red-black-tree-typed 2.2.0 → 2.2.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (31) hide show
  1. package/dist/cjs/index.cjs +8 -8
  2. package/dist/cjs/index.cjs.map +1 -1
  3. package/dist/cjs-legacy/index.cjs +8 -8
  4. package/dist/cjs-legacy/index.cjs.map +1 -1
  5. package/dist/esm/index.mjs +8 -8
  6. package/dist/esm/index.mjs.map +1 -1
  7. package/dist/esm-legacy/index.mjs +8 -8
  8. package/dist/esm-legacy/index.mjs.map +1 -1
  9. package/dist/types/data-structures/binary-tree/avl-tree.d.ts +3 -1
  10. package/dist/types/data-structures/binary-tree/binary-tree.d.ts +1 -0
  11. package/dist/types/data-structures/binary-tree/bst.d.ts +1 -0
  12. package/dist/types/data-structures/binary-tree/red-black-tree.d.ts +1 -0
  13. package/dist/types/data-structures/binary-tree/tree-multi-map.d.ts +1 -0
  14. package/dist/types/types/data-structures/base/base.d.ts +1 -1
  15. package/dist/umd/red-black-tree-typed.js +8 -8
  16. package/dist/umd/red-black-tree-typed.js.map +1 -1
  17. package/dist/umd/red-black-tree-typed.min.js +2 -2
  18. package/dist/umd/red-black-tree-typed.min.js.map +1 -1
  19. package/package.json +2 -2
  20. package/src/data-structures/base/iterable-entry-base.ts +4 -4
  21. package/src/data-structures/binary-tree/avl-tree-counter.ts +1 -1
  22. package/src/data-structures/binary-tree/avl-tree-multi-map.ts +1 -1
  23. package/src/data-structures/binary-tree/avl-tree.ts +4 -2
  24. package/src/data-structures/binary-tree/binary-tree.ts +3 -2
  25. package/src/data-structures/binary-tree/bst.ts +2 -1
  26. package/src/data-structures/binary-tree/red-black-tree.ts +2 -1
  27. package/src/data-structures/binary-tree/tree-counter.ts +1 -1
  28. package/src/data-structures/binary-tree/tree-multi-map.ts +2 -1
  29. package/src/data-structures/graph/abstract-graph.ts +3 -3
  30. package/src/data-structures/hash/hash-map.ts +4 -4
  31. package/src/types/data-structures/base/base.ts +1 -1
@@ -125,7 +125,9 @@ export declare class AVLTreeNode<K = any, V = any> {
125
125
  * 4. Order Preservation: Maintains the binary search tree property where left child values are less than the parent, and right child values are greater.
126
126
  * 5. Efficient Lookups: Offers O(log n) search time, where 'n' is the number of nodes, due to its balanced nature.
127
127
  * 6. Complex Insertions and Deletions: Due to rebalancing, these operations are more complex than in a regular BST.
128
- * 7. Path Length: The path length from the root to any leaf is longer compared to an unbalanced BST, but shorter than a linear chain of nodes.@example
128
+ * 7. Path Length: The path length from the root to any leaf is longer compared to an unbalanced BST, but shorter than a linear chain of nodes.
129
+ *
130
+ * @example
129
131
  * // Find elements in a range
130
132
  * // In interval queries, AVL trees, with their strictly balanced structure and lower height, offer better query efficiency, making them ideal for frequent and high-performance interval queries. In contrast, Red-Black trees, with lower update costs, are more suitable for scenarios involving frequent insertions and deletions where the requirements for interval queries are less demanding.
131
133
  * type Datum = { timestamp: Date; temperature: number };
@@ -123,6 +123,7 @@ export declare class BinaryTreeNode<K = any, V = any> {
123
123
  * 3. Depth and Height: Depth is the number of edges from the root to a node; height is the maximum depth in the tree.
124
124
  * 4. Subtrees: Each child of a node forms the root of a subtree.
125
125
  * 5. Leaf Nodes: Nodes without children are leaves.
126
+ *
126
127
  * @example
127
128
  * // determine loan approval using a decision tree
128
129
  * // Decision tree structure
@@ -124,6 +124,7 @@ export declare class BSTNode<K = any, V = any> {
124
124
  * 5. Logarithmic Operations: Ideal operations like insertion, deletion, and searching are O(log n) time-efficient.
125
125
  * 6. Balance Variability: Can become unbalanced; special types maintain balance.
126
126
  * 7. No Auto-Balancing: Standard BSTs don't automatically balance themselves.
127
+ *
127
128
  * @example
128
129
  * // Merge 3 sorted datasets
129
130
  * const dataset1 = new BST<number, string>([
@@ -110,6 +110,7 @@ export declare class RedBlackTreeNode<K = any, V = any> {
110
110
  * @template R
111
111
  * 1. Efficient self-balancing, but not completely balanced. Compared with AVLTree, the addition and deletion efficiency is high, but the query efficiency is slightly lower.
112
112
  * 2. It is BST itself. Compared with Heap which is not completely ordered, RedBlackTree is completely ordered.
113
+ *
113
114
  * @example
114
115
  * // using Red-Black Tree as a price-based index for stock data
115
116
  * // Define the structure of individual stock records
@@ -113,6 +113,7 @@ export declare class TreeMultiMapNode<K = any, V = any> {
113
113
  * @template K
114
114
  * @template V
115
115
  * @template R
116
+ *
116
117
  * @example
117
118
  * // players ranked by score with their equipment
118
119
  * type Equipment = {
@@ -1,6 +1,6 @@
1
1
  import { IterableElementBase, IterableEntryBase } from '../../../data-structures';
2
2
  import { LinearBase } from '../../../data-structures/base/linear-base';
3
- export type EntryCallback<K, V, R> = (key: K, value: V, index: number, original: IterableEntryBase<K, V>) => R;
3
+ export type EntryCallback<K, V, R> = (value: V, key: K, index: number, original: IterableEntryBase<K, V>) => R;
4
4
  export type ElementCallback<E, R, RT> = (element: E, index: number, original: IterableElementBase<E, R>) => RT;
5
5
  export type ReduceEntryCallback<K, V, R> = (accumulator: R, value: V, key: K, index: number, original: IterableEntryBase<K, V>) => R;
6
6
  export type ReduceElementCallback<E, R, U = E> = (accumulator: U, value: E, index: number, self: IterableElementBase<E, R>) => U;
@@ -911,7 +911,7 @@ var redBlackTreeTyped = (() => {
911
911
  every(predicate, thisArg) {
912
912
  let index = 0;
913
913
  for (const item of this) {
914
- if (!predicate.call(thisArg, item[0], item[1], index++, this)) {
914
+ if (!predicate.call(thisArg, item[1], item[0], index++, this)) {
915
915
  return false;
916
916
  }
917
917
  }
@@ -927,7 +927,7 @@ var redBlackTreeTyped = (() => {
927
927
  some(predicate, thisArg) {
928
928
  let index = 0;
929
929
  for (const item of this) {
930
- if (predicate.call(thisArg, item[0], item[1], index++, this)) {
930
+ if (predicate.call(thisArg, item[1], item[0], index++, this)) {
931
931
  return true;
932
932
  }
933
933
  }
@@ -943,7 +943,7 @@ var redBlackTreeTyped = (() => {
943
943
  let index = 0;
944
944
  for (const item of this) {
945
945
  const [key, value] = item;
946
- callbackfn.call(thisArg, key, value, index++, this);
946
+ callbackfn.call(thisArg, value, key, index++, this);
947
947
  }
948
948
  }
949
949
  /**
@@ -957,7 +957,7 @@ var redBlackTreeTyped = (() => {
957
957
  let index = 0;
958
958
  for (const item of this) {
959
959
  const [key, value] = item;
960
- if (callbackfn.call(thisArg, key, value, index++, this)) return item;
960
+ if (callbackfn.call(thisArg, value, key, index++, this)) return item;
961
961
  }
962
962
  return;
963
963
  }
@@ -2208,7 +2208,7 @@ var redBlackTreeTyped = (() => {
2208
2208
  filter(predicate, thisArg) {
2209
2209
  const out = this._createInstance();
2210
2210
  let i = 0;
2211
- for (const [k, v] of this) if (predicate.call(thisArg, k, v, i++, this)) out.add([k, v]);
2211
+ for (const [k, v] of this) if (predicate.call(thisArg, v, k, i++, this)) out.add([k, v]);
2212
2212
  return out;
2213
2213
  }
2214
2214
  /**
@@ -2226,7 +2226,7 @@ var redBlackTreeTyped = (() => {
2226
2226
  map(cb, options, thisArg) {
2227
2227
  const out = this._createLike([], options);
2228
2228
  let i = 0;
2229
- for (const [k, v] of this) out.add(cb.call(thisArg, k, v, i++, this));
2229
+ for (const [k, v] of this) out.add(cb.call(thisArg, v, k, i++, this));
2230
2230
  return out;
2231
2231
  }
2232
2232
  /**
@@ -3322,7 +3322,7 @@ var redBlackTreeTyped = (() => {
3322
3322
  const out = this._createLike([], options);
3323
3323
  let index = 0;
3324
3324
  for (const [key, value] of this) {
3325
- out.add(callback.call(thisArg, key, value, index++, this));
3325
+ out.add(callback.call(thisArg, value, key, index++, this));
3326
3326
  }
3327
3327
  return out;
3328
3328
  }
@@ -3760,7 +3760,7 @@ var redBlackTreeTyped = (() => {
3760
3760
  const out = this._createLike([], options);
3761
3761
  let index = 0;
3762
3762
  for (const [key, value] of this) {
3763
- out.add(callback.call(thisArg, key, value, index++, this));
3763
+ out.add(callback.call(thisArg, value, key, index++, this));
3764
3764
  }
3765
3765
  return out;
3766
3766
  }