains.replic/arc122.concept.plan-and-solve.[article].md +80 -0
  24. package/dist/roles/architect/briefs/brains.replic/arc150.concepts.treestruct.[article].md +126 -0
  25. package/dist/roles/architect/briefs/brains.replic/arc201.blueprint.claude-code.[article].md +417 -0
  26. package/dist/roles/architect/briefs/brains.replic/arc201.blueprint.claude-code.zoomin.reason.[article].md +507 -0
  27. package/dist/roles/architect/briefs/brains.replic/arc202.blueprint.codex.[article].md +354 -0
  28. package/dist/roles/architect/briefs/brains.replic/arc300.blueprints.comparison.[catalog].md +284 -0
  29. package/dist/roles/thinker/briefs/term=brain.atomic_vs_replic.md +8 -0
  30. package/package.json +3 -2
@@ -0,0 +1,65 @@
1
+ # react-pattern
2
+
3
+ ## .what
4
+
5
+ a prompting paradigm that interleaves reasoning traces with actions, producing explicit Thought → Action → Observation cycles that ground reasoning in real-world feedback.
6
+
7
+ ## .why
8
+
9
+ react addresses a fundamental limitation of pure reasoning: hallucination. by forcing the model to take actions and observe actual results between reasoning steps, react grounds abstract thought in concrete feedback. this synergy of reasoning and acting enables more reliable task completion.
10
+
11
+ ## dependsOn
12
+
13
+ - `reasoning-trace` — the "thought" component
14
+ - `tool-call` — the "action" component
15
+ - `tool-result` — the "observation" component
16
+ - `agentic-loop` — orchestrates the cycle
17
+
18
+ ## pattern structure
19
+
20
+ ```
21
+ Thought: I need to find information about X
22
+ Action: Search("X")
23
+ Observation: [search results]
24
+ Thought: Based on these results, I should check Y
25
+ Action: Read("file_y.txt")
26
+ Observation: [file contents]
27
+ Thought: Now I can answer the question
28
+ Answer: ...
29
+ ```
30
+
31
+ ## benchmark performance
32
+
33
+ | benchmark | react vs baseline |
34
+ |-----------|-------------------|
35
+ | HotPotQA | competitive with CoT, lower hallucination (6% vs 14%) |
36
+ | ALFWorld | +34% over imitation learning |
37
+ | WebShop | significantly outperforms Act-only |
38
+
39
+ ## tradeoffs
40
+
41
+ ### strengths
42
+ - grounded in real observations
43
+ - lower hallucination rate
44
+ - interpretable decision process
45
+ - recovers from errors via feedback
46
+
47
+ ### weaknesses
48
+ - structurally constrained (forced action after each thought)
49
+ - dependent on quality of retrieved information
50
+ - may force unnecessary actions
51
+
52
+ ## comparison with pure CoT
53
+
54
+ | aspect | CoT | ReAct |
55
+ |--------|-----|-------|
56
+ | grounding | internal only | external observations |
57
+ | hallucination | higher | lower |
58
+ | flexibility | high | constrained by structure |
59
+ | task types | reasoning | reasoning + interaction |
60
+
61
+ ## sources
62
+
63
+ - [ReAct: Synergizing Reasoning and Acting](https://arxiv.org/abs/2210.03629) — original paper (ICLR 2023)
64
+ - [Google Research Blog](https://research.google/blog/react-synergizing-reasoning-and-acting-in-language-models/) — overview
65
+ - [Comprehensive Guide to ReAct](https://www.mercity.ai/blog-post/react-prompting-and-react-based-agentic-systems) — practical guide
@@ -0,0 +1,68 @@
1
+ # reflexion-pattern
2
+
3
+ ## .what
4
+
5
+ an agent architecture that adds explicit self-reflection after task attempts, storing verbal feedback in memory to improve performance on subsequent trials through "verbal reinforcement learning."
6
+
7
+ ## .why
8
+
9
+ reflexion addresses a key limitation of single-attempt agents: they cannot learn from their mistakes within a session. by reflecting on failures and storing insights, the agent can iteratively improve without weight updates. this enables rapid adaptation and higher eventual success rates.
10
+
11
+ ## dependsOn
12
+
13
+ - `agentic-loop` — base execution pattern
14
+ - `reasoning-trace` — reflection is a form of reasoning
15
+ - `context-window` — stores reflection memory
16
+
17
+ ## pattern structure
18
+
19
+ ```
20
+ Attempt 1:
21
+ [Execute task]
22
+ Result: Failed (test case 3)
23
+
24
+ Reflection:
25
+ "I failed because I didn't handle the edge case where
26
+ the input is empty. Next time I should check for
27
+ empty inputs before processing."
28
+
29
+ Attempt 2:
30
+ [Execute task with reflection in context]
31
+ Result: Passed
32
+ ```
33
+
34
+ ## key components
35
+
36
+ | component | purpose |
37
+ |-----------|---------|
38
+ | actor | executes actions in environment |
39
+ | evaluator | scores trajectory (success/failure) |
40
+ | self-reflection | generates verbal feedback |
41
+ | memory | stores reflections for future attempts |
42
+
43
+ ## benchmark performance
44
+
45
+ | benchmark | improvement |
46
+ |-----------|-------------|
47
+ | ALFWorld | +22% success rate with reflection |
48
+ | HotPotQA | improved accuracy over baseline ReAct |
49
+ | programming | higher pass rates on iterative debugging |
50
+
51
+ ## vs other patterns
52
+
53
+ | pattern | learns from failure? | mechanism |
54
+ |---------|---------------------|-----------|
55
+ | ReAct | no | single attempt |
56
+ | Reflexion | yes | verbal memory |
57
+ | LATS | yes | tree search with backtracking |
58
+
59
+ ## implementation notes
60
+
61
+ - reflection is stored as text in context or external memory
62
+ - number of attempts typically capped (e.g., 3-5)
63
+ - works best when failure modes are diverse
64
+
65
+ ## sources
66
+
67
+ - [Reflexion: Language Agents with Verbal Reinforcement Learning](https://arxiv.org/abs/2303.11366) — original paper
68
+ - [AgentBench](https://arxiv.org/abs/2308.03688) — benchmark including reflexion variants
@@ -0,0 +1,76 @@
1
+ # tree-of-thoughts
2
+
3
+ ## .what
4
+
5
+ a deliberate problem-solving framework that explores multiple reasoning paths as a tree structure, using search algorithms (BFS/DFS) and evaluation to find optimal solutions.
6
+
7
+ ## .why
8
+
9
+ tree of thoughts addresses the limitation of linear chain-of-thought: once a reasoning path is taken, there's no backtracking. by explicitly exploring multiple branches and evaluating intermediate states, ToT enables deliberate planning and can solve problems requiring lookahead that linear approaches cannot.
10
+
11
+ ## dependsOn
12
+
13
+ - `reasoning-trace` — each node contains reasoning
14
+ - `llm` — generates and evaluates thoughts
15
+
16
+ ## pattern structure
17
+
18
+ ```
19
+ [Problem]
20
+
21
+ ┌────────────┼────────────┐
22
+ │ │ │
23
+ [Thought A] [Thought B] [Thought C]
24
+ │ │ │
25
+ [eval: 0.8] [eval: 0.3] [eval: 0.9] ← best
26
+ │ │
27
+ [Thought A1] [Thought C1]
28
+ │ │
29
+ [eval: 0.6] [eval: 0.95] ← selected
30
+ ```
31
+
32
+ ## key components
33
+
34
+ | component | purpose |
35
+ |-----------|---------|
36
+ | thought decomposition | break problem into steps |
37
+ | thought generator | propose multiple candidates |
38
+ | state evaluator | score intermediate states |
39
+ | search algorithm | BFS, DFS, or beam search |
40
+
41
+ ## benchmark performance
42
+
43
+ | benchmark | ToT vs CoT |
44
+ |-----------|------------|
45
+ | Game of 24 | 74% vs 4% |
46
+ | Creative Writing | improved coherence |
47
+ | Crosswords | significantly higher solve rate |
48
+
49
+ ## search strategies
50
+
51
+ | strategy | characteristic |
52
+ |----------|----------------|
53
+ | BFS | explore all options at each depth |
54
+ | DFS | explore deeply first, backtrack |
55
+ | beam search | keep top-k candidates at each level |
56
+
57
+ ## cost tradeoff
58
+
59
+ ToT requires significantly more LLM calls than linear approaches:
60
+ - multiple thought proposals per step
61
+ - evaluation calls for each candidate
62
+ - may explore many branches
63
+
64
+ ## vs other patterns
65
+
66
+ | pattern | exploration | backtracking |
67
+ |---------|-------------|--------------|
68
+ | CoT | linear | none |
69
+ | Self-Consistency | parallel paths, no interaction | none |
70
+ | ToT | tree structure | yes |
71
+ | LATS | tree + MCTS | yes, with learning |
72
+
73
+ ## sources
74
+
75
+ - [Tree of Thoughts: Deliberate Problem Solving](https://arxiv.org/abs/2305.10601) — original paper (NeurIPS 2023)
76
+ - [CoALA](https://arxiv.org/abs/2309.02427) — positions ToT in agent framework
@@ -0,0 +1,73 @@
1
+ # self-consistency
2
+
3
+ ## .what
4
+
5
+ a decoding strategy that samples multiple reasoning paths from the llm and selects the final answer by majority vote, leveraging the intuition that correct reasoning is more likely to converge on the same answer.
6
+
7
+ ## .why
8
+
9
+ self-consistency exploits the stochastic nature of llm generation as a feature rather than a bug. different reasoning paths may make different mistakes, but correct paths tend to agree on the final answer. by sampling multiple times and voting, we reduce the impact of individual reasoning errors.
10
+
11
+ ## dependsOn
12
+
13
+ - `reasoning-trace` — each sample produces a trace
14
+ - `llm` — generates multiple samples
15
+
16
+ ## pattern structure
17
+
18
+ ```
19
+ Question: What is the capital of Australia?
20
+
21
+ Sample 1: "Australia is in Oceania. Sydney is the largest city.
22
+ But the capital is Canberra." → Canberra
23
+
24
+ Sample 2: "Australia's government is in Canberra, which was
25
+ purpose-built as the capital." → Canberra
26
+
27
+ Sample 3: "The largest city is Sydney, which might be the
28
+ capital." → Sydney
29
+
30
+ Majority vote: Canberra (2/3)
31
+ Final answer: Canberra
32
+ ```
33
+
34
+ ## key characteristics
35
+
36
+ - **embarrassingly parallel**: all samples independent
37
+ - **temperature > 0**: requires stochastic sampling
38
+ - **answer extraction**: must identify final answer in each trace
39
+ - **voting mechanism**: typically majority, can be weighted
40
+
41
+ ## benchmark performance
42
+
43
+ | benchmark | improvement over greedy CoT |
44
+ |-----------|---------------------------|
45
+ | arithmetic | +17.9% (GSM8K) |
46
+ | commonsense | +11.0% (CommonsenseQA) |
47
+ | symbolic | significant gains |
48
+
49
+ ## parameters
50
+
51
+ | parameter | effect |
52
+ |-----------|--------|
53
+ | num_samples | more samples = higher accuracy, higher cost |
54
+ | temperature | higher = more diverse samples |
55
+ | voting method | majority, weighted, etc. |
56
+
57
+ ## cost analysis
58
+
59
+ self-consistency is more expensive than single-path CoT:
60
+ - linear cost increase with sample count
61
+ - typically 5-40 samples used
62
+ - parallelizable (latency ≈ single sample if concurrent)
63
+
64
+ ## limitations
65
+
66
+ - requires extractable final answers
67
+ - expensive for long generations
68
+ - doesn't help if all paths fail similarly
69
+
70
+ ## sources
71
+
72
+ - [Self-Consistency Improves Chain of Thought Reasoning](https://arxiv.org/abs/2203.11171) — original paper
73
+ - [Reasoning with LM Prompting Survey](https://github.com/zjunlp/Prompt4ReasoningPapers) — comparison with other methods
@@ -0,0 +1,78 @@
1
+ # lats-pattern (language agent tree search)
2
+
3
+ ## .what
4
+
5
+ an advanced agent framework that combines tree-of-thoughts with monte carlo tree search (MCTS), using external feedback and learned value functions to guide exploration of action sequences.
6
+
7
+ ## .why
8
+
9
+ LATS addresses limitations of both linear agents (no backtracking) and static tree search (no learning). by incorporating MCTS principles — selection, expansion, simulation, backpropagation — LATS can learn from failed trajectories and allocate search effort efficiently toward promising paths.
10
+
11
+ ## dependsOn
12
+
13
+ - `tree-of-thoughts` — tree structure for exploration
14
+ - `agentic-loop` — action execution
15
+ - `reflexion-pattern` — learning from feedback
16
+
17
+ ## mcts components in LATS
18
+
19
+ | component | implementation |
20
+ |-----------|----------------|
21
+ | selection | UCB1-guided node choice |
22
+ | expansion | llm generates candidate actions |
23
+ | simulation | execute action, observe result |
24
+ | backpropagation | update values based on outcome |
25
+
26
+ ## pattern structure
27
+
28
+ ```
29
+ [Root State]
30
+
31
+ ┌────────┼────────┐
32
+ │ │ │
33
+ [A:0.6] [B:0.8] [C:0.4] ← UCB1 selects B
34
+
35
+ ┌────────┼────────┐
36
+ │ │ │
37
+ [B1:0.7] [B2:0.9] [B3:0.5] ← expand B, simulate
38
+
39
+ [success]
40
+
41
+ backpropagate +reward
42
+ ```
43
+
44
+ ## benchmark performance
45
+
46
+ | benchmark | LATS performance |
47
+ |-----------|-----------------|
48
+ | HotPotQA | state-of-the-art among agent methods |
49
+ | WebShop | improved over ReAct/Reflexion |
50
+ | Programming | higher solve rates with search |
51
+
52
+ ## key innovations over ToT
53
+
54
+ | aspect | ToT | LATS |
55
+ |--------|-----|------|
56
+ | exploration | static heuristic | learned UCB1 |
57
+ | feedback | evaluation only | environment + reflection |
58
+ | memory | none | experience buffer |
59
+ | replanning | from scratch | informed by history |
60
+
61
+ ## computational cost
62
+
63
+ LATS is more expensive than simpler methods:
64
+ - multiple simulation trajectories
65
+ - value function updates
66
+ - but more sample-efficient than random exploration
67
+
68
+ ## when to use
69
+
70
+ - complex multi-step tasks
71
+ - sparse reward signals
72
+ - when backtracking is valuable
73
+ - sufficient compute budget
74
+
75
+ ## sources
76
+
77
+ - [Language Agent Tree Search (LATS)](https://arxiv.org/abs/2310.04406) — original paper (ICML 2024)
78
+ - [Understanding LLM Agent Planning Survey](https://arxiv.org/abs/2402.02716) — positions LATS in taxonomy
@@ -0,0 +1,71 @@
1
+ # context-compaction
2
+
3
+ ## .what
4
+
5
+ techniques for reducing the token count of accumulated context while preserving essential information, enabling long-running agent sessions within fixed context window limits.
6
+
7
+ ## .why
8
+
9
+ as replic brains iterate through the agentic loop, context accumulates: tool results, conversation turns, reasoning traces. without compaction, the context window fills and the agent cannot continue. compaction strategies allow sessions to persist indefinitely while retaining relevant information.
10
+
11
+ ## dependsOn
12
+
13
+ - `context-window` — the constraint being managed
14
+ - `llm` — may perform summarization
15
+ - `agentic-loop` — produces context to compact
16
+
17
+ ## strategies
18
+
19
+ ### summarization
20
+ condense earlier conversation/results into summaries:
21
+ ```
22
+ [Original: 5000 tokens of tool results]
23
+ ↓ summarize
24
+ [Summary: 200 tokens capturing key findings]
25
+ ```
26
+
27
+ ### sliding window
28
+ keep only the most recent N turns:
29
+ ```
30
+ [turn 1] [turn 2] [turn 3] [turn 4] [turn 5]
31
+ ↓ window of 3
32
+ [turn 3] [turn 4] [turn 5]
33
+ ```
34
+
35
+ ### hierarchical memory (MemGPT)
36
+ tier information by recency/importance:
37
+ ```
38
+ L1 (context): current working set
39
+ L2 (recall): summarized past sessions
40
+ L3 (archive): compressed long-term storage
41
+ ```
42
+
43
+ ### selective retention
44
+ keep only tool results that inform current task:
45
+ ```
46
+ [file read A] [file read B] [file read C]
47
+ ↓ task now focuses on C
48
+ [file read C]
49
+ ```
50
+
51
+ ## tradeoffs
52
+
53
+ | strategy | preserves | loses |
54
+ |----------|-----------|-------|
55
+ | summarization | gist | verbatim details |
56
+ | sliding window | recency | early context |
57
+ | hierarchical | structure | fast access to old data |
58
+ | selective | relevance | potentially useful info |
59
+
60
+ ## implementation in replic brains
61
+
62
+ | system | compaction approach |
63
+ |--------|---------------------|
64
+ | claude code | auto-summarization when context fills |
65
+ | codex cloud | full context (large windows) |
66
+ | aider | git diff-based context |
67
+
68
+ ## sources
69
+
70
+ - [MemGPT: Towards LLMs as Operating Systems](https://arxiv.org/abs/2310.08560) — hierarchical memory
71
+ - [Building Effective Agents](https://www.anthropic.com/research/building-effective-agents) — summarization patterns
@@ -0,0 +1,71 @@
1
+ # subagent
2
+
3
+ ## .what
4
+
5
+ a child agent spawned by a parent agent, operating with its own isolated context window to perform a delegated subtask before returning results.
6
+
7
+ ## .why
8
+
9
+ subagents address two key challenges: context exhaustion and task parallelization. by delegating subtasks to agents with fresh context windows, the parent can tackle larger problems without filling its own context. subagents can also run in parallel for independent tasks.
10
+
11
+ ## dependsOn
12
+
13
+ - `agentic-loop` — both parent and child run loops
14
+ - `context-window` — isolation is the key benefit
15
+ - `tool-definition` — subagent spawning is a tool
16
+
17
+ ## pattern
18
+
19
+ ```
20
+ Parent Agent (main context)
21
+
22
+ ├── Task tool: "explore codebase for auth patterns"
23
+ │ │
24
+ │ └── Subagent (fresh context)
25
+ │ ├── Glob, Grep, Read...
26
+ │ └── Returns summary
27
+
28
+ └── Continues with summary in context
29
+ ```
30
+
31
+ ## key characteristics
32
+
33
+ - **isolated context**: subagent starts fresh
34
+ - **focused task**: single delegated objective
35
+ - **returns results**: output injected into parent context
36
+ - **may be typed**: different subagent types for different tasks
37
+
38
+ ## subagent types (claude code)
39
+
40
+ | type | purpose | tools available |
41
+ |------|---------|-----------------|
42
+ | Explore | codebase exploration | Glob, Grep, Read |
43
+ | Plan | implementation planning | Read, planning tools |
44
+ | general-purpose | complex multi-step tasks | all tools |
45
+
46
+ ## parallelization
47
+
48
+ subagents enable parallel execution:
49
+ ```
50
+ Parent: "search for auth and search for database patterns"
51
+
52
+ ├── Subagent A: auth exploration ──────┐
53
+ │ ├── (parallel)
54
+ └── Subagent B: database exploration ──┘
55
+
56
+ └── Combine results
57
+ ```
58
+
59
+ ## tradeoffs
60
+
61
+ | benefit | cost |
62
+ |---------|------|
63
+ | context isolation | summarization loss when returning |
64
+ | parallelization | coordination complexity |
65
+ | fresh start | loses parent context unless passed |
66
+ | focused execution | additional API calls |
67
+
68
+ ## sources
69
+
70
+ - [Building Agents with Claude Agent SDK](https://www.anthropic.com/engineering/building-agents-with-the-claude-agent-sdk) — subagent patterns
71
+ - [Claude Code Documentation](https://docs.anthropic.com) — Task tool specification
@@ -0,0 +1,69 @@
1
+ # extended-thinking
2
+
3
+ ## .what
4
+
5
+ a capability that allows an llm to allocate additional computation (serial test-time compute) to reasoning before producing a final response, controlled by a token budget.
6
+
7
+ ## .why
8
+
9
+ extended thinking enables "thinking harder" about complex problems. by giving the model a dedicated budget for internal reasoning, it can explore approaches, verify its work, and catch errors before committing to an answer. this is particularly valuable for coding, math, and analysis tasks.
10
+
11
+ ## dependsOn
12
+
13
+ - `llm` — must support thinking mode
14
+ - `reasoning-trace` — thinking produces traces
15
+ - `context-window` — thinking consumes budget tokens
16
+
17
+ ## mechanism
18
+
19
+ ```
20
+ [User Query]
21
+
22
+
23
+ [Extended Thinking: up to N tokens]
24
+ - "Let me consider the approaches..."
25
+ - "First approach: ..."
26
+ - "Wait, that won't work because..."
27
+ - "Better approach: ..."
28
+
29
+
30
+ [Final Response: informed by thinking]
31
+ ```
32
+
33
+ ## key characteristics
34
+
35
+ - **token budget**: user specifies max thinking tokens (1k-128k)
36
+ - **hybrid mode**: can be toggled on/off per request
37
+ - **serial compute**: sequential reasoning steps
38
+ - **varying visibility**: thinking may be hidden or shown
39
+
40
+ ## budget guidelines
41
+
42
+ | budget | suitable for |
43
+ |--------|--------------|
44
+ | 1k-4k | simple analysis |
45
+ | 4k-16k | moderate complexity |
46
+ | 16k-64k | complex coding/math |
47
+ | 64k-128k | deep research |
48
+
49
+ ## integration with tools
50
+
51
+ extended thinking can be combined with tool use:
52
+ - think before deciding which tools to use
53
+ - think after receiving tool results
54
+ - "think" tool forces explicit reasoning pause
55
+
56
+ ## vs other patterns
57
+
58
+ | pattern | mechanism |
59
+ |---------|-----------|
60
+ | CoT | inline reasoning in response |
61
+ | ToT | explore multiple branches |
62
+ | Extended thinking | dedicated compute budget |
63
+ | Self-consistency | multiple samples, voting |
64
+
65
+ ## sources
66
+
67
+ - [Claude's Extended Thinking](https://www.anthropic.com/news/visible-extended-thinking) — announcement
68
+ - [Using Extended Thinking](https://support.claude.com/en/articles/10574485-using-extended-thinking) — documentation
69
+ - [The "think" Tool](https://www.anthropic.com/engineering/claude-think-tool) — tool integration
@@ -0,0 +1,78 @@
1
+ # mcp (model context protocol)
2
+
3
+ ## .what
4
+
5
+ an open protocol that standardizes how llm applications connect to external tools, data sources, and services through a unified interface.
6
+
7
+ ## .why
8
+
9
+ mcp solves the N×M integration problem: without a standard, every llm application must build custom integrations for every tool. with mcp, tool providers implement the protocol once, and any mcp-compatible application can use it. this enables a rich ecosystem of interoperable tools.
10
+
11
+ ## dependsOn
12
+
13
+ - `tool-definition` — mcp defines tool schemas
14
+ - `tool-call` — mcp routes tool invocations
15
+ - `tool-result` — mcp returns structured results
16
+
17
+ ## architecture
18
+
19
+ ```
20
+ ┌─────────────────┐ ┌──────────────────┐
21
+ │ LLM Application │ │ MCP Server │
22
+ │ (Claude Code) │────▶│ (filesystem) │
23
+ └─────────────────┘ └──────────────────┘
24
+ │ │
25
+ │ MCP Protocol │
26
+ │◀─────────────────────▶│
27
+ │ │
28
+ ▼ ▼
29
+ ┌─────────────────┐ ┌──────────────────┐
30
+ │ MCP Server │ │ MCP Server │
31
+ │ (database) │ │ (github) │
32
+ └─────────────────┘ └──────────────────┘
33
+ ```
34
+
35
+ ## protocol components
36
+
37
+ | component | purpose |
38
+ |-----------|---------|
39
+ | tools | actions the server exposes |
40
+ | resources | data the server provides |
41
+ | prompts | templates for common operations |
42
+ | transports | communication channels (stdio, http) |
43
+
44
+ ## tool definition in mcp
45
+
46
+ ```json
47
+ {
48
+ "name": "read_file",
49
+ "description": "Read contents of a file",
50
+ "inputSchema": {
51
+ "type": "object",
52
+ "properties": {
53
+ "path": { "type": "string" }
54
+ },
55
+ "required": ["path"]
56
+ }
57
+ }
58
+ ```
59
+
60
+ ## benefits
61
+
62
+ - **extensibility**: add new tools without changing core
63
+ - **standardization**: consistent interface across providers
64
+ - **composability**: combine multiple servers
65
+ - **permission control**: allowedTools/disallowedTools
66
+
67
+ ## adoption
68
+
69
+ | system | mcp support |
70
+ |--------|-------------|
71
+ | claude code | native, primary integration mechanism |
72
+ | cursor | supported |
73
+ | cline | supported |
74
+
75
+ ## sources
76
+
77
+ - [Model Context Protocol](https://modelcontextprotocol.io/) — specification
78
+ - [Building Agents with Claude Agent SDK](https://www.anthropic.com/engineering/building-agents-with-the-claude-agent-sdk) — MCP integration