pyannote-cpp-node 0.1.0 → 0.2.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +266 -583
- package/dist/Pipeline.d.ts +12 -0
- package/dist/Pipeline.d.ts.map +1 -0
- package/dist/Pipeline.js +48 -0
- package/dist/Pipeline.js.map +1 -0
- package/dist/PipelineSession.d.ts +18 -0
- package/dist/PipelineSession.d.ts.map +1 -0
- package/dist/PipelineSession.js +38 -0
- package/dist/PipelineSession.js.map +1 -0
- package/dist/binding.d.ts +9 -10
- package/dist/binding.d.ts.map +1 -1
- package/dist/binding.js +3 -3
- package/dist/binding.js.map +1 -1
- package/dist/index.d.ts +5 -3
- package/dist/index.d.ts.map +1 -1
- package/dist/index.js +3 -2
- package/dist/index.js.map +1 -1
- package/dist/types.d.ts +60 -11
- package/dist/types.d.ts.map +1 -1
- package/package.json +3 -3
package/README.md
CHANGED
|
@@ -1,43 +1,44 @@
|
|
|
1
1
|
# pyannote-cpp-node
|
|
2
2
|
|
|
3
|
-
Node.js native bindings for real-time speaker diarization
|
|
4
|
-
|
|
5
3
|

|
|
6
4
|

|
|
7
5
|
|
|
6
|
+
Node.js native bindings for integrated Whisper transcription + speaker diarization with speaker-labeled segment output.
|
|
7
|
+
|
|
8
8
|
## Overview
|
|
9
9
|
|
|
10
|
-
`pyannote-cpp-node`
|
|
10
|
+
`pyannote-cpp-node` exposes the integrated C++ pipeline that combines streaming diarization and Whisper transcription into a single API.
|
|
11
11
|
|
|
12
|
-
|
|
12
|
+
Given 16 kHz mono PCM audio (`Float32Array`), it produces cumulative and final transcript segments shaped as:
|
|
13
13
|
|
|
14
|
-
-
|
|
15
|
-
-
|
|
14
|
+
- speaker label (`SPEAKER_00`, `SPEAKER_01`, ...)
|
|
15
|
+
- segment start/duration in seconds
|
|
16
|
+
- segment text
|
|
16
17
|
|
|
17
|
-
All heavy operations are asynchronous and run on libuv worker threads
|
|
18
|
+
The API supports both one-shot processing (`transcribe`) and incremental streaming (`createSession` + `push`/`finalize`). All heavy operations are asynchronous and run on libuv worker threads.
|
|
18
19
|
|
|
19
20
|
## Features
|
|
20
21
|
|
|
21
|
-
-
|
|
22
|
-
-
|
|
23
|
-
-
|
|
24
|
-
-
|
|
25
|
-
-
|
|
26
|
-
-
|
|
27
|
-
-
|
|
22
|
+
- Integrated transcription + diarization in one pipeline
|
|
23
|
+
- Speaker-labeled transcript segments with sentence-level text
|
|
24
|
+
- One-shot and streaming APIs with the same output schema
|
|
25
|
+
- Incremental `segments` events for live applications
|
|
26
|
+
- Deterministic output for the same audio/models/config
|
|
27
|
+
- CoreML-accelerated inference on macOS
|
|
28
|
+
- TypeScript-first API with complete type definitions
|
|
28
29
|
|
|
29
30
|
## Requirements
|
|
30
31
|
|
|
31
|
-
-
|
|
32
|
-
-
|
|
33
|
-
-
|
|
34
|
-
- Segmentation GGUF
|
|
35
|
-
- Embedding GGUF
|
|
36
|
-
- PLDA GGUF
|
|
37
|
-
-
|
|
38
|
-
-
|
|
39
|
-
|
|
40
|
-
|
|
32
|
+
- macOS (Apple Silicon or Intel)
|
|
33
|
+
- Node.js >= 18
|
|
34
|
+
- Model files:
|
|
35
|
+
- Segmentation GGUF (`segModelPath`)
|
|
36
|
+
- Embedding GGUF (`embModelPath`)
|
|
37
|
+
- PLDA GGUF (`pldaPath`)
|
|
38
|
+
- Embedding CoreML `.mlpackage` (`coremlPath`)
|
|
39
|
+
- Segmentation CoreML `.mlpackage` (`segCoremlPath`)
|
|
40
|
+
- Whisper GGUF (`whisperModelPath`)
|
|
41
|
+
- Optional Silero VAD model (`vadModelPath`)
|
|
41
42
|
|
|
42
43
|
## Installation
|
|
43
44
|
|
|
@@ -45,721 +46,403 @@ Model files can be obtained by converting the original PyTorch models using the
|
|
|
45
46
|
npm install pyannote-cpp-node
|
|
46
47
|
```
|
|
47
48
|
|
|
48
|
-
Or with pnpm:
|
|
49
|
-
|
|
50
49
|
```bash
|
|
51
50
|
pnpm add pyannote-cpp-node
|
|
52
51
|
```
|
|
53
52
|
|
|
54
|
-
The package
|
|
53
|
+
The package installs a platform-specific native addon through `optionalDependencies`.
|
|
55
54
|
|
|
56
55
|
## Quick Start
|
|
57
56
|
|
|
58
57
|
```typescript
|
|
59
|
-
import {
|
|
60
|
-
import { readFileSync } from 'node:fs';
|
|
58
|
+
import { Pipeline } from 'pyannote-cpp-node';
|
|
61
59
|
|
|
62
|
-
|
|
63
|
-
const model = await Pyannote.load({
|
|
60
|
+
const pipeline = await Pipeline.load({
|
|
64
61
|
segModelPath: './models/segmentation.gguf',
|
|
65
62
|
embModelPath: './models/embedding.gguf',
|
|
66
63
|
pldaPath: './models/plda.gguf',
|
|
67
64
|
coremlPath: './models/embedding.mlpackage',
|
|
68
65
|
segCoremlPath: './models/segmentation.mlpackage',
|
|
66
|
+
whisperModelPath: './models/ggml-large-v3-turbo-q5_0.bin',
|
|
67
|
+
language: 'en',
|
|
69
68
|
});
|
|
70
69
|
|
|
71
|
-
|
|
72
|
-
const
|
|
73
|
-
|
|
74
|
-
// Run diarization
|
|
75
|
-
const result = await model.diarize(audio);
|
|
70
|
+
const audio = loadAudioAsFloat32Array('./audio-16khz-mono.wav');
|
|
71
|
+
const result = await pipeline.transcribe(audio);
|
|
76
72
|
|
|
77
|
-
// Print results
|
|
78
73
|
for (const segment of result.segments) {
|
|
74
|
+
const end = segment.start + segment.duration;
|
|
79
75
|
console.log(
|
|
80
|
-
`[${segment.
|
|
76
|
+
`[${segment.speaker}] ${segment.start.toFixed(2)}-${end.toFixed(2)} ${segment.text.trim()}`
|
|
81
77
|
);
|
|
82
78
|
}
|
|
83
79
|
|
|
84
|
-
|
|
85
|
-
model.close();
|
|
80
|
+
pipeline.close();
|
|
86
81
|
```
|
|
87
82
|
|
|
88
83
|
## API Reference
|
|
89
84
|
|
|
90
|
-
### `
|
|
91
|
-
|
|
92
|
-
The main entry point for loading diarization models.
|
|
85
|
+
### `Pipeline`
|
|
93
86
|
|
|
94
|
-
#### `static async load(config: ModelConfig): Promise<Pyannote>`
|
|
95
|
-
|
|
96
|
-
Factory method for loading a diarization model. Validates that all model paths exist before initializing. CoreML model compilation happens synchronously during initialization and is typically fast.
|
|
97
|
-
|
|
98
|
-
**Parameters:**
|
|
99
|
-
- `config: ModelConfig` — Configuration object with paths to all required model files
|
|
100
|
-
|
|
101
|
-
**Returns:** `Promise<Pyannote>` — Initialized model instance
|
|
102
|
-
|
|
103
|
-
**Throws:**
|
|
104
|
-
- `Error` if any model path does not exist or is invalid
|
|
105
|
-
|
|
106
|
-
**Example:**
|
|
107
87
|
```typescript
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
}
|
|
88
|
+
class Pipeline {
|
|
89
|
+
static async load(config: ModelConfig): Promise<Pipeline>;
|
|
90
|
+
async transcribe(audio: Float32Array): Promise<TranscriptionResult>;
|
|
91
|
+
createSession(): PipelineSession;
|
|
92
|
+
close(): void;
|
|
93
|
+
get isClosed(): boolean;
|
|
94
|
+
}
|
|
115
95
|
```
|
|
116
96
|
|
|
117
|
-
#### `async
|
|
97
|
+
#### `static async load(config: ModelConfig): Promise<Pipeline>`
|
|
118
98
|
|
|
119
|
-
|
|
99
|
+
Validates model paths and initializes native pipeline resources.
|
|
120
100
|
|
|
121
|
-
|
|
101
|
+
#### `async transcribe(audio: Float32Array): Promise<TranscriptionResult>`
|
|
122
102
|
|
|
123
|
-
|
|
124
|
-
- `audio: Float32Array` — Audio samples (16kHz mono, values in [-1.0, 1.0])
|
|
103
|
+
Runs one-shot transcription + diarization on the full audio buffer.
|
|
125
104
|
|
|
126
|
-
|
|
105
|
+
#### `createSession(): PipelineSession`
|
|
127
106
|
|
|
128
|
-
|
|
129
|
-
- `Error` if model is closed
|
|
130
|
-
- `TypeError` if audio is not a `Float32Array`
|
|
131
|
-
- `Error` if audio is empty
|
|
107
|
+
Creates an independent streaming session for incremental processing.
|
|
132
108
|
|
|
133
|
-
|
|
134
|
-
```typescript
|
|
135
|
-
const result = await model.diarize(audio);
|
|
136
|
-
console.log(`Detected ${result.segments.length} segments`);
|
|
137
|
-
```
|
|
109
|
+
#### `close(): void`
|
|
138
110
|
|
|
139
|
-
|
|
111
|
+
Releases native resources. Safe to call multiple times.
|
|
140
112
|
|
|
141
|
-
|
|
113
|
+
#### `get isClosed(): boolean`
|
|
142
114
|
|
|
143
|
-
|
|
115
|
+
Returns `true` after `close()`.
|
|
144
116
|
|
|
145
|
-
|
|
146
|
-
- `Error` if model is closed
|
|
117
|
+
### `PipelineSession` (extends `EventEmitter`)
|
|
147
118
|
|
|
148
|
-
**Example:**
|
|
149
119
|
```typescript
|
|
150
|
-
|
|
120
|
+
class PipelineSession extends EventEmitter {
|
|
121
|
+
async push(audio: Float32Array): Promise<boolean[]>;
|
|
122
|
+
async finalize(): Promise<TranscriptionResult>;
|
|
123
|
+
close(): void;
|
|
124
|
+
get isClosed(): boolean;
|
|
125
|
+
// Event: 'segments' -> (segments: AlignedSegment[], audio: Float32Array)
|
|
126
|
+
}
|
|
151
127
|
```
|
|
152
128
|
|
|
153
|
-
#### `
|
|
154
|
-
|
|
155
|
-
Releases all native resources associated with the model. This method is idempotent and safe to call multiple times.
|
|
156
|
-
|
|
157
|
-
Once closed, the model cannot be used for diarization or creating new streaming sessions. Existing streaming sessions should be closed before closing the model.
|
|
158
|
-
|
|
159
|
-
**Example:**
|
|
160
|
-
```typescript
|
|
161
|
-
model.close();
|
|
162
|
-
console.log(model.isClosed); // true
|
|
163
|
-
```
|
|
129
|
+
#### `async push(audio: Float32Array): Promise<boolean[]>`
|
|
164
130
|
|
|
165
|
-
|
|
131
|
+
Pushes an arbitrary number of samples into the streaming pipeline.
|
|
166
132
|
|
|
167
|
-
|
|
133
|
+
- Return value is per-frame VAD booleans (`true` = speech, `false` = silence)
|
|
134
|
+
- First 10 seconds return an empty array because the pipeline needs a full 10-second window
|
|
135
|
+
- Chunk size is flexible; not restricted to 16,000-sample pushes
|
|
168
136
|
|
|
169
|
-
|
|
137
|
+
#### `async finalize(): Promise<TranscriptionResult>`
|
|
170
138
|
|
|
171
|
-
|
|
139
|
+
Flushes all stages, runs final recluster + alignment, and returns the definitive result.
|
|
172
140
|
|
|
173
|
-
|
|
141
|
+
#### `close(): void`
|
|
174
142
|
|
|
175
|
-
|
|
143
|
+
Releases native session resources. Safe to call multiple times.
|
|
176
144
|
|
|
177
|
-
|
|
145
|
+
#### `get isClosed(): boolean`
|
|
178
146
|
|
|
179
|
-
|
|
147
|
+
Returns `true` after `close()`.
|
|
180
148
|
|
|
181
|
-
|
|
149
|
+
#### Event: `'segments'`
|
|
182
150
|
|
|
183
|
-
|
|
184
|
-
- `audio: Float32Array` — Audio samples (16kHz mono, values in [-1.0, 1.0])
|
|
151
|
+
Emitted after each Whisper transcription result with the latest cumulative aligned output.
|
|
185
152
|
|
|
186
|
-
|
|
153
|
+
```typescript
|
|
154
|
+
session.on('segments', (segments: AlignedSegment[], audio: Float32Array) => {
|
|
155
|
+
// `segments` contains the latest cumulative speaker-labeled transcript
|
|
156
|
+
// `audio` contains the chunk submitted for this callback cycle
|
|
157
|
+
});
|
|
158
|
+
```
|
|
187
159
|
|
|
188
|
-
|
|
189
|
-
- `Error` if session is closed
|
|
190
|
-
- `TypeError` if audio is not a `Float32Array`
|
|
160
|
+
### Types
|
|
191
161
|
|
|
192
|
-
**Example:**
|
|
193
162
|
```typescript
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
```
|
|
163
|
+
export interface ModelConfig {
|
|
164
|
+
// === Required Model Paths ===
|
|
165
|
+
/** Path to segmentation GGUF model */
|
|
166
|
+
segModelPath: string;
|
|
199
167
|
|
|
200
|
-
|
|
168
|
+
/** Path to embedding GGUF model */
|
|
169
|
+
embModelPath: string;
|
|
201
170
|
|
|
202
|
-
|
|
171
|
+
/** Path to PLDA GGUF model */
|
|
172
|
+
pldaPath: string;
|
|
203
173
|
|
|
204
|
-
|
|
174
|
+
/** Path to embedding CoreML .mlpackage directory */
|
|
175
|
+
coremlPath: string;
|
|
205
176
|
|
|
206
|
-
|
|
177
|
+
/** Path to segmentation CoreML .mlpackage directory */
|
|
178
|
+
segCoremlPath: string;
|
|
207
179
|
|
|
208
|
-
|
|
180
|
+
/** Path to Whisper GGUF model */
|
|
181
|
+
whisperModelPath: string;
|
|
209
182
|
|
|
210
|
-
|
|
211
|
-
|
|
183
|
+
// === Optional Model Paths ===
|
|
184
|
+
/** Path to Silero VAD model (optional, enables silence compression) */
|
|
185
|
+
vadModelPath?: string;
|
|
212
186
|
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
const intermediateResult = await session.recluster();
|
|
217
|
-
console.log(`Current speaker count: ${new Set(intermediateResult.segments.map(s => s.speaker)).size}`);
|
|
218
|
-
```
|
|
187
|
+
// === Whisper Context Options (model loading) ===
|
|
188
|
+
/** Enable GPU acceleration (default: true) */
|
|
189
|
+
useGpu?: boolean;
|
|
219
190
|
|
|
220
|
-
|
|
191
|
+
/** Enable Flash Attention (default: true) */
|
|
192
|
+
flashAttn?: boolean;
|
|
221
193
|
|
|
222
|
-
|
|
194
|
+
/** GPU device index (default: 0) */
|
|
195
|
+
gpuDevice?: number;
|
|
223
196
|
|
|
224
|
-
|
|
197
|
+
/**
|
|
198
|
+
* Enable CoreML acceleration for Whisper encoder on macOS (default: false).
|
|
199
|
+
* The CoreML model must be placed next to the GGUF model with naming convention:
|
|
200
|
+
* e.g., ggml-base.en.bin -> ggml-base.en-encoder.mlmodelc/
|
|
201
|
+
*/
|
|
202
|
+
useCoreml?: boolean;
|
|
225
203
|
|
|
226
|
-
|
|
204
|
+
/** Suppress whisper.cpp log output (default: false) */
|
|
205
|
+
noPrints?: boolean;
|
|
227
206
|
|
|
228
|
-
|
|
207
|
+
// === Whisper Decode Options ===
|
|
208
|
+
/** Number of threads for Whisper inference (default: 4) */
|
|
209
|
+
nThreads?: number;
|
|
229
210
|
|
|
230
|
-
|
|
231
|
-
|
|
211
|
+
/** Language code (e.g., 'en', 'zh'). Omit for auto-detect. (default: 'en') */
|
|
212
|
+
language?: string;
|
|
232
213
|
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
const finalResult = await session.finalize();
|
|
236
|
-
console.log(`Final result: ${finalResult.segments.length} segments`);
|
|
237
|
-
```
|
|
214
|
+
/** Translate non-English speech to English (default: false) */
|
|
215
|
+
translate?: boolean;
|
|
238
216
|
|
|
239
|
-
|
|
217
|
+
/** Auto-detect spoken language. Overrides 'language' when true. (default: false) */
|
|
218
|
+
detectLanguage?: boolean;
|
|
240
219
|
|
|
241
|
-
|
|
220
|
+
// === Sampling ===
|
|
221
|
+
/** Sampling temperature. 0.0 = greedy deterministic. (default: 0.0) */
|
|
222
|
+
temperature?: number;
|
|
242
223
|
|
|
243
|
-
|
|
244
|
-
|
|
245
|
-
session.close();
|
|
246
|
-
```
|
|
224
|
+
/** Temperature increment for fallback retries (default: 0.2) */
|
|
225
|
+
temperatureInc?: number;
|
|
247
226
|
|
|
248
|
-
|
|
227
|
+
/** Disable temperature fallback. If true, temperatureInc is ignored. (default: false) */
|
|
228
|
+
noFallback?: boolean;
|
|
249
229
|
|
|
250
|
-
|
|
230
|
+
/** Beam search size. -1 uses greedy decoding. >1 enables beam search. (default: -1) */
|
|
231
|
+
beamSize?: number;
|
|
251
232
|
|
|
252
|
-
|
|
233
|
+
/** Best-of-N sampling candidates for greedy decoding (default: 5) */
|
|
234
|
+
bestOf?: number;
|
|
253
235
|
|
|
254
|
-
|
|
236
|
+
// === Thresholds ===
|
|
237
|
+
/** Entropy threshold for decoder fallback (default: 2.4) */
|
|
238
|
+
entropyThold?: number;
|
|
255
239
|
|
|
256
|
-
|
|
240
|
+
/** Log probability threshold for decoder fallback (default: -1.0) */
|
|
241
|
+
logprobThold?: number;
|
|
257
242
|
|
|
258
|
-
|
|
243
|
+
/** No-speech probability threshold (default: 0.6) */
|
|
244
|
+
noSpeechThold?: number;
|
|
259
245
|
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
embModelPath: string; // Path to embedding GGUF model file
|
|
264
|
-
pldaPath: string; // Path to PLDA GGUF model file
|
|
265
|
-
coremlPath: string; // Path to embedding CoreML .mlpackage directory
|
|
266
|
-
segCoremlPath: string; // Path to segmentation CoreML .mlpackage directory
|
|
267
|
-
}
|
|
268
|
-
```
|
|
246
|
+
// === Context ===
|
|
247
|
+
/** Initial prompt text to condition the decoder (default: none) */
|
|
248
|
+
prompt?: string;
|
|
269
249
|
|
|
270
|
-
|
|
250
|
+
/** Don't use previous segment as context for next segment (default: true) */
|
|
251
|
+
noContext?: boolean;
|
|
271
252
|
|
|
272
|
-
|
|
253
|
+
/** Suppress blank outputs at the beginning of segments (default: true) */
|
|
254
|
+
suppressBlank?: boolean;
|
|
273
255
|
|
|
274
|
-
|
|
275
|
-
|
|
276
|
-
chunkIndex: number; // Zero-based chunk number (increments every 1 second)
|
|
277
|
-
startTime: number; // Absolute start time in seconds (chunkIndex * 1.0)
|
|
278
|
-
duration: number; // Always 10.0 (chunk window size)
|
|
279
|
-
numFrames: number; // Always 589 (segmentation model output frames)
|
|
280
|
-
vad: Float32Array; // [589] frame-level voice activity: 1.0 if any speaker active, 0.0 otherwise
|
|
256
|
+
/** Suppress non-speech tokens (default: false) */
|
|
257
|
+
suppressNst?: boolean;
|
|
281
258
|
}
|
|
282
|
-
```
|
|
283
259
|
|
|
284
|
-
|
|
260
|
+
export interface AlignedSegment {
|
|
261
|
+
/** Global speaker label (e.g., SPEAKER_00). */
|
|
262
|
+
speaker: string;
|
|
285
263
|
|
|
286
|
-
|
|
264
|
+
/** Segment start time in seconds. */
|
|
265
|
+
start: number;
|
|
287
266
|
|
|
288
|
-
|
|
267
|
+
/** Segment duration in seconds. */
|
|
268
|
+
duration: number;
|
|
289
269
|
|
|
290
|
-
|
|
291
|
-
|
|
292
|
-
start: number; // Start time in seconds
|
|
293
|
-
duration: number; // Duration in seconds
|
|
294
|
-
speaker: string; // Speaker label (e.g., "SPEAKER_00", "SPEAKER_01", ...)
|
|
270
|
+
/** Transcribed text for this segment. */
|
|
271
|
+
text: string;
|
|
295
272
|
}
|
|
296
|
-
```
|
|
297
|
-
|
|
298
|
-
#### `DiarizationResult`
|
|
299
|
-
|
|
300
|
-
Complete diarization output with speaker-labeled segments.
|
|
301
273
|
|
|
302
|
-
|
|
303
|
-
|
|
304
|
-
segments:
|
|
274
|
+
export interface TranscriptionResult {
|
|
275
|
+
/** Full speaker-labeled transcript segments. */
|
|
276
|
+
segments: AlignedSegment[];
|
|
305
277
|
}
|
|
306
278
|
```
|
|
307
279
|
|
|
308
280
|
## Usage Examples
|
|
309
281
|
|
|
310
|
-
###
|
|
311
|
-
|
|
312
|
-
Process an entire audio file and print a timeline of speaker segments.
|
|
282
|
+
### One-shot transcription
|
|
313
283
|
|
|
314
284
|
```typescript
|
|
315
|
-
import {
|
|
316
|
-
import { readFileSync } from 'node:fs';
|
|
317
|
-
|
|
318
|
-
// Helper to load 16-bit PCM WAV and convert to Float32Array
|
|
319
|
-
function loadWavFile(filePath: string): Float32Array {
|
|
320
|
-
const buffer = readFileSync(filePath);
|
|
321
|
-
const view = new DataView(buffer.buffer, buffer.byteOffset, buffer.byteLength);
|
|
322
|
-
|
|
323
|
-
// Find data chunk
|
|
324
|
-
let offset = 12; // Skip RIFF header
|
|
325
|
-
while (offset < view.byteLength - 8) {
|
|
326
|
-
const chunkId = String.fromCharCode(
|
|
327
|
-
view.getUint8(offset),
|
|
328
|
-
view.getUint8(offset + 1),
|
|
329
|
-
view.getUint8(offset + 2),
|
|
330
|
-
view.getUint8(offset + 3)
|
|
331
|
-
);
|
|
332
|
-
const chunkSize = view.getUint32(offset + 4, true);
|
|
333
|
-
offset += 8;
|
|
334
|
-
|
|
335
|
-
if (chunkId === 'data') {
|
|
336
|
-
// Convert Int16 PCM to Float32 by dividing by 32768
|
|
337
|
-
const numSamples = chunkSize / 2;
|
|
338
|
-
const float32 = new Float32Array(numSamples);
|
|
339
|
-
for (let i = 0; i < numSamples; i++) {
|
|
340
|
-
float32[i] = view.getInt16(offset + i * 2, true) / 32768.0;
|
|
341
|
-
}
|
|
342
|
-
return float32;
|
|
343
|
-
}
|
|
285
|
+
import { Pipeline } from 'pyannote-cpp-node';
|
|
344
286
|
|
|
345
|
-
|
|
346
|
-
|
|
347
|
-
}
|
|
348
|
-
|
|
349
|
-
throw new Error('No data chunk found in WAV file');
|
|
350
|
-
}
|
|
351
|
-
|
|
352
|
-
async function main() {
|
|
353
|
-
// Load model
|
|
354
|
-
const model = await Pyannote.load({
|
|
287
|
+
async function runOneShot(audio: Float32Array) {
|
|
288
|
+
const pipeline = await Pipeline.load({
|
|
355
289
|
segModelPath: './models/segmentation.gguf',
|
|
356
290
|
embModelPath: './models/embedding.gguf',
|
|
357
291
|
pldaPath: './models/plda.gguf',
|
|
358
292
|
coremlPath: './models/embedding.mlpackage',
|
|
359
293
|
segCoremlPath: './models/segmentation.mlpackage',
|
|
294
|
+
whisperModelPath: './models/ggml-large-v3-turbo-q5_0.bin',
|
|
360
295
|
});
|
|
361
296
|
|
|
362
|
-
|
|
363
|
-
const audio = loadWavFile('./audio.wav');
|
|
364
|
-
console.log(`Loaded ${audio.length} samples (${(audio.length / 16000).toFixed(1)}s)`);
|
|
365
|
-
|
|
366
|
-
// Diarize
|
|
367
|
-
const result = await model.diarize(audio);
|
|
297
|
+
const result = await pipeline.transcribe(audio);
|
|
368
298
|
|
|
369
|
-
|
|
370
|
-
|
|
371
|
-
|
|
372
|
-
const startTime = segment.start.toFixed(2);
|
|
373
|
-
const endTime = (segment.start + segment.duration).toFixed(2);
|
|
374
|
-
console.log(`[${startTime}s - ${endTime}s] ${segment.speaker}`);
|
|
299
|
+
for (const seg of result.segments) {
|
|
300
|
+
const end = seg.start + seg.duration;
|
|
301
|
+
console.log(`[${seg.speaker}] ${seg.start.toFixed(2)}-${end.toFixed(2)} ${seg.text.trim()}`);
|
|
375
302
|
}
|
|
376
303
|
|
|
377
|
-
|
|
378
|
-
const speakers = new Set(result.segments.map(s => s.speaker));
|
|
379
|
-
console.log(`\nTotal speakers: ${speakers.size}`);
|
|
380
|
-
|
|
381
|
-
model.close();
|
|
304
|
+
pipeline.close();
|
|
382
305
|
}
|
|
383
|
-
|
|
384
|
-
main();
|
|
385
306
|
```
|
|
386
307
|
|
|
387
|
-
###
|
|
388
|
-
|
|
389
|
-
Process audio incrementally in 1-second chunks, displaying real-time VAD.
|
|
308
|
+
### Streaming transcription
|
|
390
309
|
|
|
391
310
|
```typescript
|
|
392
|
-
import {
|
|
311
|
+
import { Pipeline } from 'pyannote-cpp-node';
|
|
393
312
|
|
|
394
|
-
async function
|
|
395
|
-
const
|
|
313
|
+
async function runStreaming(audio: Float32Array) {
|
|
314
|
+
const pipeline = await Pipeline.load({
|
|
396
315
|
segModelPath: './models/segmentation.gguf',
|
|
397
316
|
embModelPath: './models/embedding.gguf',
|
|
398
317
|
pldaPath: './models/plda.gguf',
|
|
399
318
|
coremlPath: './models/embedding.mlpackage',
|
|
400
319
|
segCoremlPath: './models/segmentation.mlpackage',
|
|
320
|
+
whisperModelPath: './models/ggml-large-v3-turbo-q5_0.bin',
|
|
401
321
|
});
|
|
402
322
|
|
|
403
|
-
const session =
|
|
404
|
-
|
|
405
|
-
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
|
|
409
|
-
const CHUNK_SIZE = 16000;
|
|
410
|
-
let totalChunks = 0;
|
|
411
|
-
|
|
412
|
-
for (let offset = 0; offset < audio.length; offset += CHUNK_SIZE) {
|
|
413
|
-
const end = Math.min(offset + CHUNK_SIZE, audio.length);
|
|
414
|
-
const chunk = audio.slice(offset, end);
|
|
415
|
-
|
|
416
|
-
const vadChunks = await session.push(chunk);
|
|
417
|
-
|
|
418
|
-
// VAD chunks are returned after first 10 seconds
|
|
419
|
-
for (const vad of vadChunks) {
|
|
420
|
-
// Count active frames (speech detected)
|
|
421
|
-
const activeFrames = vad.vad.filter(v => v > 0.5).length;
|
|
422
|
-
const speechRatio = (activeFrames / vad.numFrames * 100).toFixed(1);
|
|
423
|
-
|
|
424
|
-
console.log(
|
|
425
|
-
`Chunk ${vad.chunkIndex}: ${vad.startTime.toFixed(1)}s - ${(vad.startTime + vad.duration).toFixed(1)}s | ` +
|
|
426
|
-
`Speech: ${speechRatio}%`
|
|
427
|
-
);
|
|
428
|
-
totalChunks++;
|
|
323
|
+
const session = pipeline.createSession();
|
|
324
|
+
session.on('segments', (segments) => {
|
|
325
|
+
const latest = segments[segments.length - 1];
|
|
326
|
+
if (latest) {
|
|
327
|
+
const end = latest.start + latest.duration;
|
|
328
|
+
console.log(`[live][${latest.speaker}] ${latest.start.toFixed(2)}-${end.toFixed(2)} ${latest.text.trim()}`);
|
|
429
329
|
}
|
|
430
|
-
}
|
|
431
|
-
|
|
432
|
-
console.log(`\nProcessed ${totalChunks} chunks`);
|
|
433
|
-
|
|
434
|
-
// Get final diarization result
|
|
435
|
-
console.log('\nFinalizing...');
|
|
436
|
-
const result = await session.finalize();
|
|
437
|
-
|
|
438
|
-
console.log(`\nFinal result: ${result.segments.length} segments`);
|
|
439
|
-
for (const segment of result.segments) {
|
|
440
|
-
console.log(
|
|
441
|
-
`[${segment.start.toFixed(2)}s - ${(segment.start + segment.duration).toFixed(2)}s] ${segment.speaker}`
|
|
442
|
-
);
|
|
443
|
-
}
|
|
444
|
-
|
|
445
|
-
session.close();
|
|
446
|
-
model.close();
|
|
447
|
-
}
|
|
448
|
-
|
|
449
|
-
streamingDiarization();
|
|
450
|
-
```
|
|
451
|
-
|
|
452
|
-
### Example 3: On-Demand Reclustering
|
|
453
|
-
|
|
454
|
-
Push audio and trigger reclustering every 30 seconds to get intermediate results.
|
|
455
|
-
|
|
456
|
-
```typescript
|
|
457
|
-
import { Pyannote } from 'pyannote-cpp-node';
|
|
458
|
-
|
|
459
|
-
async function reclusteringExample() {
|
|
460
|
-
const model = await Pyannote.load({
|
|
461
|
-
segModelPath: './models/segmentation.gguf',
|
|
462
|
-
embModelPath: './models/embedding.gguf',
|
|
463
|
-
pldaPath: './models/plda.gguf',
|
|
464
|
-
coremlPath: './models/embedding.mlpackage',
|
|
465
|
-
segCoremlPath: './models/segmentation.mlpackage',
|
|
466
330
|
});
|
|
467
331
|
|
|
468
|
-
const
|
|
469
|
-
|
|
470
|
-
|
|
471
|
-
|
|
472
|
-
|
|
473
|
-
|
|
474
|
-
|
|
475
|
-
|
|
476
|
-
for (let offset = 0; offset < audio.length; offset += CHUNK_SIZE) {
|
|
477
|
-
const end = Math.min(offset + CHUNK_SIZE, audio.length);
|
|
478
|
-
const chunk = audio.slice(offset, end);
|
|
479
|
-
|
|
480
|
-
await session.push(chunk);
|
|
481
|
-
secondsProcessed++;
|
|
482
|
-
|
|
483
|
-
// Recluster every 30 seconds
|
|
484
|
-
if (secondsProcessed % RECLUSTER_INTERVAL === 0) {
|
|
485
|
-
console.log(`\n--- Reclustering at ${secondsProcessed}s ---`);
|
|
486
|
-
const intermediateResult = await session.recluster();
|
|
487
|
-
|
|
488
|
-
const speakers = new Set(intermediateResult.segments.map(s => s.speaker));
|
|
489
|
-
console.log(`Current speakers detected: ${speakers.size}`);
|
|
490
|
-
console.log(`Current segments: ${intermediateResult.segments.length}`);
|
|
332
|
+
const chunkSize = 16000;
|
|
333
|
+
for (let i = 0; i < audio.length; i += chunkSize) {
|
|
334
|
+
const chunk = audio.slice(i, Math.min(i + chunkSize, audio.length));
|
|
335
|
+
const vad = await session.push(chunk);
|
|
336
|
+
if (vad.length > 0) {
|
|
337
|
+
const speechFrames = vad.filter(Boolean).length;
|
|
338
|
+
console.log(`VAD frames: ${vad.length}, speech frames: ${speechFrames}`);
|
|
491
339
|
}
|
|
492
340
|
}
|
|
493
341
|
|
|
494
|
-
// Final result
|
|
495
|
-
console.log('\n--- Final result ---');
|
|
496
342
|
const finalResult = await session.finalize();
|
|
497
|
-
|
|
498
|
-
console.log(`Total speakers: ${speakers.size}`);
|
|
499
|
-
console.log(`Total segments: ${finalResult.segments.length}`);
|
|
343
|
+
console.log(`Final segments: ${finalResult.segments.length}`);
|
|
500
344
|
|
|
501
345
|
session.close();
|
|
502
|
-
|
|
346
|
+
pipeline.close();
|
|
503
347
|
}
|
|
504
|
-
|
|
505
|
-
reclusteringExample();
|
|
506
348
|
```
|
|
507
349
|
|
|
508
|
-
###
|
|
509
|
-
|
|
510
|
-
Format diarization results into standard RTTM (Rich Transcription Time Marked) format.
|
|
350
|
+
### Custom Whisper decode options
|
|
511
351
|
|
|
512
352
|
```typescript
|
|
513
|
-
import {
|
|
514
|
-
import { writeFileSync } from 'node:fs';
|
|
515
|
-
|
|
516
|
-
function toRTTM(result: DiarizationResult, filename: string = 'audio'): string {
|
|
517
|
-
const lines = result.segments.map(segment => {
|
|
518
|
-
// RTTM format: SPEAKER <file> <chnl> <tbeg> <tdur> <ortho> <stype> <name> <conf> <slat>
|
|
519
|
-
return [
|
|
520
|
-
'SPEAKER',
|
|
521
|
-
filename,
|
|
522
|
-
'1',
|
|
523
|
-
segment.start.toFixed(3),
|
|
524
|
-
segment.duration.toFixed(3),
|
|
525
|
-
'<NA>',
|
|
526
|
-
'<NA>',
|
|
527
|
-
segment.speaker,
|
|
528
|
-
'<NA>',
|
|
529
|
-
'<NA>',
|
|
530
|
-
].join(' ');
|
|
531
|
-
});
|
|
532
|
-
|
|
533
|
-
return lines.join('\n') + '\n';
|
|
534
|
-
}
|
|
353
|
+
import { Pipeline } from 'pyannote-cpp-node';
|
|
535
354
|
|
|
536
|
-
|
|
537
|
-
|
|
538
|
-
|
|
539
|
-
|
|
540
|
-
|
|
541
|
-
|
|
542
|
-
|
|
543
|
-
|
|
544
|
-
|
|
545
|
-
|
|
546
|
-
|
|
355
|
+
const pipeline = await Pipeline.load({
|
|
356
|
+
segModelPath: './models/segmentation.gguf',
|
|
357
|
+
embModelPath: './models/embedding.gguf',
|
|
358
|
+
pldaPath: './models/plda.gguf',
|
|
359
|
+
coremlPath: './models/embedding.mlpackage',
|
|
360
|
+
segCoremlPath: './models/segmentation.mlpackage',
|
|
361
|
+
whisperModelPath: './models/ggml-large-v3-turbo-q5_0.bin',
|
|
362
|
+
|
|
363
|
+
// Whisper runtime options
|
|
364
|
+
useGpu: true,
|
|
365
|
+
flashAttn: true,
|
|
366
|
+
gpuDevice: 0,
|
|
367
|
+
useCoreml: false,
|
|
368
|
+
|
|
369
|
+
// Decode strategy
|
|
370
|
+
nThreads: 8,
|
|
371
|
+
language: 'ko',
|
|
372
|
+
translate: false,
|
|
373
|
+
detectLanguage: false,
|
|
374
|
+
temperature: 0.0,
|
|
375
|
+
temperatureInc: 0.2,
|
|
376
|
+
noFallback: false,
|
|
377
|
+
beamSize: 5,
|
|
378
|
+
bestOf: 5,
|
|
379
|
+
|
|
380
|
+
// Thresholds and context
|
|
381
|
+
entropyThold: 2.4,
|
|
382
|
+
logprobThold: -1.0,
|
|
383
|
+
noSpeechThold: 0.6,
|
|
384
|
+
prompt: 'Meeting transcript with technical terminology.',
|
|
385
|
+
noContext: true,
|
|
386
|
+
suppressBlank: true,
|
|
387
|
+
suppressNst: false,
|
|
388
|
+
});
|
|
389
|
+
```
|
|
547
390
|
|
|
548
|
-
|
|
549
|
-
const rttm = toRTTM(result, 'audio');
|
|
550
|
-
|
|
551
|
-
// Write to file
|
|
552
|
-
writeFileSync('./output.rttm', rttm);
|
|
553
|
-
console.log('RTTM file written to output.rttm');
|
|
391
|
+
## JSON Output Format
|
|
554
392
|
|
|
555
|
-
|
|
556
|
-
console.log('\nRTTM output:');
|
|
557
|
-
console.log(rttm);
|
|
393
|
+
The pipeline returns this JSON shape:
|
|
558
394
|
|
|
559
|
-
|
|
395
|
+
```json
|
|
396
|
+
{
|
|
397
|
+
"segments": [
|
|
398
|
+
{
|
|
399
|
+
"speaker": "SPEAKER_00",
|
|
400
|
+
"start": 0.497000,
|
|
401
|
+
"duration": 2.085000,
|
|
402
|
+
"text": "Hello world"
|
|
403
|
+
}
|
|
404
|
+
]
|
|
560
405
|
}
|
|
561
|
-
|
|
562
|
-
generateRTTM();
|
|
563
406
|
```
|
|
564
407
|
|
|
565
|
-
## Architecture
|
|
566
|
-
|
|
567
|
-
The diarization pipeline consists of four main stages:
|
|
568
|
-
|
|
569
|
-
### 1. Segmentation (SincNet + BiLSTM)
|
|
570
|
-
|
|
571
|
-
The segmentation model processes 10-second audio windows and outputs 7-class powerset logits for 589 frames (approximately one frame every 17ms). The model architecture:
|
|
572
|
-
|
|
573
|
-
- **SincNet**: Learnable sinc filter bank for feature extraction
|
|
574
|
-
- **4-layer BiLSTM**: Bidirectional long short-term memory layers
|
|
575
|
-
- **Linear classifier**: Projects to 7 powerset classes with log-softmax
|
|
576
|
-
|
|
577
|
-
The 7 powerset classes represent all possible combinations of up to 3 simultaneous speakers:
|
|
578
|
-
- Class 0: silence (no speakers)
|
|
579
|
-
- Classes 1-3: single speakers
|
|
580
|
-
- Classes 4-6: speaker overlaps
|
|
581
|
-
|
|
582
|
-
### 2. Powerset Decoding
|
|
583
|
-
|
|
584
|
-
Converts the 7-class powerset predictions into binary speaker activity for 3 local speakers per chunk. Each frame is decoded to indicate which of the 3 local speaker "slots" are active.
|
|
585
|
-
|
|
586
|
-
### 3. Embedding Extraction (WeSpeaker ResNet34)
|
|
587
|
-
|
|
588
|
-
For each active speaker in each chunk, the embedding model extracts a 256-dimensional speaker vector:
|
|
589
|
-
|
|
590
|
-
- **Mel filterbank**: 80-bin log-mel spectrogram features
|
|
591
|
-
- **ResNet34**: Deep residual network for speaker representation
|
|
592
|
-
- **Output**: 256-dimensional L2-normalized embedding
|
|
593
|
-
|
|
594
|
-
Silent speakers receive NaN embeddings, which are filtered before clustering.
|
|
595
|
-
|
|
596
|
-
### 4. Clustering (PLDA + AHC + VBx)
|
|
597
|
-
|
|
598
|
-
The final stage maps local speaker labels to global speaker identities:
|
|
599
|
-
|
|
600
|
-
- **PLDA transformation**: Probabilistic Linear Discriminant Analysis projects embeddings from 256 to 128 dimensions
|
|
601
|
-
- **Agglomerative Hierarchical Clustering (AHC)**: fastcluster implementation with O(n²) complexity, using centroid linkage and a distance threshold of 0.6
|
|
602
|
-
- **VBx refinement**: Variational Bayes diarization with parameters FA=0.07, FB=0.8, maximum 20 iterations
|
|
603
|
-
|
|
604
|
-
The clustering stage computes speaker centroids and assigns each embedding to the closest centroid while respecting the constraint that two local speakers in the same chunk cannot map to the same global speaker.
|
|
605
|
-
|
|
606
|
-
### CoreML Acceleration
|
|
607
|
-
|
|
608
|
-
Both neural networks run on Apple's CoreML framework, which automatically distributes computation across:
|
|
609
|
-
|
|
610
|
-
- **Neural Engine**: Dedicated ML accelerator on Apple Silicon
|
|
611
|
-
- **GPU**: Metal-accelerated operations
|
|
612
|
-
- **CPU**: Fallback for unsupported operations
|
|
613
|
-
|
|
614
|
-
CoreML models use Float16 computation for optimal performance while maintaining accuracy within acceptable bounds (cosine similarity > 0.999 vs Float32).
|
|
615
|
-
|
|
616
|
-
### Streaming Architecture
|
|
617
|
-
|
|
618
|
-
The streaming API uses a sliding 10-second window with a 1-second hop (9 seconds of overlap between consecutive chunks). Three data stores maintain the state:
|
|
619
|
-
|
|
620
|
-
- **`audio_buffer`**: Sliding window (~10s, ~640 KB for 1 hour) — old samples are discarded
|
|
621
|
-
- **`embeddings`**: Grows forever (~11 MB for 1 hour) — stores 3 × 256-dim vectors per chunk (NaN for silent speakers)
|
|
622
|
-
- **`binarized`**: Grows forever (~25 MB for 1 hour) — stores 589 × 3 binary activity masks per chunk
|
|
623
|
-
|
|
624
|
-
During reclustering, all accumulated embeddings are used to compute soft cluster assignments, and all binarized segmentations are used to reconstruct the global timeline. This is why the `embeddings` and `binarized` arrays must persist for the entire session.
|
|
625
|
-
|
|
626
|
-
### Constants
|
|
627
|
-
|
|
628
|
-
| Constant | Value | Description |
|
|
629
|
-
|----------|-------|-------------|
|
|
630
|
-
| SAMPLE_RATE | 16000 Hz | Audio sample rate |
|
|
631
|
-
| CHUNK_SAMPLES | 160000 | 10-second window size |
|
|
632
|
-
| STEP_SAMPLES | 16000 | 1-second hop between chunks |
|
|
633
|
-
| FRAMES_PER_CHUNK | 589 | Segmentation output frames |
|
|
634
|
-
| NUM_LOCAL_SPEAKERS | 3 | Maximum speakers per chunk |
|
|
635
|
-
| EMBEDDING_DIM | 256 | Speaker embedding dimension |
|
|
636
|
-
| FBANK_NUM_BINS | 80 | Mel filterbank bins |
|
|
637
|
-
|
|
638
408
|
## Audio Format Requirements
|
|
639
409
|
|
|
640
|
-
|
|
641
|
-
|
|
642
|
-
-
|
|
643
|
-
-
|
|
644
|
-
- **Format**: `Float32Array` with values in the range **[-1.0, 1.0]**
|
|
645
|
-
|
|
646
|
-
The library does **not** handle audio decoding. You must provide raw PCM samples.
|
|
647
|
-
|
|
648
|
-
### Loading Audio Files
|
|
649
|
-
|
|
650
|
-
For WAV files, you can use the `loadWavFile` function from Example 1, or use third-party libraries:
|
|
651
|
-
|
|
652
|
-
```bash
|
|
653
|
-
npm install node-wav
|
|
654
|
-
```
|
|
655
|
-
|
|
656
|
-
```typescript
|
|
657
|
-
import { read } from 'node-wav';
|
|
658
|
-
import { readFileSync } from 'node:fs';
|
|
659
|
-
|
|
660
|
-
const buffer = readFileSync('./audio.wav');
|
|
661
|
-
const wav = read(buffer);
|
|
662
|
-
|
|
663
|
-
// Convert to mono if stereo
|
|
664
|
-
const mono = wav.channelData.length > 1
|
|
665
|
-
? wav.channelData[0].map((v, i) => (v + wav.channelData[1][i]) / 2)
|
|
666
|
-
: wav.channelData[0];
|
|
667
|
-
|
|
668
|
-
// Resample to 16kHz if needed (using a resampling library)
|
|
669
|
-
// ...
|
|
670
|
-
|
|
671
|
-
const audio = new Float32Array(mono);
|
|
672
|
-
```
|
|
673
|
-
|
|
674
|
-
For other audio formats (MP3, M4A, etc.), use ffmpeg to convert to 16kHz mono WAV first:
|
|
675
|
-
|
|
676
|
-
```bash
|
|
677
|
-
ffmpeg -i input.mp3 -ar 16000 -ac 1 -f f32le -acodec pcm_f32le - | \
|
|
678
|
-
node process.js
|
|
679
|
-
```
|
|
410
|
+
- Input must be `Float32Array`
|
|
411
|
+
- Sample rate must be `16000` Hz
|
|
412
|
+
- Audio must be mono
|
|
413
|
+
- Recommended amplitude range: `[-1.0, 1.0]`
|
|
680
414
|
|
|
681
|
-
|
|
415
|
+
All API methods expect decoded PCM samples; file decoding/resampling is handled by the caller.
|
|
682
416
|
|
|
683
|
-
|
|
684
|
-
|
|
685
|
-
- **macOS only**: The library requires CoreML for neural network inference. There is currently no fallback implementation for other platforms.
|
|
686
|
-
- **No Linux/Windows support**: CoreML is exclusive to Apple platforms.
|
|
687
|
-
|
|
688
|
-
### `recluster()` Mutates State
|
|
689
|
-
|
|
690
|
-
The `recluster()` method overwrites the internal session state, specifically replacing the `embeddings` and chunk index arrays with filtered versions (excluding NaN embeddings from silent speakers). This means:
|
|
691
|
-
|
|
692
|
-
- Calling `push()` after `recluster()` may produce incorrect results
|
|
693
|
-
- Subsequent `recluster()` calls may not work as expected
|
|
694
|
-
- The data structure assumes the original unfiltered layout (3 embeddings per chunk)
|
|
695
|
-
|
|
696
|
-
**Best practice**: Use `recluster()` sparingly for live progress updates (e.g., every 30 seconds), or avoid it entirely and only call `finalize()` when the stream ends.
|
|
697
|
-
|
|
698
|
-
### Operations Are Serialized
|
|
699
|
-
|
|
700
|
-
Operations on a streaming session are serialized internally. Do not call `push()` while another `push()`, `recluster()`, or `finalize()` is in progress. Wait for the Promise to resolve before making the next call.
|
|
701
|
-
|
|
702
|
-
### Resource Management
|
|
703
|
-
|
|
704
|
-
- **Close sessions before models**: Always close streaming sessions before closing the parent model
|
|
705
|
-
- **Idempotent close**: Both `model.close()` and `session.close()` are safe to call multiple times
|
|
706
|
-
- **No reuse after close**: Once closed, models and sessions cannot be reused
|
|
707
|
-
|
|
708
|
-
### Model Loading
|
|
709
|
-
|
|
710
|
-
- **Path validation**: `Pyannote.load()` validates that all paths exist using `fs.accessSync()` before initialization
|
|
711
|
-
- **CoreML compilation**: The CoreML framework compiles `.mlpackage` models internally on first load (typically fast, ~100ms)
|
|
712
|
-
- **No explicit loading step**: Model weights are loaded synchronously in the constructor
|
|
713
|
-
|
|
714
|
-
### Threading Model
|
|
715
|
-
|
|
716
|
-
All heavy operations (`diarize`, `push`, `recluster`, `finalize`) run on libuv worker threads and never block the Node.js event loop. However, the operations do hold native locks internally, so concurrent operations on the same session are serialized.
|
|
717
|
-
|
|
718
|
-
### Memory Usage
|
|
417
|
+
## Architecture
|
|
719
418
|
|
|
720
|
-
|
|
721
|
-
- `audio_buffer`: ~640 KB (sliding window)
|
|
722
|
-
- `embeddings`: ~11 MB (grows throughout session)
|
|
723
|
-
- `binarized`: ~25 MB (grows throughout session)
|
|
724
|
-
- CoreML models: ~50 MB (loaded once per model)
|
|
419
|
+
The integrated pipeline runs in 7 stages:
|
|
725
420
|
|
|
726
|
-
|
|
421
|
+
1. VAD silence filter (optional compression of long silence)
|
|
422
|
+
2. Audio buffer (stream-safe FIFO with timestamp tracking)
|
|
423
|
+
3. Segmentation (speech activity over rolling windows)
|
|
424
|
+
4. Transcription (Whisper sentence-level segments)
|
|
425
|
+
5. Alignment (segment-level speaker assignment by overlap)
|
|
426
|
+
6. Finalize (flush + final recluster + final alignment)
|
|
427
|
+
7. Callback/event emission (`segments` updates)
|
|
727
428
|
|
|
728
429
|
## Performance
|
|
729
430
|
|
|
730
|
-
|
|
731
|
-
|
|
732
|
-
|
|
733
|
-
|
|
734
|
-
|
|
735
|
-
| Embedding (CoreML) | ~13ms | Per speaker per chunk (up to 3 speakers) |
|
|
736
|
-
| AHC Clustering | ~0.8s | 3000 embeddings (1000 chunks) |
|
|
737
|
-
| VBx Refinement | ~1.2s | 20 iterations, 3000 embeddings |
|
|
738
|
-
| **Full Pipeline (offline)** | **39x real-time** | 45-minute audio processed in 70 seconds |
|
|
739
|
-
|
|
740
|
-
### Streaming Performance
|
|
431
|
+
- Diarization only: **39x real-time**
|
|
432
|
+
- Integrated transcription + diarization: **~14.6x real-time**
|
|
433
|
+
- 45-minute Korean meeting test (6 speakers): **2713s audio in 186s**
|
|
434
|
+
- Each Whisper segment maps 1:1 to a speaker-labeled segment (no merging)
|
|
435
|
+
- Speaker confusion rate: **2.55%**
|
|
741
436
|
|
|
742
|
-
|
|
743
|
-
- **Incremental latency**: ~30ms per 1-second push (after first chunk)
|
|
744
|
-
- **Recluster latency**: ~2 seconds for 30 minutes of audio (~1800 embeddings)
|
|
437
|
+
## Platform Support
|
|
745
438
|
|
|
746
|
-
|
|
747
|
-
|
|
748
|
-
|
|
749
|
-
|
|
750
|
-
|
|
|
751
|
-
|
|
752
|
-
| macOS | arm64 (Apple Silicon) | ✅ Supported |
|
|
753
|
-
| macOS | x64 (Intel) | 🔜 Planned |
|
|
754
|
-
| Linux | any | ❌ Not supported (CoreML unavailable) |
|
|
755
|
-
| Windows | any | ❌ Not supported (CoreML unavailable) |
|
|
756
|
-
|
|
757
|
-
Intel macOS support is planned but not yet available. The CoreML dependency makes cross-platform support challenging without alternative inference backends.
|
|
439
|
+
| Platform | Status |
|
|
440
|
+
| --- | --- |
|
|
441
|
+
| macOS arm64 (Apple Silicon) | Supported |
|
|
442
|
+
| macOS x64 (Intel) | Supported |
|
|
443
|
+
| Linux | Not supported |
|
|
444
|
+
| Windows | Not supported |
|
|
758
445
|
|
|
759
446
|
## License
|
|
760
447
|
|
|
761
448
|
MIT
|
|
762
|
-
|
|
763
|
-
---
|
|
764
|
-
|
|
765
|
-
For issues, feature requests, or contributions, please visit the [GitHub repository](https://github.com/predict-woo/pyannote-ggml).
|