pyret-npm 0.0.69 → 0.0.71

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (18) hide show
  1. package/package.json +2 -1
  2. package/pyret-lang/build/phaseA/base.jarr +1917 -807
  3. package/pyret-lang/build/phaseA/compiled/table-7067bdbcac8eb8b1b8b3c085cf69f2ad489ed9301ad3076df3ee5881c4bd257f.js +1 -1
  4. package/pyret-lang/build/phaseA/lib-compiled/charts-d9ab4ce9dff6abe771a0ea5d7862476d87e5f7e2a7574918748d38ff2dc812d2-module.js +634 -417
  5. package/pyret-lang/build/phaseA/lib-compiled/charts-d9ab4ce9dff6abe771a0ea5d7862476d87e5f7e2a7574918748d38ff2dc812d2-static.js +633 -416
  6. package/pyret-lang/build/phaseA/lib-compiled/charts-lib-359cf1f1fc9f5068be80e4ee4c0fc54b3b80d94c49a0ce7bcfdbc2581b5b6c6d-module.js +216 -60
  7. package/pyret-lang/build/phaseA/lib-compiled/charts-lib-359cf1f1fc9f5068be80e4ee4c0fc54b3b80d94c49a0ce7bcfdbc2581b5b6c6d-static.js +216 -60
  8. package/pyret-lang/build/phaseA/lib-compiled/charts-util-f886e58756b509074a8868537c3bd3b97897fe96c3aa6eef676b8e05a7a25061-module.js +730 -0
  9. package/pyret-lang/build/phaseA/lib-compiled/charts-util-f886e58756b509074a8868537c3bd3b97897fe96c3aa6eef676b8e05a7a25061-static.js +729 -0
  10. package/pyret-lang/build/phaseA/lib-compiled/image-lib-58d2019095acfc12fa49dbf7e05aa5a2cec3a3e43648163e897d166faeca8361-module.js +36 -34
  11. package/pyret-lang/build/phaseA/lib-compiled/image-lib-58d2019095acfc12fa49dbf7e05aa5a2cec3a3e43648163e897d166faeca8361-static.js +36 -34
  12. package/pyret-lang/build/phaseA/lib-compiled/image-structs-3a02a5ca3f95bf62a639b383a8c880be753c826a64cc74ef5391d698001a0b95-module.js +1 -1
  13. package/pyret-lang/build/phaseA/lib-compiled/libs.arr-7e68a48c40816212db66913a459b12bb293c7e7a23e3b2191d8640a99ee2426c-module.js +1 -1
  14. package/pyret-lang/build/phaseA/lib-compiled/make-image-4db56c34361e89d28ca8a554d7f4729e7b0a0c3c50ac8652ab9c254d11486db4-module.js +1 -1
  15. package/pyret-lang/build/phaseA/lib-compiled/make-image-4db56c34361e89d28ca8a554d7f4729e7b0a0c3c50ac8652ab9c254d11486db4-static.js +1 -1
  16. package/pyret-lang/build/phaseA/lib-compiled/table-7067bdbcac8eb8b1b8b3c085cf69f2ad489ed9301ad3076df3ee5881c4bd257f-module.js +1 -1
  17. package/pyret-lang/build/phaseA/lib-compiled/table-7067bdbcac8eb8b1b8b3c085cf69f2ad489ed9301ad3076df3ee5881c4bd257f-static.js +1 -1
  18. package/pyret-lang/build/phaseA/pyret.jarr +1 -1
@@ -0,0 +1,729 @@
1
+ ({"theMap":"{\"version\":3,\"sources\":[\"builtin://charts-util\"],\"names\":[\"builtin://charts-util\",\",8,0,89,13,3,158\",\",9,2,107,9,12,117\",\",10,2,120,10,12,130\",\",11,2,133,11,11,142\",\",12,2,145,12,11,154\",\",18,7,227,18,12,232\",\",19,4,239,19,48,283\",\",24,0,302,29,3,439\",\",25,2,324,25,16,338\",\",26,2,341,26,13,352\",\",27,2,355,27,18,371\",\",28,2,374,28,63,435\",\",32,7,505,32,12,510\",\",33,4,517,33,72,585\",\",39,8,665,39,13,670\",\",39,19,676,39,24,681\",\",39,18,675,39,25,682\",\",40,4,689,40,64,749\",\",45,0,768,48,3,911\",\",46,2,788,46,16,802\",\",47,2,805,47,104,907\",\",52,7,975,52,13,981\",\",53,4,987,53,83,1066\",\",60,7,1148,60,13,1154\",\",61,4,1160,61,47,1203\",\",66,0,1222,71,3,1407\",\",67,2,1239,67,13,1250\",\",68,2,1253,68,49,1300\",\",69,2,1303,69,47,1348\",\",70,2,1351,70,54,1403\"],\"mappings\":\"AAACA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA,oBAODC,qCAPCD;AAAAA;AAAAA;AAAAA;AAAAA,qBAQCE,uCARDF;AAAAA;AAAAA;AAAAA;AAAAA,oBAQCE,oCARDF;AAAAA;AAAAA;AAAAA;AAAAA,oBASCG,uCATDH;AAAAA;AAAAA;AAAAA;AAAAA,oBASCG,oCATDH;AAAAA;AAAAA;AAAAA;AAAAA,oBAUCI,sCAVDJ;AAAAA;AAAAA;AAAAA;AAAAA,oBAUCI,mCAVDJ;AAAAA;AAAAA;AAAAA;AAAAA,oBAWCK,sCAXDL;AAAAA;AAAAA;AAAAA;AAAAA,oBAWCK,mCAXDL;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAiBMM,kCAjBNN;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAkBGO,mCAlBHP;AAAAA;AAkBGO,6DAlBHP;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA,oBAuBDQ,8CAvBCR;AAAAA;AAAAA;AAAAA;AAAAA,oBAwBCS,gDAxBDT;AAAAA;AAAAA;AAAAA;AAAAA,oBAwBCS,6CAxBDT;AAAAA;AAAAA;AAAAA;AAAAA,oBAyBCU,6CAzBDV;AAAAA;AAAAA;AAAAA;AAAAA,oBAyBCU,0CAzBDV;AAAAA;AAAAA;AAAAA;AAAAA,oBA0BCW,kDA1BDX;AAAAA;AAAAA;AAAAA;AAAAA,oBA0BCW,+CA1BDX;AAAAA;AAAAA;AAAAA;AAAAA,oBA2BCY,iDA3BDZ;AAAAA;AAAAA;AAAAA;AAAAA,oBA2BCY,8CA3BDZ;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AA+BMa,kCA/BNb;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAgCGc,mCAhCHd;AAAAA;AAgCGc,qFAhCHd;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAsCOe,kCAtCPf;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAsCkBgB,qCAtClBhB;AAAAA;AAAAA;AAsCiBiB,wCAtCjBjB;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAuCGkB,mCAvCHlB;AAAAA;AAuCGkB,6EAvCHlB;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA,oBA4CDmB,wCA5CCnB;AAAAA;AAAAA;AAAAA;AAAAA,oBA6CCoB,6CA7CDpB;AAAAA;AAAAA;AAAAA;AAAAA,oBA6CCoB,0CA7CDpB;AAAAA;AAAAA;AAAAA;AAAAA,oBA8CCqB,sDA9CDrB;AAAAA;AAAAA;AAAAA;AAAAA,oBA8CCqB,mDA9CDrB;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAmDMsB,mCAnDNtB;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAoDGuB,mCApDHvB;AAAAA;AAoDGuB,gGApDHvB;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AA2DMwB,mCA3DNxB;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AA4DGyB,mCA5DHzB;AAAAA;AA4DGyB,4DA5DHzB;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA,oBAiED0B,oCAjEC1B;AAAAA;AAAAA;AAAAA;AAAAA,oBAkEC2B,wCAlED3B;AAAAA;AAAAA;AAAAA;AAAAA,oBAkEC2B,qCAlED3B;AAAAA;AAAAA;AAAAA;AAAAA,oBAmEC4B,uCAnED5B;AAAAA;AAAAA;AAAAA;AAAAA,oBAmEC4B,oCAnED5B;AAAAA;AAAAA;AAAAA;AAAAA,oBAoEC6B,qCApED7B;AAAAA;AAAAA;AAAAA;AAAAA,oBAoEC6B,kCApED7B;AAAAA;AAAAA;AAAAA;AAAAA,oBAqEC8B,wCArED9B;AAAAA;AAAAA;AAAAA;AAAAA,oBAqEC8B,qCArED9B;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAODC,oCAPCD;AAAAA;AAODC,yBAPCD;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA,UAODC,oDAPCD;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA;AAAAA\",\"file\":\"builtin://charts-util\"}",
2
+ "nativeRequires":[],
3
+ "provides":{"modules":{},
4
+ "values":{"at-linear":{"bind":"let",
5
+ "origin":{"local-bind-site":["builtin://charts-util",
6
+ 5,
7
+ 7,
8
+ 75,
9
+ 5,
10
+ 15,
11
+ 83],
12
+ "definition-bind-site":["builtin://charts-util",
13
+ 67,
14
+ 2,
15
+ 1239,
16
+ 67,
17
+ 13,
18
+ 1250],
19
+ "new-definition":true,
20
+ "uri-of-definition":"builtin://charts-util"},
21
+ "typ":"tany"},
22
+ "is-StackType":{"bind":"let",
23
+ "origin":{"local-bind-site":["builtin://charts-util",
24
+ 2,
25
+ 7,
26
+ 16,
27
+ 2,
28
+ 16,
29
+ 25],
30
+ "definition-bind-site":["builtin://charts-util",
31
+ 8,
32
+ 0,
33
+ 89,
34
+ 13,
35
+ 3,
36
+ 158],
37
+ "new-definition":true,
38
+ "uri-of-definition":"builtin://charts-util"},
39
+ "typ":"tany"},
40
+ "is-AxisType":{"bind":"let",
41
+ "origin":{"local-bind-site":["builtin://charts-util",
42
+ 5,
43
+ 7,
44
+ 75,
45
+ 5,
46
+ 15,
47
+ 83],
48
+ "definition-bind-site":["builtin://charts-util",
49
+ 66,
50
+ 0,
51
+ 1222,
52
+ 71,
53
+ 3,
54
+ 1407],
55
+ "new-definition":true,
56
+ "uri-of-definition":"builtin://charts-util"},
57
+ "typ":"tany"},
58
+ "grouped":{"bind":"let",
59
+ "origin":{"local-bind-site":["builtin://charts-util",
60
+ 2,
61
+ 7,
62
+ 16,
63
+ 2,
64
+ 16,
65
+ 25],
66
+ "definition-bind-site":["builtin://charts-util",
67
+ 12,
68
+ 2,
69
+ 145,
70
+ 12,
71
+ 11,
72
+ 154],
73
+ "new-definition":true,
74
+ "uri-of-definition":"builtin://charts-util"},
75
+ "typ":"tany"},
76
+ "regular-polygon-shape":{"bind":"fun",
77
+ "origin":{"local-bind-site":["builtin://charts-util",
78
+ 3,
79
+ 7,
80
+ 34,
81
+ 3,
82
+ 17,
83
+ 44],
84
+ "definition-bind-site":["builtin://charts-util",
85
+ 47,
86
+ 2,
87
+ 805,
88
+ 47,
89
+ 104,
90
+ 907],
91
+ "new-definition":true,
92
+ "uri-of-definition":"builtin://charts-util"},
93
+ "flatness":false,
94
+ "name":"regular-polygon-shape",
95
+ "typ":"tany"},
96
+ "is-at-linear":{"bind":"fun",
97
+ "origin":{"local-bind-site":["builtin://charts-util",
98
+ 5,
99
+ 7,
100
+ 75,
101
+ 5,
102
+ 15,
103
+ 83],
104
+ "definition-bind-site":["builtin://charts-util",
105
+ 67,
106
+ 2,
107
+ 1239,
108
+ 67,
109
+ 13,
110
+ 1250],
111
+ "new-definition":true,
112
+ "uri-of-definition":"builtin://charts-util"},
113
+ "flatness":0,
114
+ "name":"is-at-linear",
115
+ "typ":"tany"},
116
+ "is-grouped":{"bind":"fun",
117
+ "origin":{"local-bind-site":["builtin://charts-util",
118
+ 2,
119
+ 7,
120
+ 16,
121
+ 2,
122
+ 16,
123
+ 25],
124
+ "definition-bind-site":["builtin://charts-util",
125
+ 12,
126
+ 2,
127
+ 145,
128
+ 12,
129
+ 11,
130
+ 154],
131
+ "new-definition":true,
132
+ "uri-of-definition":"builtin://charts-util"},
133
+ "flatness":0,
134
+ "name":"is-grouped",
135
+ "typ":"tany"},
136
+ "is-absolute":{"bind":"fun",
137
+ "origin":{"local-bind-site":["builtin://charts-util",
138
+ 2,
139
+ 7,
140
+ 16,
141
+ 2,
142
+ 16,
143
+ 25],
144
+ "definition-bind-site":["builtin://charts-util",
145
+ 9,
146
+ 2,
147
+ 107,
148
+ 9,
149
+ 12,
150
+ 117],
151
+ "new-definition":true,
152
+ "uri-of-definition":"builtin://charts-util"},
153
+ "flatness":0,
154
+ "name":"is-absolute",
155
+ "typ":"tany"},
156
+ "is-regular-polygon-shape":{"bind":"fun",
157
+ "origin":{"local-bind-site":["builtin://charts-util",
158
+ 3,
159
+ 7,
160
+ 34,
161
+ 3,
162
+ 17,
163
+ 44],
164
+ "definition-bind-site":["builtin://charts-util",
165
+ 47,
166
+ 2,
167
+ 805,
168
+ 47,
169
+ 104,
170
+ 907],
171
+ "new-definition":true,
172
+ "uri-of-definition":"builtin://charts-util"},
173
+ "flatness":0,
174
+ "name":"is-regular-polygon-shape",
175
+ "typ":"tany"},
176
+ "tl-linear":{"bind":"let",
177
+ "origin":{"local-bind-site":["builtin://charts-util",
178
+ 4,
179
+ 7,
180
+ 53,
181
+ 4,
182
+ 20,
183
+ 66],
184
+ "definition-bind-site":["builtin://charts-util",
185
+ 26,
186
+ 2,
187
+ 341,
188
+ 26,
189
+ 13,
190
+ 352],
191
+ "new-definition":true,
192
+ "uri-of-definition":"builtin://charts-util"},
193
+ "typ":"tany"},
194
+ "is-tl-linear":{"bind":"fun",
195
+ "origin":{"local-bind-site":["builtin://charts-util",
196
+ 4,
197
+ 7,
198
+ 53,
199
+ 4,
200
+ 20,
201
+ 66],
202
+ "definition-bind-site":["builtin://charts-util",
203
+ 26,
204
+ 2,
205
+ 341,
206
+ 26,
207
+ 13,
208
+ 352],
209
+ "new-definition":true,
210
+ "uri-of-definition":"builtin://charts-util"},
211
+ "flatness":0,
212
+ "name":"is-tl-linear",
213
+ "typ":"tany"},
214
+ "at-symlog":{"bind":"fun",
215
+ "origin":{"local-bind-site":["builtin://charts-util",
216
+ 5,
217
+ 7,
218
+ 75,
219
+ 5,
220
+ 15,
221
+ 83],
222
+ "definition-bind-site":["builtin://charts-util",
223
+ 70,
224
+ 2,
225
+ 1351,
226
+ 70,
227
+ 54,
228
+ 1403],
229
+ "new-definition":true,
230
+ "uri-of-definition":"builtin://charts-util"},
231
+ "flatness":false,
232
+ "name":"at-symlog",
233
+ "typ":"tany"},
234
+ "absolute":{"bind":"let",
235
+ "origin":{"local-bind-site":["builtin://charts-util",
236
+ 2,
237
+ 7,
238
+ 16,
239
+ 2,
240
+ 16,
241
+ 25],
242
+ "definition-bind-site":["builtin://charts-util",
243
+ 9,
244
+ 2,
245
+ 107,
246
+ 9,
247
+ 12,
248
+ 117],
249
+ "new-definition":true,
250
+ "uri-of-definition":"builtin://charts-util"},
251
+ "typ":"tany"},
252
+ "is-at-symlog":{"bind":"fun",
253
+ "origin":{"local-bind-site":["builtin://charts-util",
254
+ 5,
255
+ 7,
256
+ 75,
257
+ 5,
258
+ 15,
259
+ 83],
260
+ "definition-bind-site":["builtin://charts-util",
261
+ 70,
262
+ 2,
263
+ 1351,
264
+ 70,
265
+ 54,
266
+ 1403],
267
+ "new-definition":true,
268
+ "uri-of-definition":"builtin://charts-util"},
269
+ "flatness":0,
270
+ "name":"is-at-symlog",
271
+ "typ":"tany"},
272
+ "is-PointShape":{"bind":"let",
273
+ "origin":{"local-bind-site":["builtin://charts-util",
274
+ 3,
275
+ 7,
276
+ 34,
277
+ 3,
278
+ 17,
279
+ 44],
280
+ "definition-bind-site":["builtin://charts-util",
281
+ 45,
282
+ 0,
283
+ 768,
284
+ 48,
285
+ 3,
286
+ 911],
287
+ "new-definition":true,
288
+ "uri-of-definition":"builtin://charts-util"},
289
+ "typ":"tany"},
290
+ "is-tl-exponential":{"bind":"fun",
291
+ "origin":{"local-bind-site":["builtin://charts-util",
292
+ 4,
293
+ 7,
294
+ 53,
295
+ 4,
296
+ 20,
297
+ 66],
298
+ "definition-bind-site":["builtin://charts-util",
299
+ 27,
300
+ 2,
301
+ 355,
302
+ 27,
303
+ 18,
304
+ 371],
305
+ "new-definition":true,
306
+ "uri-of-definition":"builtin://charts-util"},
307
+ "flatness":0,
308
+ "name":"is-tl-exponential",
309
+ "typ":"tany"},
310
+ "tl-exponential":{"bind":"let",
311
+ "origin":{"local-bind-site":["builtin://charts-util",
312
+ 4,
313
+ 7,
314
+ 53,
315
+ 4,
316
+ 20,
317
+ 66],
318
+ "definition-bind-site":["builtin://charts-util",
319
+ 27,
320
+ 2,
321
+ 355,
322
+ 27,
323
+ 18,
324
+ 371],
325
+ "new-definition":true,
326
+ "uri-of-definition":"builtin://charts-util"},
327
+ "typ":"tany"},
328
+ "is-relative":{"bind":"fun",
329
+ "origin":{"local-bind-site":["builtin://charts-util",
330
+ 2,
331
+ 7,
332
+ 16,
333
+ 2,
334
+ 16,
335
+ 25],
336
+ "definition-bind-site":["builtin://charts-util",
337
+ 10,
338
+ 2,
339
+ 120,
340
+ 10,
341
+ 12,
342
+ 130],
343
+ "new-definition":true,
344
+ "uri-of-definition":"builtin://charts-util"},
345
+ "flatness":0,
346
+ "name":"is-relative",
347
+ "typ":"tany"},
348
+ "is-at-power":{"bind":"fun",
349
+ "origin":{"local-bind-site":["builtin://charts-util",
350
+ 5,
351
+ 7,
352
+ 75,
353
+ 5,
354
+ 15,
355
+ 83],
356
+ "definition-bind-site":["builtin://charts-util",
357
+ 68,
358
+ 2,
359
+ 1253,
360
+ 68,
361
+ 49,
362
+ 1300],
363
+ "new-definition":true,
364
+ "uri-of-definition":"builtin://charts-util"},
365
+ "flatness":0,
366
+ "name":"is-at-power",
367
+ "typ":"tany"},
368
+ "is-at-log":{"bind":"fun",
369
+ "origin":{"local-bind-site":["builtin://charts-util",
370
+ 5,
371
+ 7,
372
+ 75,
373
+ 5,
374
+ 15,
375
+ 83],
376
+ "definition-bind-site":["builtin://charts-util",
377
+ 69,
378
+ 2,
379
+ 1303,
380
+ 69,
381
+ 47,
382
+ 1348],
383
+ "new-definition":true,
384
+ "uri-of-definition":"builtin://charts-util"},
385
+ "flatness":0,
386
+ "name":"is-at-log",
387
+ "typ":"tany"},
388
+ "relative":{"bind":"let",
389
+ "origin":{"local-bind-site":["builtin://charts-util",
390
+ 2,
391
+ 7,
392
+ 16,
393
+ 2,
394
+ 16,
395
+ 25],
396
+ "definition-bind-site":["builtin://charts-util",
397
+ 10,
398
+ 2,
399
+ 120,
400
+ 10,
401
+ 12,
402
+ 130],
403
+ "new-definition":true,
404
+ "uri-of-definition":"builtin://charts-util"},
405
+ "typ":"tany"},
406
+ "at-power":{"bind":"fun",
407
+ "origin":{"local-bind-site":["builtin://charts-util",
408
+ 5,
409
+ 7,
410
+ 75,
411
+ 5,
412
+ 15,
413
+ 83],
414
+ "definition-bind-site":["builtin://charts-util",
415
+ 68,
416
+ 2,
417
+ 1253,
418
+ 68,
419
+ 49,
420
+ 1300],
421
+ "new-definition":true,
422
+ "uri-of-definition":"builtin://charts-util"},
423
+ "flatness":false,
424
+ "name":"at-power",
425
+ "typ":"tany"},
426
+ "at-log":{"bind":"fun",
427
+ "origin":{"local-bind-site":["builtin://charts-util",
428
+ 5,
429
+ 7,
430
+ 75,
431
+ 5,
432
+ 15,
433
+ 83],
434
+ "definition-bind-site":["builtin://charts-util",
435
+ 69,
436
+ 2,
437
+ 1303,
438
+ 69,
439
+ 47,
440
+ 1348],
441
+ "new-definition":true,
442
+ "uri-of-definition":"builtin://charts-util"},
443
+ "flatness":false,
444
+ "name":"at-log",
445
+ "typ":"tany"},
446
+ "tl-polynomial":{"bind":"fun",
447
+ "origin":{"local-bind-site":["builtin://charts-util",
448
+ 4,
449
+ 7,
450
+ 53,
451
+ 4,
452
+ 20,
453
+ 66],
454
+ "definition-bind-site":["builtin://charts-util",
455
+ 28,
456
+ 2,
457
+ 374,
458
+ 28,
459
+ 63,
460
+ 435],
461
+ "new-definition":true,
462
+ "uri-of-definition":"builtin://charts-util"},
463
+ "flatness":false,
464
+ "name":"tl-polynomial",
465
+ "typ":"tany"},
466
+ "is-TrendlineType":{"bind":"let",
467
+ "origin":{"local-bind-site":["builtin://charts-util",
468
+ 4,
469
+ 7,
470
+ 53,
471
+ 4,
472
+ 20,
473
+ 66],
474
+ "definition-bind-site":["builtin://charts-util",
475
+ 24,
476
+ 0,
477
+ 302,
478
+ 29,
479
+ 3,
480
+ 439],
481
+ "new-definition":true,
482
+ "uri-of-definition":"builtin://charts-util"},
483
+ "typ":"tany"},
484
+ "is-no-trendline":{"bind":"fun",
485
+ "origin":{"local-bind-site":["builtin://charts-util",
486
+ 4,
487
+ 7,
488
+ 53,
489
+ 4,
490
+ 20,
491
+ 66],
492
+ "definition-bind-site":["builtin://charts-util",
493
+ 25,
494
+ 2,
495
+ 324,
496
+ 25,
497
+ 16,
498
+ 338],
499
+ "new-definition":true,
500
+ "uri-of-definition":"builtin://charts-util"},
501
+ "flatness":0,
502
+ "name":"is-no-trendline",
503
+ "typ":"tany"},
504
+ "is-circle-shape":{"bind":"fun",
505
+ "origin":{"local-bind-site":["builtin://charts-util",
506
+ 3,
507
+ 7,
508
+ 34,
509
+ 3,
510
+ 17,
511
+ 44],
512
+ "definition-bind-site":["builtin://charts-util",
513
+ 46,
514
+ 2,
515
+ 788,
516
+ 46,
517
+ 16,
518
+ 802],
519
+ "new-definition":true,
520
+ "uri-of-definition":"builtin://charts-util"},
521
+ "flatness":0,
522
+ "name":"is-circle-shape",
523
+ "typ":"tany"},
524
+ "is-tl-polynomial":{"bind":"fun",
525
+ "origin":{"local-bind-site":["builtin://charts-util",
526
+ 4,
527
+ 7,
528
+ 53,
529
+ 4,
530
+ 20,
531
+ 66],
532
+ "definition-bind-site":["builtin://charts-util",
533
+ 28,
534
+ 2,
535
+ 374,
536
+ 28,
537
+ 63,
538
+ 435],
539
+ "new-definition":true,
540
+ "uri-of-definition":"builtin://charts-util"},
541
+ "flatness":0,
542
+ "name":"is-tl-polynomial",
543
+ "typ":"tany"},
544
+ "no-trendline":{"bind":"let",
545
+ "origin":{"local-bind-site":["builtin://charts-util",
546
+ 4,
547
+ 7,
548
+ 53,
549
+ 4,
550
+ 20,
551
+ 66],
552
+ "definition-bind-site":["builtin://charts-util",
553
+ 25,
554
+ 2,
555
+ 324,
556
+ 25,
557
+ 16,
558
+ 338],
559
+ "new-definition":true,
560
+ "uri-of-definition":"builtin://charts-util"},
561
+ "typ":"tany"},
562
+ "percent":{"bind":"let",
563
+ "origin":{"local-bind-site":["builtin://charts-util",
564
+ 2,
565
+ 7,
566
+ 16,
567
+ 2,
568
+ 16,
569
+ 25],
570
+ "definition-bind-site":["builtin://charts-util",
571
+ 11,
572
+ 2,
573
+ 133,
574
+ 11,
575
+ 11,
576
+ 142],
577
+ "new-definition":true,
578
+ "uri-of-definition":"builtin://charts-util"},
579
+ "typ":"tany"},
580
+ "circle-shape":{"bind":"let",
581
+ "origin":{"local-bind-site":["builtin://charts-util",
582
+ 3,
583
+ 7,
584
+ 34,
585
+ 3,
586
+ 17,
587
+ 44],
588
+ "definition-bind-site":["builtin://charts-util",
589
+ 46,
590
+ 2,
591
+ 788,
592
+ 46,
593
+ 16,
594
+ 802],
595
+ "new-definition":true,
596
+ "uri-of-definition":"builtin://charts-util"},
597
+ "typ":"tany"},
598
+ "is-percent":{"bind":"fun",
599
+ "origin":{"local-bind-site":["builtin://charts-util",
600
+ 2,
601
+ 7,
602
+ 16,
603
+ 2,
604
+ 16,
605
+ 25],
606
+ "definition-bind-site":["builtin://charts-util",
607
+ 11,
608
+ 2,
609
+ 133,
610
+ 11,
611
+ 11,
612
+ 142],
613
+ "new-definition":true,
614
+ "uri-of-definition":"builtin://charts-util"},
615
+ "flatness":0,
616
+ "name":"is-percent",
617
+ "typ":"tany"}},
618
+ "datatypes":{"AxisType":["data",{"local-bind-site":["builtin://charts-util",
619
+ 66,
620
+ 0,
621
+ 1222,
622
+ 71,
623
+ 3,
624
+ 1407],
625
+ "definition-bind-site":["builtin://charts-util",
626
+ 66,
627
+ 0,
628
+ 1222,
629
+ 71,
630
+ 3,
631
+ 1407],
632
+ "new-definition":true,
633
+ "uri-of-definition":"builtin://charts-util"},"AxisType",[],[["at-linear",
634
+ {}],["at-power",
635
+ [["pow",
636
+ {"tag":"name",
637
+ "origin":{"import-type":"uri",
638
+ "uri":"builtin://global"},
639
+ "name":"Number"}]],
640
+ {}],["at-log",
641
+ [["base",
642
+ {"tag":"name",
643
+ "origin":{"import-type":"uri",
644
+ "uri":"builtin://global"},
645
+ "name":"Number"}]],
646
+ {}],["at-symlog",
647
+ [["constant",
648
+ {"tag":"name",
649
+ "origin":{"import-type":"uri",
650
+ "uri":"builtin://global"},
651
+ "name":"Number"}]],
652
+ {}]],{}],
653
+ "TrendlineType":["data",{"local-bind-site":["builtin://charts-util",
654
+ 24,
655
+ 0,
656
+ 302,
657
+ 29,
658
+ 3,
659
+ 439],
660
+ "definition-bind-site":["builtin://charts-util",
661
+ 24,
662
+ 0,
663
+ 302,
664
+ 29,
665
+ 3,
666
+ 439],
667
+ "new-definition":true,
668
+ "uri-of-definition":"builtin://charts-util"},"TrendlineType",[],[["no-trendline",
669
+ {}],["tl-linear",
670
+ {}],["tl-exponential",
671
+ {}],["tl-polynomial",
672
+ [["degree",
673
+ {"tag":"name",
674
+ "origin":{"import-type":"uri",
675
+ "uri":"builtin://global"},
676
+ "name":"NumInteger"}]],
677
+ {}]],{}],
678
+ "PointShape":["data",{"local-bind-site":["builtin://charts-util",
679
+ 45,
680
+ 0,
681
+ 768,
682
+ 48,
683
+ 3,
684
+ 911],
685
+ "definition-bind-site":["builtin://charts-util",
686
+ 45,
687
+ 0,
688
+ 768,
689
+ 48,
690
+ 3,
691
+ 911],
692
+ "new-definition":true,
693
+ "uri-of-definition":"builtin://charts-util"},"PointShape",[],[["circle-shape",
694
+ {}],["regular-polygon-shape",
695
+ [["sides",
696
+ {"tag":"name",
697
+ "origin":{"import-type":"uri",
698
+ "uri":"builtin://global"},
699
+ "name":"NumInteger"}],["dent",
700
+ {"tag":"name",
701
+ "origin":{"import-type":"uri",
702
+ "uri":"builtin://global"},
703
+ "name":"Number"}]],
704
+ {}]],{}],
705
+ "StackType":["data",{"local-bind-site":["builtin://charts-util",
706
+ 8,
707
+ 0,
708
+ 89,
709
+ 13,
710
+ 3,
711
+ 158],
712
+ "definition-bind-site":["builtin://charts-util",
713
+ 8,
714
+ 0,
715
+ 89,
716
+ 13,
717
+ 3,
718
+ 158],
719
+ "new-definition":true,
720
+ "uri-of-definition":"builtin://charts-util"},"StackType",[],[["absolute",
721
+ {}],["relative",
722
+ {}],["percent",
723
+ {}],["grouped",
724
+ {}]],{}]},
725
+ "aliases":{"AxisType":"tany",
726
+ "TrendlineType":"tany",
727
+ "PointShape":"tany",
728
+ "StackType":"tany"}},
729
+ "requires":[]})