rendx-curve 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/LICENSE +21 -0
- package/dist/main.cjs +307 -0
- package/dist/main.d.cts +19 -0
- package/dist/main.d.ts +19 -0
- package/dist/main.js +268 -0
- package/package.json +46 -0
package/LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025-present wei.liang (https://github.com/weiliang0121)
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
package/dist/main.cjs
ADDED
|
@@ -0,0 +1,307 @@
|
|
|
1
|
+
"use strict";
|
|
2
|
+
var __defProp = Object.defineProperty;
|
|
3
|
+
var __getOwnPropDesc = Object.getOwnPropertyDescriptor;
|
|
4
|
+
var __getOwnPropNames = Object.getOwnPropertyNames;
|
|
5
|
+
var __hasOwnProp = Object.prototype.hasOwnProperty;
|
|
6
|
+
var __export = (target, all) => {
|
|
7
|
+
for (var name in all)
|
|
8
|
+
__defProp(target, name, { get: all[name], enumerable: true });
|
|
9
|
+
};
|
|
10
|
+
var __copyProps = (to, from, except, desc) => {
|
|
11
|
+
if (from && typeof from === "object" || typeof from === "function") {
|
|
12
|
+
for (let key of __getOwnPropNames(from))
|
|
13
|
+
if (!__hasOwnProp.call(to, key) && key !== except)
|
|
14
|
+
__defProp(to, key, { get: () => from[key], enumerable: !(desc = __getOwnPropDesc(from, key)) || desc.enumerable });
|
|
15
|
+
}
|
|
16
|
+
return to;
|
|
17
|
+
};
|
|
18
|
+
var __toCommonJS = (mod) => __copyProps(__defProp({}, "__esModule", { value: true }), mod);
|
|
19
|
+
|
|
20
|
+
// src/main.ts
|
|
21
|
+
var main_exports = {};
|
|
22
|
+
__export(main_exports, {
|
|
23
|
+
basis: () => basis,
|
|
24
|
+
bumpX: () => bumpX,
|
|
25
|
+
bumpY: () => bumpY,
|
|
26
|
+
cardinal: () => cardinal,
|
|
27
|
+
catmullRom: () => catmullRom,
|
|
28
|
+
curveMap: () => curveMap,
|
|
29
|
+
linear: () => linear,
|
|
30
|
+
monotoneX: () => monotoneX,
|
|
31
|
+
monotoneY: () => monotoneY,
|
|
32
|
+
natural: () => natural,
|
|
33
|
+
step: () => step,
|
|
34
|
+
stepAfter: () => stepAfter,
|
|
35
|
+
stepBefore: () => stepBefore
|
|
36
|
+
});
|
|
37
|
+
module.exports = __toCommonJS(main_exports);
|
|
38
|
+
|
|
39
|
+
// src/curve.ts
|
|
40
|
+
var linear = (path, points, start = true) => {
|
|
41
|
+
if (points.length <= 0) return;
|
|
42
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
43
|
+
for (let i = 1; i < points.length; i++) path.L(points[i][0], points[i][1]);
|
|
44
|
+
};
|
|
45
|
+
var step = (path, points, start = true) => {
|
|
46
|
+
if (points.length <= 0) return;
|
|
47
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
48
|
+
for (let i = 1; i < points.length; i++) {
|
|
49
|
+
const mx = (points[i - 1][0] + points[i][0]) / 2;
|
|
50
|
+
path.L(mx, points[i - 1][1]);
|
|
51
|
+
path.L(mx, points[i][1]);
|
|
52
|
+
path.L(points[i][0], points[i][1]);
|
|
53
|
+
}
|
|
54
|
+
};
|
|
55
|
+
var stepBefore = (path, points, start = true) => {
|
|
56
|
+
if (points.length <= 0) return;
|
|
57
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
58
|
+
for (let i = 1; i < points.length; i++) {
|
|
59
|
+
path.L(points[i - 1][0], points[i][1]);
|
|
60
|
+
path.L(points[i][0], points[i][1]);
|
|
61
|
+
}
|
|
62
|
+
};
|
|
63
|
+
var stepAfter = (path, points, start = true) => {
|
|
64
|
+
if (points.length <= 0) return;
|
|
65
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
66
|
+
for (let i = 1; i < points.length; i++) {
|
|
67
|
+
path.L(points[i][0], points[i - 1][1]);
|
|
68
|
+
path.L(points[i][0], points[i][1]);
|
|
69
|
+
}
|
|
70
|
+
};
|
|
71
|
+
var bumpX = (path, points, start = true) => {
|
|
72
|
+
if (points.length <= 0) return;
|
|
73
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
74
|
+
for (let i = 1; i < points.length; i++) {
|
|
75
|
+
const cpx = (points[i - 1][0] + points[i][0]) / 2;
|
|
76
|
+
path.C(cpx, points[i - 1][1], cpx, points[i][1], points[i][0], points[i][1]);
|
|
77
|
+
}
|
|
78
|
+
};
|
|
79
|
+
var bumpY = (path, points, start = true) => {
|
|
80
|
+
if (points.length <= 0) return;
|
|
81
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
82
|
+
for (let i = 1; i < points.length; i++) {
|
|
83
|
+
const cpy = (points[i - 1][1] + points[i][1]) / 2;
|
|
84
|
+
path.C(points[i - 1][0], cpy, points[i][0], cpy, points[i][0], points[i][1]);
|
|
85
|
+
}
|
|
86
|
+
};
|
|
87
|
+
var solveTridiagonal = (coords) => {
|
|
88
|
+
const n = coords.length - 1;
|
|
89
|
+
const a = new Array(n);
|
|
90
|
+
const b = new Array(n);
|
|
91
|
+
const r = new Array(n);
|
|
92
|
+
a[0] = 0;
|
|
93
|
+
b[0] = 2;
|
|
94
|
+
r[0] = coords[0] + 2 * coords[1];
|
|
95
|
+
for (let i = 1; i < n - 1; i++) {
|
|
96
|
+
a[i] = 1;
|
|
97
|
+
b[i] = 4;
|
|
98
|
+
r[i] = 4 * coords[i] + 2 * coords[i + 1];
|
|
99
|
+
}
|
|
100
|
+
a[n - 1] = 2;
|
|
101
|
+
b[n - 1] = 7;
|
|
102
|
+
r[n - 1] = 8 * coords[n - 1] + coords[n];
|
|
103
|
+
for (let i = 1; i < n; i++) {
|
|
104
|
+
const m = a[i] / b[i - 1];
|
|
105
|
+
b[i] -= m;
|
|
106
|
+
r[i] -= m * r[i - 1];
|
|
107
|
+
}
|
|
108
|
+
a[n - 1] = r[n - 1] / b[n - 1];
|
|
109
|
+
for (let i = n - 2; i >= 0; i--) a[i] = (r[i] - a[i + 1]) / b[i];
|
|
110
|
+
b[n - 1] = (coords[n] + a[n - 1]) / 2;
|
|
111
|
+
for (let i = 0; i < n - 1; i++) b[i] = 2 * coords[i + 1] - a[i + 1];
|
|
112
|
+
return [a, b];
|
|
113
|
+
};
|
|
114
|
+
var natural = (path, points, start = true) => {
|
|
115
|
+
const len = points.length;
|
|
116
|
+
if (len <= 1) return;
|
|
117
|
+
const xs = new Array(len);
|
|
118
|
+
const ys = new Array(len);
|
|
119
|
+
for (let i = 0; i < len; i++) {
|
|
120
|
+
xs[i] = points[i][0];
|
|
121
|
+
ys[i] = points[i][1];
|
|
122
|
+
}
|
|
123
|
+
const [cx, bx] = solveTridiagonal(xs);
|
|
124
|
+
const [cy, by] = solveTridiagonal(ys);
|
|
125
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
126
|
+
for (let i = 0; i < cx.length; i++) {
|
|
127
|
+
path.C(cx[i], cy[i], bx[i], by[i], points[i + 1][0], points[i + 1][1]);
|
|
128
|
+
}
|
|
129
|
+
};
|
|
130
|
+
var sign = (x) => x < 0 ? -1 : 1;
|
|
131
|
+
var { min, abs } = Math;
|
|
132
|
+
var calcSlope = (h0, h1, s0, s1) => {
|
|
133
|
+
const p = (s0 * h1 + s1 * h0) / (h0 + h1);
|
|
134
|
+
return (sign(s0) + sign(s1)) * min(abs(s0), abs(s1), 0.5 * abs(p)) || 0;
|
|
135
|
+
};
|
|
136
|
+
var calcEndSlope = (h, dy, t) => h ? (3 * dy / h - t) / 2 : t;
|
|
137
|
+
var monotoneX = (path, points, start = true) => {
|
|
138
|
+
const n = points.length;
|
|
139
|
+
if (n <= 0) return;
|
|
140
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
141
|
+
if (n === 1) return;
|
|
142
|
+
if (n === 2) {
|
|
143
|
+
path.L(points[1][0], points[1][1]);
|
|
144
|
+
return;
|
|
145
|
+
}
|
|
146
|
+
const slopes = new Array(n);
|
|
147
|
+
for (let i = 0; i < n - 1; i++) {
|
|
148
|
+
const h = points[i + 1][0] - points[i][0];
|
|
149
|
+
const s = (points[i + 1][1] - points[i][1]) / (h || (i + 1 < n - 1 && points[i + 2][0] - points[i + 1][0] < 0 ? -0 : 1));
|
|
150
|
+
if (i === 0) {
|
|
151
|
+
slopes[0] = s;
|
|
152
|
+
}
|
|
153
|
+
if (i > 0) {
|
|
154
|
+
const h02 = points[i][0] - points[i - 1][0];
|
|
155
|
+
const s0 = (points[i][1] - points[i - 1][1]) / (h02 || (h < 0 ? -0 : 1));
|
|
156
|
+
slopes[i] = calcSlope(h02, h, s0, s);
|
|
157
|
+
}
|
|
158
|
+
}
|
|
159
|
+
const h0 = points[1][0] - points[0][0];
|
|
160
|
+
slopes[0] = calcEndSlope(h0, points[1][1] - points[0][1], slopes[1]);
|
|
161
|
+
const hN = points[n - 1][0] - points[n - 2][0];
|
|
162
|
+
slopes[n - 1] = calcEndSlope(hN, points[n - 1][1] - points[n - 2][1], slopes[n - 2]);
|
|
163
|
+
for (let i = 0; i < n - 1; i++) {
|
|
164
|
+
const dx = (points[i + 1][0] - points[i][0]) / 3;
|
|
165
|
+
path.C(points[i][0] + dx, points[i][1] + dx * slopes[i], points[i + 1][0] - dx, points[i + 1][1] - dx * slopes[i + 1], points[i + 1][0], points[i + 1][1]);
|
|
166
|
+
}
|
|
167
|
+
};
|
|
168
|
+
var monotoneY = (path, points, start = true) => {
|
|
169
|
+
const n = points.length;
|
|
170
|
+
if (n <= 0) return;
|
|
171
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
172
|
+
if (n === 1) return;
|
|
173
|
+
if (n === 2) {
|
|
174
|
+
path.L(points[1][0], points[1][1]);
|
|
175
|
+
return;
|
|
176
|
+
}
|
|
177
|
+
const slopes = new Array(n);
|
|
178
|
+
for (let i = 0; i < n - 1; i++) {
|
|
179
|
+
const h = points[i + 1][1] - points[i][1];
|
|
180
|
+
const s = (points[i + 1][0] - points[i][0]) / (h || (i + 1 < n - 1 && points[i + 2][1] - points[i + 1][1] < 0 ? -0 : 1));
|
|
181
|
+
if (i === 0) slopes[0] = s;
|
|
182
|
+
if (i > 0) {
|
|
183
|
+
const h02 = points[i][1] - points[i - 1][1];
|
|
184
|
+
const s0 = (points[i][0] - points[i - 1][0]) / (h02 || (h < 0 ? -0 : 1));
|
|
185
|
+
slopes[i] = calcSlope(h02, h, s0, s);
|
|
186
|
+
}
|
|
187
|
+
}
|
|
188
|
+
const h0 = points[1][1] - points[0][1];
|
|
189
|
+
slopes[0] = calcEndSlope(h0, points[1][0] - points[0][0], slopes[1]);
|
|
190
|
+
const hN = points[n - 1][1] - points[n - 2][1];
|
|
191
|
+
slopes[n - 1] = calcEndSlope(hN, points[n - 1][0] - points[n - 2][0], slopes[n - 2]);
|
|
192
|
+
for (let i = 0; i < n - 1; i++) {
|
|
193
|
+
const dy = (points[i + 1][1] - points[i][1]) / 3;
|
|
194
|
+
path.C(points[i][0] + dy * slopes[i], points[i][1] + dy, points[i + 1][0] - dy * slopes[i + 1], points[i + 1][1] - dy, points[i + 1][0], points[i + 1][1]);
|
|
195
|
+
}
|
|
196
|
+
};
|
|
197
|
+
var basis = (path, points, start = true) => {
|
|
198
|
+
const n = points.length;
|
|
199
|
+
if (n <= 0) return;
|
|
200
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
201
|
+
if (n < 3) {
|
|
202
|
+
for (let i = 1; i < n; i++) path.L(points[i][0], points[i][1]);
|
|
203
|
+
return;
|
|
204
|
+
}
|
|
205
|
+
let x0 = points[0][0], y0 = points[0][1];
|
|
206
|
+
let x1 = points[1][0], y1 = points[1][1];
|
|
207
|
+
path.C((2 * x0 + x1) / 3, (2 * y0 + y1) / 3, (x0 + 2 * x1) / 3, (y0 + 2 * y1) / 3, (x0 + 4 * x1 + points[2][0]) / 6, (y0 + 4 * y1 + points[2][1]) / 6);
|
|
208
|
+
for (let i = 2; i < n - 1; i++) {
|
|
209
|
+
x0 = points[i - 1][0];
|
|
210
|
+
y0 = points[i - 1][1];
|
|
211
|
+
x1 = points[i][0];
|
|
212
|
+
y1 = points[i][1];
|
|
213
|
+
const x2 = points[i + 1][0], y2 = points[i + 1][1];
|
|
214
|
+
path.C((2 * x0 + x1) / 3, (2 * y0 + y1) / 3, (x0 + 2 * x1) / 3, (y0 + 2 * y1) / 3, (x0 + 4 * x1 + x2) / 6, (y0 + 4 * y1 + y2) / 6);
|
|
215
|
+
}
|
|
216
|
+
x0 = points[n - 2][0];
|
|
217
|
+
y0 = points[n - 2][1];
|
|
218
|
+
x1 = points[n - 1][0];
|
|
219
|
+
y1 = points[n - 1][1];
|
|
220
|
+
path.C((2 * x0 + x1) / 3, (2 * y0 + y1) / 3, (x0 + 2 * x1) / 3, (y0 + 2 * y1) / 3, x1, y1);
|
|
221
|
+
};
|
|
222
|
+
var cardinal = (tension = 0) => {
|
|
223
|
+
const k = (1 - tension) / 6;
|
|
224
|
+
return (path, points, start = true) => {
|
|
225
|
+
const n = points.length;
|
|
226
|
+
if (n <= 0) return;
|
|
227
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
228
|
+
if (n < 3) {
|
|
229
|
+
for (let i = 1; i < n; i++) path.L(points[i][0], points[i][1]);
|
|
230
|
+
return;
|
|
231
|
+
}
|
|
232
|
+
let p0 = points[0], p1 = points[0], p2 = points[1], p3 = points[2];
|
|
233
|
+
path.C(p1[0] + k * (p2[0] - p0[0]), p1[1] + k * (p2[1] - p0[1]), p2[0] - k * (p3[0] - p1[0]), p2[1] - k * (p3[1] - p1[1]), p2[0], p2[1]);
|
|
234
|
+
for (let i = 2; i < n - 1; i++) {
|
|
235
|
+
p0 = points[i - 2];
|
|
236
|
+
p1 = points[i - 1];
|
|
237
|
+
p2 = points[i];
|
|
238
|
+
p3 = points[i + 1];
|
|
239
|
+
path.C(p1[0] + k * (p2[0] - p0[0]), p1[1] + k * (p2[1] - p0[1]), p2[0] - k * (p3[0] - p1[0]), p2[1] - k * (p3[1] - p1[1]), p2[0], p2[1]);
|
|
240
|
+
}
|
|
241
|
+
p0 = points[n - 3];
|
|
242
|
+
p1 = points[n - 2];
|
|
243
|
+
p2 = points[n - 1];
|
|
244
|
+
p3 = points[n - 1];
|
|
245
|
+
path.C(p1[0] + k * (p2[0] - p0[0]), p1[1] + k * (p2[1] - p0[1]), p2[0] - k * (p3[0] - p1[0]), p2[1] - k * (p3[1] - p1[1]), p2[0], p2[1]);
|
|
246
|
+
};
|
|
247
|
+
};
|
|
248
|
+
var catmullRom = (alpha = 0.5) => {
|
|
249
|
+
return (path, points, start = true) => {
|
|
250
|
+
const n = points.length;
|
|
251
|
+
if (n <= 0) return;
|
|
252
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
253
|
+
if (n < 3) {
|
|
254
|
+
for (let i = 1; i < n; i++) path.L(points[i][0], points[i][1]);
|
|
255
|
+
return;
|
|
256
|
+
}
|
|
257
|
+
for (let i = 1; i < n; i++) {
|
|
258
|
+
const p0 = points[Math.max(0, i - 2)];
|
|
259
|
+
const p1 = points[i - 1];
|
|
260
|
+
const p2 = points[i];
|
|
261
|
+
const p3 = points[Math.min(n - 1, i + 1)];
|
|
262
|
+
const d1 = Math.hypot(p2[0] - p1[0], p2[1] - p1[1]);
|
|
263
|
+
const d0 = Math.hypot(p1[0] - p0[0], p1[1] - p0[1]);
|
|
264
|
+
const d2 = Math.hypot(p3[0] - p2[0], p3[1] - p2[1]);
|
|
265
|
+
const a1 = 2 * Math.pow(d0, 2 * alpha);
|
|
266
|
+
const a2 = 2 * Math.pow(d1, 2 * alpha);
|
|
267
|
+
const a3 = 2 * Math.pow(d2, 2 * alpha);
|
|
268
|
+
const den1 = a1 + a2;
|
|
269
|
+
const den2 = a2 + a3;
|
|
270
|
+
const cp1x = den1 > 0 ? p1[0] + (p2[0] - p0[0]) * a2 / den1 / 3 : p1[0];
|
|
271
|
+
const cp1y = den1 > 0 ? p1[1] + (p2[1] - p0[1]) * a2 / den1 / 3 : p1[1];
|
|
272
|
+
const cp2x = den2 > 0 ? p2[0] - (p3[0] - p1[0]) * a2 / den2 / 3 : p2[0];
|
|
273
|
+
const cp2y = den2 > 0 ? p2[1] - (p3[1] - p1[1]) * a2 / den2 / 3 : p2[1];
|
|
274
|
+
path.C(cp1x, cp1y, cp2x, cp2y, p2[0], p2[1]);
|
|
275
|
+
}
|
|
276
|
+
};
|
|
277
|
+
};
|
|
278
|
+
var curveMap = {
|
|
279
|
+
linear,
|
|
280
|
+
natural,
|
|
281
|
+
basis,
|
|
282
|
+
"bump-x": bumpX,
|
|
283
|
+
"bump-y": bumpY,
|
|
284
|
+
"monotone-x": monotoneX,
|
|
285
|
+
"monotone-y": monotoneY,
|
|
286
|
+
step,
|
|
287
|
+
"step-before": stepBefore,
|
|
288
|
+
"step-after": stepAfter,
|
|
289
|
+
cardinal: cardinal(),
|
|
290
|
+
"catmull-rom": catmullRom()
|
|
291
|
+
};
|
|
292
|
+
// Annotate the CommonJS export names for ESM import in node:
|
|
293
|
+
0 && (module.exports = {
|
|
294
|
+
basis,
|
|
295
|
+
bumpX,
|
|
296
|
+
bumpY,
|
|
297
|
+
cardinal,
|
|
298
|
+
catmullRom,
|
|
299
|
+
curveMap,
|
|
300
|
+
linear,
|
|
301
|
+
monotoneX,
|
|
302
|
+
monotoneY,
|
|
303
|
+
natural,
|
|
304
|
+
step,
|
|
305
|
+
stepAfter,
|
|
306
|
+
stepBefore
|
|
307
|
+
});
|
package/dist/main.d.cts
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
import { Path } from 'rendx-path';
|
|
2
|
+
|
|
3
|
+
/** 曲线函数签名 */
|
|
4
|
+
type Curve = (path: Path, points: [number, number][], start?: boolean) => void;
|
|
5
|
+
declare const linear: Curve;
|
|
6
|
+
declare const step: Curve;
|
|
7
|
+
declare const stepBefore: Curve;
|
|
8
|
+
declare const stepAfter: Curve;
|
|
9
|
+
declare const bumpX: Curve;
|
|
10
|
+
declare const bumpY: Curve;
|
|
11
|
+
declare const natural: Curve;
|
|
12
|
+
declare const monotoneX: Curve;
|
|
13
|
+
declare const monotoneY: Curve;
|
|
14
|
+
declare const basis: Curve;
|
|
15
|
+
declare const cardinal: (tension?: number) => Curve;
|
|
16
|
+
declare const catmullRom: (alpha?: number) => Curve;
|
|
17
|
+
declare const curveMap: Record<string, Curve>;
|
|
18
|
+
|
|
19
|
+
export { type Curve, basis, bumpX, bumpY, cardinal, catmullRom, curveMap, linear, monotoneX, monotoneY, natural, step, stepAfter, stepBefore };
|
package/dist/main.d.ts
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
import { Path } from 'rendx-path';
|
|
2
|
+
|
|
3
|
+
/** 曲线函数签名 */
|
|
4
|
+
type Curve = (path: Path, points: [number, number][], start?: boolean) => void;
|
|
5
|
+
declare const linear: Curve;
|
|
6
|
+
declare const step: Curve;
|
|
7
|
+
declare const stepBefore: Curve;
|
|
8
|
+
declare const stepAfter: Curve;
|
|
9
|
+
declare const bumpX: Curve;
|
|
10
|
+
declare const bumpY: Curve;
|
|
11
|
+
declare const natural: Curve;
|
|
12
|
+
declare const monotoneX: Curve;
|
|
13
|
+
declare const monotoneY: Curve;
|
|
14
|
+
declare const basis: Curve;
|
|
15
|
+
declare const cardinal: (tension?: number) => Curve;
|
|
16
|
+
declare const catmullRom: (alpha?: number) => Curve;
|
|
17
|
+
declare const curveMap: Record<string, Curve>;
|
|
18
|
+
|
|
19
|
+
export { type Curve, basis, bumpX, bumpY, cardinal, catmullRom, curveMap, linear, monotoneX, monotoneY, natural, step, stepAfter, stepBefore };
|
package/dist/main.js
ADDED
|
@@ -0,0 +1,268 @@
|
|
|
1
|
+
// src/curve.ts
|
|
2
|
+
var linear = (path, points, start = true) => {
|
|
3
|
+
if (points.length <= 0) return;
|
|
4
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
5
|
+
for (let i = 1; i < points.length; i++) path.L(points[i][0], points[i][1]);
|
|
6
|
+
};
|
|
7
|
+
var step = (path, points, start = true) => {
|
|
8
|
+
if (points.length <= 0) return;
|
|
9
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
10
|
+
for (let i = 1; i < points.length; i++) {
|
|
11
|
+
const mx = (points[i - 1][0] + points[i][0]) / 2;
|
|
12
|
+
path.L(mx, points[i - 1][1]);
|
|
13
|
+
path.L(mx, points[i][1]);
|
|
14
|
+
path.L(points[i][0], points[i][1]);
|
|
15
|
+
}
|
|
16
|
+
};
|
|
17
|
+
var stepBefore = (path, points, start = true) => {
|
|
18
|
+
if (points.length <= 0) return;
|
|
19
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
20
|
+
for (let i = 1; i < points.length; i++) {
|
|
21
|
+
path.L(points[i - 1][0], points[i][1]);
|
|
22
|
+
path.L(points[i][0], points[i][1]);
|
|
23
|
+
}
|
|
24
|
+
};
|
|
25
|
+
var stepAfter = (path, points, start = true) => {
|
|
26
|
+
if (points.length <= 0) return;
|
|
27
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
28
|
+
for (let i = 1; i < points.length; i++) {
|
|
29
|
+
path.L(points[i][0], points[i - 1][1]);
|
|
30
|
+
path.L(points[i][0], points[i][1]);
|
|
31
|
+
}
|
|
32
|
+
};
|
|
33
|
+
var bumpX = (path, points, start = true) => {
|
|
34
|
+
if (points.length <= 0) return;
|
|
35
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
36
|
+
for (let i = 1; i < points.length; i++) {
|
|
37
|
+
const cpx = (points[i - 1][0] + points[i][0]) / 2;
|
|
38
|
+
path.C(cpx, points[i - 1][1], cpx, points[i][1], points[i][0], points[i][1]);
|
|
39
|
+
}
|
|
40
|
+
};
|
|
41
|
+
var bumpY = (path, points, start = true) => {
|
|
42
|
+
if (points.length <= 0) return;
|
|
43
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
44
|
+
for (let i = 1; i < points.length; i++) {
|
|
45
|
+
const cpy = (points[i - 1][1] + points[i][1]) / 2;
|
|
46
|
+
path.C(points[i - 1][0], cpy, points[i][0], cpy, points[i][0], points[i][1]);
|
|
47
|
+
}
|
|
48
|
+
};
|
|
49
|
+
var solveTridiagonal = (coords) => {
|
|
50
|
+
const n = coords.length - 1;
|
|
51
|
+
const a = new Array(n);
|
|
52
|
+
const b = new Array(n);
|
|
53
|
+
const r = new Array(n);
|
|
54
|
+
a[0] = 0;
|
|
55
|
+
b[0] = 2;
|
|
56
|
+
r[0] = coords[0] + 2 * coords[1];
|
|
57
|
+
for (let i = 1; i < n - 1; i++) {
|
|
58
|
+
a[i] = 1;
|
|
59
|
+
b[i] = 4;
|
|
60
|
+
r[i] = 4 * coords[i] + 2 * coords[i + 1];
|
|
61
|
+
}
|
|
62
|
+
a[n - 1] = 2;
|
|
63
|
+
b[n - 1] = 7;
|
|
64
|
+
r[n - 1] = 8 * coords[n - 1] + coords[n];
|
|
65
|
+
for (let i = 1; i < n; i++) {
|
|
66
|
+
const m = a[i] / b[i - 1];
|
|
67
|
+
b[i] -= m;
|
|
68
|
+
r[i] -= m * r[i - 1];
|
|
69
|
+
}
|
|
70
|
+
a[n - 1] = r[n - 1] / b[n - 1];
|
|
71
|
+
for (let i = n - 2; i >= 0; i--) a[i] = (r[i] - a[i + 1]) / b[i];
|
|
72
|
+
b[n - 1] = (coords[n] + a[n - 1]) / 2;
|
|
73
|
+
for (let i = 0; i < n - 1; i++) b[i] = 2 * coords[i + 1] - a[i + 1];
|
|
74
|
+
return [a, b];
|
|
75
|
+
};
|
|
76
|
+
var natural = (path, points, start = true) => {
|
|
77
|
+
const len = points.length;
|
|
78
|
+
if (len <= 1) return;
|
|
79
|
+
const xs = new Array(len);
|
|
80
|
+
const ys = new Array(len);
|
|
81
|
+
for (let i = 0; i < len; i++) {
|
|
82
|
+
xs[i] = points[i][0];
|
|
83
|
+
ys[i] = points[i][1];
|
|
84
|
+
}
|
|
85
|
+
const [cx, bx] = solveTridiagonal(xs);
|
|
86
|
+
const [cy, by] = solveTridiagonal(ys);
|
|
87
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
88
|
+
for (let i = 0; i < cx.length; i++) {
|
|
89
|
+
path.C(cx[i], cy[i], bx[i], by[i], points[i + 1][0], points[i + 1][1]);
|
|
90
|
+
}
|
|
91
|
+
};
|
|
92
|
+
var sign = (x) => x < 0 ? -1 : 1;
|
|
93
|
+
var { min, abs } = Math;
|
|
94
|
+
var calcSlope = (h0, h1, s0, s1) => {
|
|
95
|
+
const p = (s0 * h1 + s1 * h0) / (h0 + h1);
|
|
96
|
+
return (sign(s0) + sign(s1)) * min(abs(s0), abs(s1), 0.5 * abs(p)) || 0;
|
|
97
|
+
};
|
|
98
|
+
var calcEndSlope = (h, dy, t) => h ? (3 * dy / h - t) / 2 : t;
|
|
99
|
+
var monotoneX = (path, points, start = true) => {
|
|
100
|
+
const n = points.length;
|
|
101
|
+
if (n <= 0) return;
|
|
102
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
103
|
+
if (n === 1) return;
|
|
104
|
+
if (n === 2) {
|
|
105
|
+
path.L(points[1][0], points[1][1]);
|
|
106
|
+
return;
|
|
107
|
+
}
|
|
108
|
+
const slopes = new Array(n);
|
|
109
|
+
for (let i = 0; i < n - 1; i++) {
|
|
110
|
+
const h = points[i + 1][0] - points[i][0];
|
|
111
|
+
const s = (points[i + 1][1] - points[i][1]) / (h || (i + 1 < n - 1 && points[i + 2][0] - points[i + 1][0] < 0 ? -0 : 1));
|
|
112
|
+
if (i === 0) {
|
|
113
|
+
slopes[0] = s;
|
|
114
|
+
}
|
|
115
|
+
if (i > 0) {
|
|
116
|
+
const h02 = points[i][0] - points[i - 1][0];
|
|
117
|
+
const s0 = (points[i][1] - points[i - 1][1]) / (h02 || (h < 0 ? -0 : 1));
|
|
118
|
+
slopes[i] = calcSlope(h02, h, s0, s);
|
|
119
|
+
}
|
|
120
|
+
}
|
|
121
|
+
const h0 = points[1][0] - points[0][0];
|
|
122
|
+
slopes[0] = calcEndSlope(h0, points[1][1] - points[0][1], slopes[1]);
|
|
123
|
+
const hN = points[n - 1][0] - points[n - 2][0];
|
|
124
|
+
slopes[n - 1] = calcEndSlope(hN, points[n - 1][1] - points[n - 2][1], slopes[n - 2]);
|
|
125
|
+
for (let i = 0; i < n - 1; i++) {
|
|
126
|
+
const dx = (points[i + 1][0] - points[i][0]) / 3;
|
|
127
|
+
path.C(points[i][0] + dx, points[i][1] + dx * slopes[i], points[i + 1][0] - dx, points[i + 1][1] - dx * slopes[i + 1], points[i + 1][0], points[i + 1][1]);
|
|
128
|
+
}
|
|
129
|
+
};
|
|
130
|
+
var monotoneY = (path, points, start = true) => {
|
|
131
|
+
const n = points.length;
|
|
132
|
+
if (n <= 0) return;
|
|
133
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
134
|
+
if (n === 1) return;
|
|
135
|
+
if (n === 2) {
|
|
136
|
+
path.L(points[1][0], points[1][1]);
|
|
137
|
+
return;
|
|
138
|
+
}
|
|
139
|
+
const slopes = new Array(n);
|
|
140
|
+
for (let i = 0; i < n - 1; i++) {
|
|
141
|
+
const h = points[i + 1][1] - points[i][1];
|
|
142
|
+
const s = (points[i + 1][0] - points[i][0]) / (h || (i + 1 < n - 1 && points[i + 2][1] - points[i + 1][1] < 0 ? -0 : 1));
|
|
143
|
+
if (i === 0) slopes[0] = s;
|
|
144
|
+
if (i > 0) {
|
|
145
|
+
const h02 = points[i][1] - points[i - 1][1];
|
|
146
|
+
const s0 = (points[i][0] - points[i - 1][0]) / (h02 || (h < 0 ? -0 : 1));
|
|
147
|
+
slopes[i] = calcSlope(h02, h, s0, s);
|
|
148
|
+
}
|
|
149
|
+
}
|
|
150
|
+
const h0 = points[1][1] - points[0][1];
|
|
151
|
+
slopes[0] = calcEndSlope(h0, points[1][0] - points[0][0], slopes[1]);
|
|
152
|
+
const hN = points[n - 1][1] - points[n - 2][1];
|
|
153
|
+
slopes[n - 1] = calcEndSlope(hN, points[n - 1][0] - points[n - 2][0], slopes[n - 2]);
|
|
154
|
+
for (let i = 0; i < n - 1; i++) {
|
|
155
|
+
const dy = (points[i + 1][1] - points[i][1]) / 3;
|
|
156
|
+
path.C(points[i][0] + dy * slopes[i], points[i][1] + dy, points[i + 1][0] - dy * slopes[i + 1], points[i + 1][1] - dy, points[i + 1][0], points[i + 1][1]);
|
|
157
|
+
}
|
|
158
|
+
};
|
|
159
|
+
var basis = (path, points, start = true) => {
|
|
160
|
+
const n = points.length;
|
|
161
|
+
if (n <= 0) return;
|
|
162
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
163
|
+
if (n < 3) {
|
|
164
|
+
for (let i = 1; i < n; i++) path.L(points[i][0], points[i][1]);
|
|
165
|
+
return;
|
|
166
|
+
}
|
|
167
|
+
let x0 = points[0][0], y0 = points[0][1];
|
|
168
|
+
let x1 = points[1][0], y1 = points[1][1];
|
|
169
|
+
path.C((2 * x0 + x1) / 3, (2 * y0 + y1) / 3, (x0 + 2 * x1) / 3, (y0 + 2 * y1) / 3, (x0 + 4 * x1 + points[2][0]) / 6, (y0 + 4 * y1 + points[2][1]) / 6);
|
|
170
|
+
for (let i = 2; i < n - 1; i++) {
|
|
171
|
+
x0 = points[i - 1][0];
|
|
172
|
+
y0 = points[i - 1][1];
|
|
173
|
+
x1 = points[i][0];
|
|
174
|
+
y1 = points[i][1];
|
|
175
|
+
const x2 = points[i + 1][0], y2 = points[i + 1][1];
|
|
176
|
+
path.C((2 * x0 + x1) / 3, (2 * y0 + y1) / 3, (x0 + 2 * x1) / 3, (y0 + 2 * y1) / 3, (x0 + 4 * x1 + x2) / 6, (y0 + 4 * y1 + y2) / 6);
|
|
177
|
+
}
|
|
178
|
+
x0 = points[n - 2][0];
|
|
179
|
+
y0 = points[n - 2][1];
|
|
180
|
+
x1 = points[n - 1][0];
|
|
181
|
+
y1 = points[n - 1][1];
|
|
182
|
+
path.C((2 * x0 + x1) / 3, (2 * y0 + y1) / 3, (x0 + 2 * x1) / 3, (y0 + 2 * y1) / 3, x1, y1);
|
|
183
|
+
};
|
|
184
|
+
var cardinal = (tension = 0) => {
|
|
185
|
+
const k = (1 - tension) / 6;
|
|
186
|
+
return (path, points, start = true) => {
|
|
187
|
+
const n = points.length;
|
|
188
|
+
if (n <= 0) return;
|
|
189
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
190
|
+
if (n < 3) {
|
|
191
|
+
for (let i = 1; i < n; i++) path.L(points[i][0], points[i][1]);
|
|
192
|
+
return;
|
|
193
|
+
}
|
|
194
|
+
let p0 = points[0], p1 = points[0], p2 = points[1], p3 = points[2];
|
|
195
|
+
path.C(p1[0] + k * (p2[0] - p0[0]), p1[1] + k * (p2[1] - p0[1]), p2[0] - k * (p3[0] - p1[0]), p2[1] - k * (p3[1] - p1[1]), p2[0], p2[1]);
|
|
196
|
+
for (let i = 2; i < n - 1; i++) {
|
|
197
|
+
p0 = points[i - 2];
|
|
198
|
+
p1 = points[i - 1];
|
|
199
|
+
p2 = points[i];
|
|
200
|
+
p3 = points[i + 1];
|
|
201
|
+
path.C(p1[0] + k * (p2[0] - p0[0]), p1[1] + k * (p2[1] - p0[1]), p2[0] - k * (p3[0] - p1[0]), p2[1] - k * (p3[1] - p1[1]), p2[0], p2[1]);
|
|
202
|
+
}
|
|
203
|
+
p0 = points[n - 3];
|
|
204
|
+
p1 = points[n - 2];
|
|
205
|
+
p2 = points[n - 1];
|
|
206
|
+
p3 = points[n - 1];
|
|
207
|
+
path.C(p1[0] + k * (p2[0] - p0[0]), p1[1] + k * (p2[1] - p0[1]), p2[0] - k * (p3[0] - p1[0]), p2[1] - k * (p3[1] - p1[1]), p2[0], p2[1]);
|
|
208
|
+
};
|
|
209
|
+
};
|
|
210
|
+
var catmullRom = (alpha = 0.5) => {
|
|
211
|
+
return (path, points, start = true) => {
|
|
212
|
+
const n = points.length;
|
|
213
|
+
if (n <= 0) return;
|
|
214
|
+
if (start) path.M(points[0][0], points[0][1]);
|
|
215
|
+
if (n < 3) {
|
|
216
|
+
for (let i = 1; i < n; i++) path.L(points[i][0], points[i][1]);
|
|
217
|
+
return;
|
|
218
|
+
}
|
|
219
|
+
for (let i = 1; i < n; i++) {
|
|
220
|
+
const p0 = points[Math.max(0, i - 2)];
|
|
221
|
+
const p1 = points[i - 1];
|
|
222
|
+
const p2 = points[i];
|
|
223
|
+
const p3 = points[Math.min(n - 1, i + 1)];
|
|
224
|
+
const d1 = Math.hypot(p2[0] - p1[0], p2[1] - p1[1]);
|
|
225
|
+
const d0 = Math.hypot(p1[0] - p0[0], p1[1] - p0[1]);
|
|
226
|
+
const d2 = Math.hypot(p3[0] - p2[0], p3[1] - p2[1]);
|
|
227
|
+
const a1 = 2 * Math.pow(d0, 2 * alpha);
|
|
228
|
+
const a2 = 2 * Math.pow(d1, 2 * alpha);
|
|
229
|
+
const a3 = 2 * Math.pow(d2, 2 * alpha);
|
|
230
|
+
const den1 = a1 + a2;
|
|
231
|
+
const den2 = a2 + a3;
|
|
232
|
+
const cp1x = den1 > 0 ? p1[0] + (p2[0] - p0[0]) * a2 / den1 / 3 : p1[0];
|
|
233
|
+
const cp1y = den1 > 0 ? p1[1] + (p2[1] - p0[1]) * a2 / den1 / 3 : p1[1];
|
|
234
|
+
const cp2x = den2 > 0 ? p2[0] - (p3[0] - p1[0]) * a2 / den2 / 3 : p2[0];
|
|
235
|
+
const cp2y = den2 > 0 ? p2[1] - (p3[1] - p1[1]) * a2 / den2 / 3 : p2[1];
|
|
236
|
+
path.C(cp1x, cp1y, cp2x, cp2y, p2[0], p2[1]);
|
|
237
|
+
}
|
|
238
|
+
};
|
|
239
|
+
};
|
|
240
|
+
var curveMap = {
|
|
241
|
+
linear,
|
|
242
|
+
natural,
|
|
243
|
+
basis,
|
|
244
|
+
"bump-x": bumpX,
|
|
245
|
+
"bump-y": bumpY,
|
|
246
|
+
"monotone-x": monotoneX,
|
|
247
|
+
"monotone-y": monotoneY,
|
|
248
|
+
step,
|
|
249
|
+
"step-before": stepBefore,
|
|
250
|
+
"step-after": stepAfter,
|
|
251
|
+
cardinal: cardinal(),
|
|
252
|
+
"catmull-rom": catmullRom()
|
|
253
|
+
};
|
|
254
|
+
export {
|
|
255
|
+
basis,
|
|
256
|
+
bumpX,
|
|
257
|
+
bumpY,
|
|
258
|
+
cardinal,
|
|
259
|
+
catmullRom,
|
|
260
|
+
curveMap,
|
|
261
|
+
linear,
|
|
262
|
+
monotoneX,
|
|
263
|
+
monotoneY,
|
|
264
|
+
natural,
|
|
265
|
+
step,
|
|
266
|
+
stepAfter,
|
|
267
|
+
stepBefore
|
|
268
|
+
};
|
package/package.json
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
{
|
|
2
|
+
"name": "rendx-curve",
|
|
3
|
+
"version": "0.1.0",
|
|
4
|
+
"description": "Curve interpolation algorithms (linear, natural, bump, monotone, step)",
|
|
5
|
+
"license": "MIT",
|
|
6
|
+
"author": "wei.liang (https://github.com/weiliang0121)",
|
|
7
|
+
"type": "module",
|
|
8
|
+
"keywords": [
|
|
9
|
+
"rendx",
|
|
10
|
+
"2d",
|
|
11
|
+
"canvas",
|
|
12
|
+
"rendering",
|
|
13
|
+
"visualization",
|
|
14
|
+
"scene-graph"
|
|
15
|
+
],
|
|
16
|
+
"homepage": "https://weiliang0121.github.io/rendx/",
|
|
17
|
+
"repository": {
|
|
18
|
+
"type": "git",
|
|
19
|
+
"url": "https://github.com/weiliang0121/rendx.git",
|
|
20
|
+
"directory": "packages/curve"
|
|
21
|
+
},
|
|
22
|
+
"main": "dist/main.cjs",
|
|
23
|
+
"module": "dist/main.js",
|
|
24
|
+
"types": "dist/main.d.ts",
|
|
25
|
+
"exports": {
|
|
26
|
+
".": {
|
|
27
|
+
"types": "./dist/main.d.ts",
|
|
28
|
+
"import": "./dist/main.js",
|
|
29
|
+
"require": "./dist/main.cjs"
|
|
30
|
+
}
|
|
31
|
+
},
|
|
32
|
+
"dependencies": {
|
|
33
|
+
"rendx-path": "^0.1.0"
|
|
34
|
+
},
|
|
35
|
+
"sideEffects": false,
|
|
36
|
+
"files": [
|
|
37
|
+
"dist"
|
|
38
|
+
],
|
|
39
|
+
"publishConfig": {
|
|
40
|
+
"access": "public"
|
|
41
|
+
},
|
|
42
|
+
"scripts": {
|
|
43
|
+
"build": "tsup",
|
|
44
|
+
"dev": "tsup --watch"
|
|
45
|
+
}
|
|
46
|
+
}
|