qsharp-lang 1.0.32-dev → 1.0.34-dev

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,537 @@
1
+ ---
2
+ geometry:
3
+ - left=1cm
4
+ - right=1cm
5
+ - top=1cm
6
+ - bottom=2cm
7
+ classoption:
8
+ - 10pt
9
+ ...
10
+
11
+ # Output data
12
+
13
+ In this document, we describe all output parameters which are printed by the Azure Quantum Resource Estimator. Second-level headings contain one group in the output that consists of a header and a table with resource estimation data. Each third-level heading corresponds to an entry, which is preceded by a short description text in italic and a long description text. The short description text will be always visible in the third column next to the value, whereas the long description text will be visible as a tooltip when hovering over the corresponding row in the table. The description texts may contain some variable names such as `variable` or $\mathtt{variable}$ in formulas. These will be substituted by the actual computed values extracted from the resource estimates.
14
+
15
+ ## Physical resource estimates
16
+
17
+ ### Runtime
18
+
19
+ [//]: # "physicalCountsFormatted/runtime"
20
+
21
+ _Total runtime_
22
+
23
+ This is a runtime estimate for the execution time of the algorithm. In general, the execution time corresponds to the duration of one logical cycle (`logicalQubit/logicalCycleTime` nanosecs) multiplied by the `physicalCounts/breakdown/algorithmicLogicalDepth` logical cycles to run the algorithm. If however the duration of a single T factory (here: `tfactory/runtime` nanosecs) is larger than the algorithm runtime, we extend the number of logical cycles artificially in order to exceed the runtime of a single T factory.
24
+
25
+ ### rQOPS
26
+
27
+ [//]: # "physicalCountsFormatted/rqops"
28
+
29
+ _Reliable quantum operations per second_
30
+
31
+ The value is computed as the number of logical qubits after layout (`physicalCounts/breakdown/algorithmicLogicalQubits`) (with a logical error rate of `physicalCountsFormatted/requiredLogicalQubitErrorRate`) multiplied by the clock frequency (`logicalQubit/logicalCyclesPerSecond`), which is the number of logical cycles per second.
32
+
33
+ ### Physical qubits
34
+
35
+ [//]: # "physicalCountsFormatted/physicalQubits"
36
+
37
+ _Number of physical qubits_
38
+
39
+ This value represents the total number of physical qubits, which is the sum of `physicalCounts/breakdown/physicalQubitsForAlgorithm` physical qubits to implement the algorithm logic, and `physicalCounts/breakdown/physicalQubitsForTfactories` physical qubits to execute the T factories that are responsible to produce the T states that are consumed by the algorithm.
40
+
41
+ ## Resource estimates breakdown
42
+
43
+ ### Logical algorithmic qubits
44
+
45
+ [//]: # "physicalCountsFormatted/algorithmicLogicalQubits"
46
+
47
+ _Number of logical qubits for the algorithm after layout_
48
+
49
+ Laying out the logical qubits in the presence of nearest-neighbor constraints requires additional logical qubits. In particular, to layout the $Q_{\rm alg} = \mathtt{logicalCounts/numQubits}$ logical qubits in the input algorithm, we require in total $2 \cdot Q_{\rm alg} + \lceil \sqrt{8 \cdot Q_{\rm alg}}\rceil + 1 = \mathtt{physicalCounts/breakdown/algorithmicLogicalQubits}$ logical qubits.
50
+
51
+ ### Algorithmic depth
52
+
53
+ [//]: # "physicalCountsFormatted/algorithmicLogicalDepth"
54
+
55
+ _Number of logical cycles for the algorithm_
56
+
57
+ To execute the algorithm using _Parallel Synthesis Sequential Pauli Computation_ (PSSPC), operations are scheduled in terms of multi-qubit Pauli measurements, for which assume an execution time of one logical cycle. Based on the input algorithm, we require one multi-qubit measurement for the `logicalCounts/measurementCount` single-qubit measurements, the `logicalCounts/rotationCount` arbitrary single-qubit rotations, and the `logicalCounts/tCount` T gates, three multi-qubit measurements for each of the `logicalCounts/cczCount` CCZ and `logicalCounts/ccixCount` CCiX gates in the input program, as well as `physicalCountsFormatted/numTsPerRotation` multi-qubit measurements for each of the `logicalCounts/rotationDepth` non-Clifford layers in which there is at least one single-qubit rotation with an arbitrary angle rotation.
58
+
59
+ ### Logical depth
60
+
61
+ [//]: # "physicalCountsFormatted/logicalDepth"
62
+
63
+ _Number of logical cycles performed_
64
+
65
+ This number is usually equal to the logical depth of the algorithm, which is `physicalCounts/breakdown/algorithmicLogicalDepth`. However, in the case in which a single T factory is slower than the execution time of the algorithm, we adjust the logical cycle depth to exceed the T factory's execution time.
66
+
67
+ ### Clock frequency
68
+
69
+ [//]: # "physicalCountsFormatted/clockFrequency"
70
+
71
+ _Number of logical cycles per second_
72
+
73
+ This is the number of logical cycles that can be performed within one second. The logical cycle time is `physicalCountsFormatted/logicalCycleTime`.
74
+
75
+ ### Number of T states
76
+
77
+ [//]: # "physicalCountsFormatted/numTstates"
78
+
79
+ _Number of T states consumed by the algorithm_
80
+
81
+ To execute the algorithm, we require one T state for each of the `logicalCounts/tCount` T gates, four T states for each of the `logicalCounts/cczCount` CCZ and `logicalCounts/ccixCount` CCiX gates, as well as `physicalCountsFormatted/numTsPerRotation` for each of the `logicalCounts/rotationCount` single-qubit rotation gates with arbitrary angle rotation.
82
+
83
+ ### Number of T factories
84
+
85
+ [//]: # "physicalCountsFormatted/numTfactories"
86
+
87
+ _Number of T factories capable of producing the demanded `physicalCounts/breakdown/numTstates` T states during the algorithm's runtime_
88
+
89
+ The total number of T factories `physicalCounts/breakdown/numTfactories` that are executed in parallel is computed as $\left\lceil\dfrac{\text{T states}\cdot\text{T factory duration}}{\text{T states per T factory}\cdot\text{algorithm runtime}}\right\rceil = \left\lceil\dfrac{\mathtt{physicalCounts/breakdown/numTstates} \cdot \mathtt{tfactory/runtime}\;\text{ns}}{\mathtt{tfactory/numTstates} \cdot \mathtt{physicalCounts/runtime}\;\text{ns}}\right\rceil$
90
+
91
+ ### Number of T factory invocations
92
+
93
+ [//]: # "physicalCountsFormatted/numTfactoryRuns"
94
+
95
+ _Number of times all T factories are invoked_
96
+
97
+ In order to prepare the `physicalCounts/breakdown/numTstates` T states, the `physicalCounts/breakdown/numTfactories` copies of the T factory are repeatedly invoked `physicalCounts/breakdown/numTfactoryRuns` times.
98
+
99
+ ### Physical algorithmic qubits
100
+
101
+ [//]: # "physicalCountsFormatted/physicalQubitsForAlgorithm"
102
+
103
+ _Number of physical qubits for the algorithm after layout_
104
+
105
+ The `physicalCounts/breakdown/physicalQubitsForAlgorithm` are the product of the `physicalCounts/breakdown/algorithmicLogicalQubits` logical qubits after layout and the `logicalQubit/physicalQubits` physical qubits that encode a single logical qubit.
106
+
107
+ ### Physical T factory qubits
108
+
109
+ [//]: # "physicalCountsFormatted/physicalQubitsForTfactories"
110
+
111
+ _Number of physical qubits for the T factories_
112
+
113
+ Each T factory requires `tfactory/physicalQubits` physical qubits and we run `physicalCounts/breakdown/numTfactories` in parallel, therefore we need $\mathtt{physicalCounts/breakdown/physicalQubitsForTfactories} = \mathtt{tfactory/physicalQubits} \cdot \mathtt{physicalCounts/breakdown/numTfactories}$ qubits.
114
+
115
+ ### Required logical qubit error rate
116
+
117
+ [//]: # "physicalCountsFormatted/requiredLogicalQubitErrorRate"
118
+
119
+ _The minimum logical qubit error rate required to run the algorithm within the error budget_
120
+
121
+ The minimum logical qubit error rate is obtained by dividing the logical error probability `physicalCountsFormatted/errorBudgetLogical` by the product of `physicalCounts/breakdown/algorithmicLogicalQubits` logical qubits and the total cycle count `physicalCounts/breakdown/logicalDepth`.
122
+
123
+ ### Required logical T state error rate
124
+
125
+ [//]: # "physicalCountsFormatted/requiredLogicalTstateErrorRate"
126
+
127
+ _The minimum T state error rate required for distilled T states_
128
+
129
+ The minimum T state error rate is obtained by dividing the T distillation error probability `physicalCountsFormatted/errorBudgetTstates` by the total number of T states `physicalCounts/breakdown/numTstates`.
130
+
131
+ ### Number of T states per rotation
132
+
133
+ [//]: # "physicalCountsFormatted/numTsPerRotation"
134
+
135
+ _Number of T states to implement a rotation with an arbitrary angle_
136
+
137
+ The number of T states to implement a rotation with an arbitrary angle is $\lceil 0.53 \log_2(\mathtt{logicalCounts/rotationCount} / \mathtt{errorBudget/rotations}) + 5.3\rceil$ [[arXiv:2203.10064](https://arxiv.org/abs/2203.10064)]. For simplicity, we use this formula for all single-qubit arbitrary angle rotations, and do not distinguish between best, worst, and average cases.
138
+
139
+ ## Logical qubit parameters
140
+
141
+ ### QEC scheme
142
+
143
+ [//]: # "jobParams/qecScheme/name"
144
+
145
+ _Name of QEC scheme_
146
+
147
+ You can load pre-defined QEC schemes by using the name `surface_code` or `floquet_code`. The latter only works with Majorana qubits.
148
+
149
+ ### Code distance
150
+
151
+ [//]: # "logicalQubit/codeDistance"
152
+
153
+ _Required code distance for error correction_
154
+
155
+ The code distance is the smallest odd integer greater or equal to $\dfrac{2\log(\mathtt{jobParams/qecScheme/crossingPrefactor} / \mathtt{physicalCounts/breakdown/requiredLogicalQubitErrorRate})}{\log(\mathtt{jobParams/qecScheme/errorCorrectionThreshold}/\mathtt{physicalCounts/breakdown/cliffordErrorRate})} - 1$
156
+
157
+ ### Physical qubits
158
+
159
+ [//]: # "physicalCountsFormatted/physicalQubitsPerLogicalQubit"
160
+
161
+ _Number of physical qubits per logical qubit_
162
+
163
+ The number of physical qubits per logical qubit are evaluated using the formula `jobParams/qecScheme/physicalQubitsPerLogicalQubit` that can be user-specified.
164
+
165
+ ### Logical cycle time
166
+
167
+ [//]: # "physicalCountsFormatted/logicalCycleTime"
168
+
169
+ _Duration of a logical cycle in nanoseconds_
170
+
171
+ The runtime of one logical cycle in nanoseconds is evaluated using the formula `jobParams/qecScheme/logicalCycleTime` that can be user-specified.
172
+
173
+ ### Logical qubit error rate
174
+
175
+ [//]: # "physicalCountsFormatted/logicalErrorRate"
176
+
177
+ _Logical qubit error rate_
178
+
179
+ The logical qubit error rate is computed as $\mathtt{jobParams/qecScheme/crossingPrefactor} \cdot \left(\dfrac{\mathtt{physicalCounts/breakdown/cliffordErrorRate}}{\mathtt{jobParams/qecScheme/errorCorrectionThreshold}}\right)^\frac{\mathtt{logicalQubit/codeDistance} + 1}{2}$
180
+
181
+ ### Crossing prefactor
182
+
183
+ [//]: # "jobParams/qecScheme/crossingPrefactor"
184
+
185
+ _Crossing prefactor used in QEC scheme_
186
+
187
+ The crossing prefactor is usually extracted numerically from simulations when fitting an exponential curve to model the relationship between logical and physical error rate.
188
+
189
+ ### Error correction threshold
190
+
191
+ [//]: # "jobParams/qecScheme/errorCorrectionThreshold"
192
+
193
+ _Error correction threshold used in QEC scheme_
194
+
195
+ The error correction threshold is the physical error rate below which the error rate of the logical qubit is less than the error rate of the physical qubit that constitute it. This value is usually extracted numerically from simulations of the logical error rate.
196
+
197
+ ### Logical cycle time formula
198
+
199
+ [//]: # "jobParams/qecScheme/logicalCycleTime"
200
+
201
+ _QEC scheme formula used to compute logical cycle time_
202
+
203
+ This is the formula that is used to compute the logical cycle time `logicalQubit/logicalCycleTime` ns.
204
+
205
+ ### Physical qubits formula
206
+
207
+ [//]: # "jobParams/qecScheme/physicalQubitsPerLogicalQubit"
208
+
209
+ _QEC scheme formula used to compute number of physical qubits per logical qubit_
210
+
211
+ This is the formula that is used to compute the number of physical qubits per logical qubits `logicalQubit/physicalQubits`.
212
+
213
+ ## T factory parameters
214
+
215
+ ### Physical qubits
216
+
217
+ [//]: # "physicalCountsFormatted/tfactoryPhysicalQubits"
218
+
219
+ _Number of physical qubits for a single T factory_
220
+
221
+ This corresponds to the maximum number of physical qubits over all rounds of T distillation units in a T factory. A round of distillation contains of multiple copies of distillation units to achieve the required success probability of producing a T state with the expected logical T state error rate.
222
+
223
+ ### Runtime
224
+
225
+ [//]: # "physicalCountsFormatted/tfactoryRuntime"
226
+
227
+ _Runtime of a single T factory_
228
+
229
+ The runtime of a single T factory is the accumulated runtime of executing each round in a T factory.
230
+
231
+ ### Number of output T states per run
232
+
233
+ [//]: # "tfactory/numTstates"
234
+
235
+ _Number of output T states produced in a single run of T factory_
236
+
237
+ The T factory takes as input `tfactory/numInputTstates` noisy physical T states with an error rate of `jobParams/qubitParams/tGateErrorRate` and produces `tfactory/numTstates` T states with an error rate of `physicalCountsFormatted/tstateLogicalErrorRate`.
238
+
239
+ ### Number of input T states per run
240
+
241
+ [//]: # "physicalCountsFormatted/numInputTstates"
242
+
243
+ _Number of physical input T states consumed in a single run of a T factory_
244
+
245
+ This value includes the physical input T states of all copies of the distillation unit in the first round.
246
+
247
+ ### Distillation rounds
248
+
249
+ [//]: # "tfactory/numRounds"
250
+
251
+ _The number of distillation rounds_
252
+
253
+ This is the number of distillation rounds. In each round one or multiple copies of some distillation unit is executed.
254
+
255
+ ### Distillation units per round
256
+
257
+ [//]: # "physicalCountsFormatted/numUnitsPerRound"
258
+
259
+ _The number of units in each round of distillation_
260
+
261
+ This is the number of copies for the distillation units per round.
262
+
263
+ ### Distillation units
264
+
265
+ [//]: # "physicalCountsFormatted/unitNamePerRound"
266
+
267
+ _The types of distillation units_
268
+
269
+ These are the types of distillation units that are executed in each round. The units can be either physical or logical, depending on what type of qubit they are operating. Space-efficient units require fewer qubits for the cost of longer runtime compared to Reed-Muller preparation units.
270
+
271
+ ### Distillation code distances
272
+
273
+ [//]: # "physicalCountsFormatted/codeDistancePerRound"
274
+
275
+ _The code distance in each round of distillation_
276
+
277
+ This is the code distance used for the units in each round. If the code distance is 1, then the distillation unit operates on physical qubits instead of error-corrected logical qubits.
278
+
279
+ ### Number of physical qubits per round
280
+
281
+ [//]: # "physicalCountsFormatted/physicalQubitsPerRound"
282
+
283
+ _The number of physical qubits used in each round of distillation_
284
+
285
+ The maximum number of physical qubits over all rounds is the number of physical qubits for the T factory, since qubits are reused by different rounds.
286
+
287
+ ### Runtime per round
288
+
289
+ [//]: # "physicalCountsFormatted/tfactoryRuntimePerRound"
290
+
291
+ _The runtime of each distillation round_
292
+
293
+ The runtime of the T factory is the sum of the runtimes in all rounds.
294
+
295
+ ### Logical T state error rate
296
+
297
+ [//]: # "physicalCountsFormatted/tstateLogicalErrorRate"
298
+
299
+ _Logical T state error rate_
300
+
301
+ This is the logical T state error rate achieved by the T factory which is equal or smaller than the required error rate `physicalCountsFormatted/requiredLogicalTstateErrorRate`.
302
+
303
+ ## Pre-layout logical resources
304
+
305
+ ### Logical qubits (pre-layout)
306
+
307
+ [//]: # "physicalCountsFormatted/logicalCountsNumQubits"
308
+
309
+ _Number of logical qubits in the input quantum program_
310
+
311
+ We determine `physicalCounts/breakdown/algorithmicLogicalQubits` algorithmic logical qubits from this number by assuming to align them in a 2D grid. Auxiliary qubits are added to allow for sufficient space to execute multi-qubit Pauli measurements on all or a subset of the logical qubits.
312
+
313
+ ### T gates
314
+
315
+ [//]: # "physicalCountsFormatted/logicalCountsTCount"
316
+
317
+ _Number of T gates in the input quantum program_
318
+
319
+ This includes all T gates and adjoint T gates, but not T gates used to implement rotation gates with arbitrary angle, CCZ gates, or CCiX gates.
320
+
321
+ ### Rotation gates
322
+
323
+ [//]: # "physicalCountsFormatted/logicalCountsRotationCount"
324
+
325
+ _Number of rotation gates in the input quantum program_
326
+
327
+ This is the number of all rotation gates. If an angle corresponds to a Pauli, Clifford, or T gate, it is not accounted for in this number.
328
+
329
+ ### Rotation depth
330
+
331
+ [//]: # "physicalCountsFormatted/logicalCountsRotationDepth"
332
+
333
+ _Depth of rotation gates in the input quantum program_
334
+
335
+ This is the number of all non-Clifford layers that include at least one single-qubit rotation gate with an arbitrary angle.
336
+
337
+ ### CCZ gates
338
+
339
+ [//]: # "physicalCountsFormatted/logicalCountsCczCount"
340
+
341
+ _Number of CCZ-gates in the input quantum program_
342
+
343
+ This is the number of CCZ gates.
344
+
345
+ ### CCiX gates
346
+
347
+ [//]: # "physicalCountsFormatted/logicalCountsCcixCount"
348
+
349
+ _Number of CCiX-gates in the input quantum program_
350
+
351
+ This is the number of CCiX gates, which applies $-iX$ controlled on two control qubits [[1212.5069](https://arxiv.org/abs/1212.5069)].
352
+
353
+ ### Measurement operations
354
+
355
+ [//]: # "physicalCountsFormatted/logicalCountsMeasurementCount"
356
+
357
+ _Number of single qubit measurements in the input quantum program_
358
+
359
+ This is the number of single qubit measurements in Pauli basis that are used in the input program. Note that all measurements are counted, however, the measurement result is is determined randomly (with a fixed seed) to be 0 or 1 with a probability of 50%.
360
+
361
+ ## Assumed error budget
362
+
363
+ ### Total error budget
364
+
365
+ [//]: # "physicalCountsFormatted/errorBudget"
366
+
367
+ _Total error budget for the algorithm_
368
+
369
+ The total error budget sets the overall allowed error for the algorithm, i.e., the number of times it is allowed to fail. Its value must be between 0 and 1 and the default value is 0.001, which corresponds to 0.1%, and means that the algorithm is allowed to fail once in 1000 executions. This parameter is highly application specific. For example, if one is running Shor's algorithm for factoring integers, a large value for the error budget may be tolerated as one can check that the output are indeed the prime factors of the input. On the other hand, a much smaller error budget may be needed for an algorithm solving a problem with a solution which cannot be efficiently verified. This budget $\epsilon = \epsilon_{\log} + \epsilon_{\rm dis} + \epsilon_{\rm syn}$ is uniformly distributed and applies to errors $\epsilon_{\log}$ to implement logical qubits, an error budget $\epsilon_{\rm dis}$ to produce T states through distillation, and an error budget $\epsilon_{\rm syn}$ to synthesize rotation gates with arbitrary angles. Note that for distillation and rotation synthesis, the respective error budgets $\epsilon_{\rm dis}$ and $\epsilon_{\rm syn}$ are uniformly distributed among all T states and all rotation gates, respectively. If there are no rotation gates in the input algorithm, the error budget is uniformly distributed to logical errors and T state errors.
370
+
371
+ ### Logical error probability
372
+
373
+ [//]: # "physicalCountsFormatted/errorBudgetLogical"
374
+
375
+ _Probability of at least one logical error_
376
+
377
+ This is one third of the total error budget `physicalCountsFormatted/errorBudget` if the input algorithm contains rotation with gates with arbitrary angles, or one half of it, otherwise.
378
+
379
+ ### T distillation error probability
380
+
381
+ [//]: # "physicalCountsFormatted/errorBudgetTstates"
382
+
383
+ _Probability of at least one faulty T distillation_
384
+
385
+ This is one third of the total error budget `physicalCountsFormatted/errorBudget` if the input algorithm contains rotation with gates with arbitrary angles, or one half of it, otherwise.
386
+
387
+ ### Rotation synthesis error probability
388
+
389
+ [//]: # "physicalCountsFormatted/errorBudgetRotations"
390
+
391
+ _Probability of at least one failed rotation synthesis_
392
+
393
+ This is one third of the total error budget `physicalCountsFormatted/errorBudget`.
394
+
395
+ ## Physical qubit parameters
396
+
397
+ _Info:_ Note that not all values are shown depending on the instruction set of the qubit parameters.
398
+
399
+ ### Qubit name
400
+
401
+ [//]: # "jobParams/qubitParams/name"
402
+
403
+ _Some descriptive name for the qubit model_
404
+
405
+ You can load pre-defined qubit parameters by using the names `qubit_gate_ns_e3`, `qubit_gate_ns_e4`, `qubit_gate_us_e3`, `qubit_gate_us_e4`, `qubit_maj_ns_e4`, or `qubit_maj_ns_e6`. The names of these pre-defined qubit parameters indicate the instruction set (gate-based or Majorana), the operation speed (ns or µs regime), as well as the fidelity (e.g., e3 for $10^{-3}$ gate error rates).
406
+
407
+ ### Instruction set
408
+
409
+ [//]: # "jobParams/qubitParams/instructionSet"
410
+
411
+ _Underlying qubit technology (gate-based or Majorana)_
412
+
413
+ When modeling the physical qubit abstractions, we distinguish between two different physical instruction sets that are used to operate the qubits. The physical instruction set can be either _gate-based_ or _Majorana_. A gate-based instruction set provides single-qubit measurement, single-qubit gates (incl. T gates), and two-qubit gates. A Majorana instruction set provides a physical T gate, single-qubit measurement and two-qubit joint measurement operations.
414
+
415
+ ### Single-qubit measurement time
416
+
417
+ [//]: # "jobParams/qubitParams/oneQubitMeasurementTime"
418
+
419
+ _Operation time for single-qubit measurement (t_meas) in ns_
420
+
421
+ This is the operation time in nanoseconds to perform a single-qubit measurement in the Pauli basis.
422
+
423
+ ### Two-qubit measurement time
424
+
425
+ [//]: # "jobParams/qubitParams/twoQubitJointMeasurementTime"
426
+
427
+ _Operation time for two-qubit measurement in ns_
428
+
429
+ This is the operation time in nanoseconds to perform a non-destructive two-qubit joint Pauli measurement.
430
+
431
+ ### Single-qubit gate time
432
+
433
+ [//]: # "jobParams/qubitParams/oneQubitGateTime"
434
+
435
+ _Operation time for single-qubit gate (t_gate) in ns_
436
+
437
+ This is the operation time in nanoseconds to perform a single-qubit Clifford operation, e.g., Hadamard or Phase gates.
438
+
439
+ ### Two-qubit gate time
440
+
441
+ [//]: # "jobParams/qubitParams/twoQubitGateTime"
442
+
443
+ _Operation time for two-qubit gate in ns_
444
+
445
+ This is the operation time in nanoseconds to perform a two-qubit Clifford operation, e.g., a CNOT or CZ gate.
446
+
447
+ ### T gate time
448
+
449
+ [//]: # "jobParams/qubitParams/tGateTime"
450
+
451
+ _Operation time for a T gate_
452
+
453
+ This is the operation time in nanoseconds to execute a T gate.
454
+
455
+ ### Single-qubit measurement error rate
456
+
457
+ [//]: # "jobParams/qubitParams/oneQubitMeasurementErrorRate"
458
+
459
+ _Error rate for single-qubit measurement_
460
+
461
+ This is the probability in which a single-qubit measurement in the Pauli basis may fail.
462
+
463
+ ### Two-qubit measurement error rate
464
+
465
+ [//]: # "jobParams/qubitParams/twoQubitJointMeasurementErrorRate"
466
+
467
+ _Error rate for two-qubit measurement_
468
+
469
+ This is the probability in which a non-destructive two-qubit joint Pauli measurement may fail.
470
+
471
+ ### Single-qubit error rate
472
+
473
+ [//]: # "jobParams/qubitParams/oneQubitGateErrorRate"
474
+
475
+ _Error rate for single-qubit Clifford gate (p)_
476
+
477
+ This is the probability in which a single-qubit Clifford operation, e.g., Hadamard or Phase gates, may fail.
478
+
479
+ ### Two-qubit error rate
480
+
481
+ [//]: # "jobParams/qubitParams/twoQubitGateErrorRate"
482
+
483
+ _Error rate for two-qubit Clifford gate_
484
+
485
+ This is the probability in which a two-qubit Clifford operation, e.g., CNOT or CZ gates, may fail.
486
+
487
+ ### T gate error rate
488
+
489
+ [//]: # "jobParams/qubitParams/tGateErrorRate"
490
+
491
+ _Error rate to prepare single-qubit T state or apply a T gate (p_T)_
492
+
493
+ This is the probability in which executing a single T gate may fail.
494
+
495
+ ## Constraints
496
+
497
+ ### Logical depth factor
498
+
499
+ [//]: # "physicalCountsFormatted/logicalDepthFactor"
500
+
501
+ _Factor, the initial number of logical cycles is multiplied by_
502
+
503
+ This is the factor takes into account a potential overhead to the initial number of logical cycles.
504
+
505
+ ### Maximum number of T factories
506
+
507
+ [//]: # "physicalCountsFormatted/maxTFactories"
508
+
509
+ _The maximum number of T factories can be utilized during the algorithm's runtime_
510
+
511
+ This is the maximum number of T factories used for producing the demanded T states, which can be created and executed by the algorithm in parallel.
512
+
513
+ ### Maximum runtime duration
514
+
515
+ [//]: # "physicalCountsFormatted/maxDuration"
516
+
517
+ _The maximum runtime duration allowed for the algorithm runtime_
518
+
519
+ This is the maximum time allowed to the algorithm. If specified, the estimator targets to minimize the number of physical qubits consumed by the algorithm for runtimes under the maximum allowed.
520
+
521
+ ### Maximum number of physical qubits
522
+
523
+ [//]: # "physicalCountsFormatted/maxPhysicalQubits"
524
+
525
+ _The maximum number of physical qubits allowed for utilization to the algorithm_
526
+
527
+ This is the maximum number of physical qubits available to the algorithm. If specified, the estimator targets to minimize the runtime of the algorithm with number of physical qubits consumed not exceeding this maximum.
528
+
529
+ ## Assumptions
530
+
531
+ - _More details on the following lists of assumptions can be found in the paper [Accessing requirements for scaling quantum computers and their applications](https://aka.ms/AQ/RE/Paper)._
532
+ - **Uniform independent physical noise.** We assume that the noise on physical qubits and physical qubit operations is the standard circuit noise model. In particular we assume error events at different space-time locations are independent and that error rates are uniform across the system in time and space.
533
+ - **Efficient classical computation.** We assume that classical overhead (compilation, control, feedback, readout, decoding, etc.) does not dominate the overall cost of implementing the full quantum algorithm.
534
+ - **Extraction circuits for planar quantum ISA.** We assume that stabilizer extraction circuits with similar depth and error correction performance to those for standard surface and Hastings-Haah code patches can be constructed to implement all operations of the planar quantum ISA (instruction set architecture).
535
+ - **Uniform independent logical noise.** We assume that the error rate of a logical operation is approximately equal to its space-time volume (the number of tiles multiplied by the number of logical time steps) multiplied by the error rate of a logical qubit in a standard one-tile patch in one logical time step.
536
+ - **Negligible Clifford costs for synthesis.** We assume that the space overhead for synthesis and space and time overhead for transport of magic states within magic state factories and to synthesis qubits are all negligible.
537
+ - **Smooth magic state consumption rate.** We assume that the rate of T state consumption throughout the compiled algorithm is almost constant, or can be made almost constant without significantly increasing the number of logical time steps for the algorithm.
package/ux/qsharp-ux.css CHANGED
@@ -615,3 +615,40 @@ html {
615
615
  fill: var(--vscode-icon-foreground, gray);
616
616
  animation: codicon-spin 1.5s steps(45) infinite;
617
617
  }
618
+
619
+ .qs-scatterChart {
620
+ font-size: 14px;
621
+ }
622
+
623
+ .qs-scatterChart-x-axisTitle,
624
+ .qs-scatterChart-y-axisTitle {
625
+ text-anchor: middle;
626
+ font-size: 16px;
627
+ fill: var(--main-color);
628
+ }
629
+
630
+ .qs-scatterChart-y-axisTitle {
631
+ writing-mode: vertical-lr;
632
+ transform: rotate(180deg);
633
+ }
634
+
635
+ .qs-scatterChart-line {
636
+ stroke: var(--border-color);
637
+ }
638
+
639
+ .qs-scatterChart-point {
640
+ r: 2px;
641
+ stroke-width: 4px;
642
+ }
643
+
644
+ .qs-scatterChart-point-selected,
645
+ .qs-scatterChart-point:hover {
646
+ r: 6px;
647
+ stroke-width: 3px;
648
+ fill: white;
649
+ }
650
+
651
+ .qs-scatterChart-watermark {
652
+ font-size: 16px;
653
+ fill: var(--main-color);
654
+ }
package/ux/reTable.tsx CHANGED
@@ -2,41 +2,20 @@
2
2
  // Licensed under the MIT License.
3
3
 
4
4
  import { useState } from "preact/hooks";
5
-
6
- export type ReData = {
7
- status: string;
8
- jobParams: any;
9
- physicalCounts: any;
10
- physicalCountsFormatted: any;
11
- logicalQubit: any;
12
- tfactory: any;
13
- errorBudget: any;
14
- logicalCounts: any;
15
- reportData: {
16
- groups: {
17
- title: string;
18
- alwaysVisible: boolean;
19
- entries: {
20
- path: string;
21
- label: string;
22
- description: string;
23
- explanation: string;
24
- }[];
25
- }[];
26
- assumptions: string[];
27
- };
28
- new: boolean;
29
- };
5
+ import { SingleEstimateResult } from "./data.js";
6
+ import { CreateReport } from "./report.js";
30
7
 
31
8
  export function ReTable(props: {
32
9
  mdRenderer: (input: string) => string;
33
- estimatesData: ReData;
10
+ estimatesData: SingleEstimateResult;
34
11
  }) {
35
12
  const [showDetail, setShowDetail] = useState(false);
36
13
  const toggleDetail = () => {
37
14
  setShowDetail(!showDetail);
38
15
  };
39
16
 
17
+ const reportData = CreateReport(props.estimatesData);
18
+
40
19
  return (
41
20
  <div>
42
21
  <div>
@@ -48,7 +27,7 @@ export function ReTable(props: {
48
27
  />
49
28
  <label htmlFor="showDetail"> Show detailed rows</label>
50
29
  </div>
51
- {props.estimatesData.reportData.groups.map((group) => {
30
+ {reportData.groups.map((group) => {
52
31
  return (
53
32
  <details className="estimate-details">
54
33
  <summary>
@@ -101,7 +80,7 @@ export function ReTable(props: {
101
80
  <strong>Assumptions</strong>
102
81
  </summary>
103
82
  <ul className="estimate-table">
104
- {props.estimatesData.reportData.assumptions.map((assumption) => (
83
+ {reportData.assumptions.map((assumption) => (
105
84
  <li
106
85
  className="estimate-assumption"
107
86
  dangerouslySetInnerHTML={{ __html: props.mdRenderer(assumption) }}