pse-mcp 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,736 @@
1
+ # Model Context Protocol (MCP) Client Implementation Guide
2
+
3
+ ## Introduction
4
+
5
+ The Model Context Protocol (MCP) is an open standard that enables seamless integration between LLM applications and external data sources and tools. Similar to how the Language Server Protocol (LSP) standardized the connection between code editors and language servers, MCP standardizes how AI models interact with external resources.
6
+
7
+ This guide focuses specifically on implementing the **client side** of MCP, which is responsible for establishing and maintaining connections with MCP servers to leverage their capabilities.
8
+
9
+ ## What is an MCP Client?
10
+
11
+ In the MCP architecture, a client is a component that:
12
+
13
+ - Maintains 1:1 connections with MCP servers
14
+ - Requests capabilities like tools, resources, and prompts from servers
15
+ - Passes these capabilities to an LLM for use
16
+ - Handles the execution of tool calls when requested by the LLM
17
+ - Manages communication protocols (stdio, HTTP/SSE, etc.)
18
+
19
+ ## Prerequisites
20
+
21
+ Before implementing an MCP client, ensure you have:
22
+
23
+ 1. A development environment with your preferred language (Python, TypeScript, etc.)
24
+ 2. Basic understanding of async programming (as most MCP operations are asynchronous)
25
+ 3. Access to MCP servers you want to connect to
26
+ 4. Familiarity with the LLM platform you're integrating with
27
+
28
+ ## MCP Client Implementation Steps
29
+
30
+ ### 1. Choose Your SDK
31
+
32
+ MCP offers official SDKs for various languages:
33
+
34
+ - **Python SDK**: For Python applications
35
+ - **TypeScript/JavaScript SDK**: For web/Node.js applications
36
+ - **Swift SDK**: For iOS/macOS applications
37
+
38
+ For this guide, we'll provide examples in both Python and TypeScript.
39
+
40
+ ### 2. Install Dependencies
41
+
42
+ #### Python
43
+
44
+ ```python
45
+ # Using uv (recommended)
46
+ uv init mcp-client
47
+ cd mcp-client
48
+ uv venv
49
+ # Activate virtual environment
50
+ # On Windows: .venv\Scripts\activate
51
+ # On Unix or MacOS: source .venv/bin/activate
52
+ uv add mcp
53
+ ```
54
+
55
+ #### TypeScript/JavaScript
56
+
57
+ ```bash
58
+ # Using npm
59
+ mkdir mcp-client
60
+ cd mcp-client
61
+ npm init -y
62
+ npm install @modelcontextprotocol/client
63
+ ```
64
+
65
+ ### 3. Establish Connection with MCP Server
66
+
67
+ MCP clients can connect to servers using different transport methods:
68
+
69
+ #### Stdio Transport (Local Server)
70
+
71
+ This method runs the server as a subprocess and communicates via standard input/output.
72
+
73
+ ##### Python Example
74
+
75
+ ```python
76
+ import asyncio
77
+ from mcp import ClientSession
78
+ from mcp.client.stdio import stdio_client
79
+ from mcp import StdioServerParameters
80
+
81
+ async def main():
82
+ # Define server parameters (command to start server)
83
+ server_params = StdioServerParameters(
84
+ command="npx", # Command to run
85
+ args=["-y", "@modelcontextprotocol/server-filesystem", "/path/to/files"] # Arguments
86
+ )
87
+
88
+ # Connect to the server
89
+ async with stdio_client(server_params) as (read, write):
90
+ # Create a client session
91
+ async with ClientSession(read, write) as session:
92
+ # Initialize the session
93
+ await session.initialize()
94
+
95
+ # Now you can interact with the server
96
+ # ...
97
+
98
+ if __name__ == "__main__":
99
+ asyncio.run(main())
100
+ ```
101
+
102
+ ##### TypeScript Example
103
+
104
+ ```typescript
105
+ import { createStdioClient, StdioServerParameters } from '@modelcontextprotocol/client';
106
+
107
+ async function main() {
108
+ // Define server parameters
109
+ const serverParams: StdioServerParameters = {
110
+ command: 'npx',
111
+ args: ['-y', '@modelcontextprotocol/server-filesystem', '/path/to/files']
112
+ };
113
+
114
+ // Create client and session
115
+ const client = await createStdioClient(serverParams);
116
+ const session = await client.createSession();
117
+
118
+ // Initialize session
119
+ await session.initialize();
120
+
121
+ // Now you can interact with the server
122
+ // ...
123
+ }
124
+
125
+ main().catch(console.error);
126
+ ```
127
+
128
+ #### HTTP/SSE Transport (Remote Server)
129
+
130
+ For servers available over HTTP with Server-Sent Events (SSE).
131
+
132
+ ##### Python Example
133
+
134
+ ```python
135
+ import asyncio
136
+ from mcp import ClientSession
137
+ from mcp.client.sse import sse_client
138
+ from mcp.client.types import SseServerParameters
139
+
140
+ async def main():
141
+ # Define server parameters
142
+ server_params = SseServerParameters(
143
+ url="https://your-mcp-server.com", # Server URL
144
+ headers={"Authorization": "Bearer your-token"} # Optional headers
145
+ )
146
+
147
+ # Connect to the server
148
+ async with sse_client(server_params) as (read, write):
149
+ # Create a client session
150
+ async with ClientSession(read, write) as session:
151
+ # Initialize the session
152
+ await session.initialize()
153
+
154
+ # Now you can interact with the server
155
+ # ...
156
+
157
+ if __name__ == "__main__":
158
+ asyncio.run(main())
159
+ ```
160
+
161
+ ##### TypeScript Example
162
+
163
+ ```typescript
164
+ import { createSseClient, SseServerParameters } from '@modelcontextprotocol/client';
165
+
166
+ async function main() {
167
+ // Define server parameters
168
+ const serverParams: SseServerParameters = {
169
+ url: 'https://your-mcp-server.com',
170
+ headers: { 'Authorization': 'Bearer your-token' }
171
+ };
172
+
173
+ // Create client and session
174
+ const client = await createSseClient(serverParams);
175
+ const session = await client.createSession();
176
+
177
+ // Initialize session
178
+ await session.initialize();
179
+
180
+ // Now you can interact with the server
181
+ // ...
182
+ }
183
+
184
+ main().catch(console.error);
185
+ ```
186
+
187
+ ### 4. Discover Server Capabilities
188
+
189
+ After establishing a connection, you need to discover what capabilities the server offers:
190
+
191
+ #### Python Example
192
+
193
+ ```python
194
+ async def discover_capabilities(session):
195
+ # List available tools
196
+ tools_response = await session.list_tools()
197
+ tools = tools_response.tools
198
+ print(f"Available tools: {[tool.name for tool in tools]}")
199
+
200
+ # List available resources
201
+ try:
202
+ resources_response = await session.list_resources()
203
+ resources = resources_response.resources
204
+ print(f"Available resources: {[resource.name for resource in resources]}")
205
+ except Exception as e:
206
+ # Not all servers implement resources
207
+ print(f"No resources available: {e}")
208
+
209
+ # List available prompts
210
+ try:
211
+ prompts_response = await session.list_prompts()
212
+ prompts = prompts_response.prompts
213
+ print(f"Available prompts: {[prompt.name for prompt in prompts]}")
214
+ except Exception as e:
215
+ # Not all servers implement prompts
216
+ print(f"No prompts available: {e}")
217
+
218
+ return tools, resources, prompts
219
+ ```
220
+
221
+ #### TypeScript Example
222
+
223
+ ```typescript
224
+ async function discoverCapabilities(session) {
225
+ // List available tools
226
+ const toolsResponse = await session.listTools();
227
+ const tools = toolsResponse.tools;
228
+ console.log(`Available tools: ${tools.map(tool => tool.name)}`);
229
+
230
+ // List available resources
231
+ try {
232
+ const resourcesResponse = await session.listResources();
233
+ const resources = resourcesResponse.resources;
234
+ console.log(`Available resources: ${resources.map(resource => resource.name)}`);
235
+ } catch (e) {
236
+ // Not all servers implement resources
237
+ console.log(`No resources available: ${e}`);
238
+ }
239
+
240
+ // List available prompts
241
+ try {
242
+ const promptsResponse = await session.listPrompts();
243
+ const prompts = promptsResponse.prompts;
244
+ console.log(`Available prompts: ${prompts.map(prompt => prompt.name)}`);
245
+ } catch (e) {
246
+ // Not all servers implement prompts
247
+ console.log(`No prompts available: ${e}`);
248
+ }
249
+
250
+ return { tools, resources, prompts };
251
+ }
252
+ ```
253
+
254
+ ### 5. Use Server Resources
255
+
256
+ Resources provide context data to the LLM:
257
+
258
+ #### Python Example
259
+
260
+ ```python
261
+ async def get_resource(session, resource_name, params=None):
262
+ try:
263
+ resource_response = await session.get_resource(resource_name, params or {})
264
+ return resource_response.value
265
+ except Exception as e:
266
+ print(f"Error getting resource {resource_name}: {e}")
267
+ return None
268
+ ```
269
+
270
+ #### TypeScript Example
271
+
272
+ ```typescript
273
+ async function getResource(session, resourceName, params = {}) {
274
+ try {
275
+ const resourceResponse = await session.getResource(resourceName, params);
276
+ return resourceResponse.value;
277
+ } catch (e) {
278
+ console.log(`Error getting resource ${resourceName}: ${e}`);
279
+ return null;
280
+ }
281
+ }
282
+ ```
283
+
284
+ ### 6. Invoke Server Tools
285
+
286
+ Tools allow the LLM to perform actions:
287
+
288
+ #### Python Example
289
+
290
+ ```python
291
+ async def call_tool(session, tool_name, params=None):
292
+ try:
293
+ tool_response = await session.call_tool(tool_name, params or {})
294
+ return tool_response.result
295
+ except Exception as e:
296
+ print(f"Error calling tool {tool_name}: {e}")
297
+ return None
298
+ ```
299
+
300
+ #### TypeScript Example
301
+
302
+ ```typescript
303
+ async function callTool(session, toolName, params = {}) {
304
+ try {
305
+ const toolResponse = await session.callTool(toolName, params);
306
+ return toolResponse.result;
307
+ } catch (e) {
308
+ console.log(`Error calling tool ${toolName}: ${e}`);
309
+ return null;
310
+ }
311
+ }
312
+ ```
313
+
314
+ ### 7. Use Server Prompts
315
+
316
+ Prompts provide templated interactions for the LLM:
317
+
318
+ #### Python Example
319
+
320
+ ```python
321
+ async def get_prompt(session, prompt_name, params=None):
322
+ try:
323
+ prompt_response = await session.get_prompt(prompt_name, params or {})
324
+ return prompt_response.messages
325
+ except Exception as e:
326
+ print(f"Error getting prompt {prompt_name}: {e}")
327
+ return None
328
+ ```
329
+
330
+ #### TypeScript Example
331
+
332
+ ```typescript
333
+ async function getPrompt(session, promptName, params = {}) {
334
+ try {
335
+ const promptResponse = await session.getPrompt(promptName, params);
336
+ return promptResponse.messages;
337
+ } catch (e) {
338
+ console.log(`Error getting prompt ${promptName}: ${e}`);
339
+ return null;
340
+ }
341
+ }
342
+ ```
343
+
344
+ ### 8. Integrate with LLM
345
+
346
+ Now you need to connect the MCP capabilities with your LLM:
347
+
348
+ #### Python Example with Anthropic's Claude
349
+
350
+ ```python
351
+ import os
352
+ from anthropic import Anthropic
353
+
354
+ async def chat_with_claude(client_session, user_message, tools=None):
355
+ # Discover available tools
356
+ if tools is None:
357
+ tools_response = await client_session.list_tools()
358
+ tools = tools_response.tools
359
+
360
+ # Convert MCP tools to Claude's tool format
361
+ claude_tools = []
362
+ for tool in tools:
363
+ claude_tools.append({
364
+ "name": tool.name,
365
+ "description": tool.description,
366
+ "input_schema": tool.parameters
367
+ })
368
+
369
+ # Initialize Anthropic client
370
+ anthropic = Anthropic(api_key=os.environ.get("ANTHROPIC_API_KEY"))
371
+
372
+ # Create a message with tools
373
+ response = anthropic.messages.create(
374
+ model="claude-3-5-sonnet-20241022",
375
+ max_tokens=1000,
376
+ messages=[{"role": "user", "content": user_message}],
377
+ tools=claude_tools
378
+ )
379
+
380
+ # Check if Claude wants to use any tools
381
+ for content_block in response.content:
382
+ if content_block.type == "tool_use":
383
+ tool_name = content_block.name
384
+ tool_params = content_block.input
385
+
386
+ # Call the tool via MCP
387
+ tool_result = await call_tool(client_session, tool_name, tool_params)
388
+
389
+ # Send the tool result back to Claude
390
+ follow_up = anthropic.messages.create(
391
+ model="claude-3-5-sonnet-20241022",
392
+ max_tokens=1000,
393
+ messages=[
394
+ {"role": "user", "content": user_message},
395
+ {"role": "assistant", "content": response.content},
396
+ {"role": "tool", "name": tool_name, "content": str(tool_result)}
397
+ ]
398
+ )
399
+ return follow_up
400
+
401
+ return response
402
+ ```
403
+
404
+ ### 9. Complete Client Example
405
+
406
+ Here's a complete example of a simple MCP client implementation in Python:
407
+
408
+ ```python
409
+ import asyncio
410
+ import os
411
+ import json
412
+ from typing import Optional, List, Dict, Any
413
+ from contextlib import AsyncExitStack
414
+
415
+ from mcp import ClientSession, StdioServerParameters
416
+ from mcp.client.stdio import stdio_client
417
+ from anthropic import Anthropic
418
+
419
+ class MCPClientApp:
420
+ def __init__(self):
421
+ self.session: Optional[ClientSession] = None
422
+ self.exit_stack = AsyncExitStack()
423
+ self.anthropic = Anthropic(api_key=os.environ.get("ANTHROPIC_API_KEY"))
424
+ self.tools = []
425
+
426
+ async def connect_to_server(self, server_script_path):
427
+ """Connect to an MCP server using stdio transport"""
428
+ server_params = StdioServerParameters(
429
+ command="python",
430
+ args=[server_script_path]
431
+ )
432
+
433
+ read, write = await self.exit_stack.enter_async_context(stdio_client(server_params))
434
+ self.session = await self.exit_stack.enter_async_context(ClientSession(read, write))
435
+
436
+ # Initialize session
437
+ await self.session.initialize()
438
+
439
+ # Discover tools
440
+ tools_response = await self.session.list_tools()
441
+ self.tools = tools_response.tools
442
+
443
+ print(f"Connected to MCP server with {len(self.tools)} tools available:")
444
+ for tool in self.tools:
445
+ print(f"- {tool.name}: {tool.description}")
446
+
447
+ async def call_tool(self, tool_name, params=None):
448
+ """Call an MCP tool with parameters"""
449
+ if not self.session:
450
+ raise RuntimeError("No active MCP session")
451
+
452
+ try:
453
+ tool_response = await self.session.call_tool(tool_name, params or {})
454
+ return tool_response.result
455
+ except Exception as e:
456
+ print(f"Error calling tool {tool_name}: {e}")
457
+ return None
458
+
459
+ async def chat_loop(self):
460
+ """Run an interactive chat loop with Claude using MCP tools"""
461
+ if not self.session:
462
+ raise RuntimeError("No active MCP session")
463
+
464
+ print("\nChat with Claude (using MCP tools). Type 'exit' to quit.")
465
+
466
+ # Convert MCP tools to Claude's tool format
467
+ claude_tools = []
468
+ for tool in self.tools:
469
+ claude_tools.append({
470
+ "name": tool.name,
471
+ "description": tool.description,
472
+ "input_schema": tool.parameters
473
+ })
474
+
475
+ # Keep track of conversation
476
+ messages = []
477
+
478
+ while True:
479
+ # Get user input
480
+ user_input = input("\nYou: ")
481
+ if user_input.lower() == 'exit':
482
+ break
483
+
484
+ # Add to conversation history
485
+ messages.append({"role": "user", "content": user_input})
486
+
487
+ # Send to Claude with tools
488
+ response = self.anthropic.messages.create(
489
+ model="claude-3-5-sonnet-20241022",
490
+ max_tokens=1000,
491
+ messages=messages,
492
+ tools=claude_tools
493
+ )
494
+
495
+ # Process response
496
+ assistant_message = {"role": "assistant", "content": []}
497
+ for content_block in response.content:
498
+ if content_block.type == "text":
499
+ print(f"\nClaude: {content_block.text}")
500
+ assistant_message["content"].append(content_block)
501
+
502
+ elif content_block.type == "tool_use":
503
+ tool_name = content_block.name
504
+ tool_params = content_block.input
505
+
506
+ print(f"\nClaude is using tool: {tool_name}")
507
+ assistant_message["content"].append(content_block)
508
+
509
+ # Call the tool via MCP
510
+ tool_result = await self.call_tool(tool_name, tool_params)
511
+ print(f"Tool result: {tool_result}")
512
+
513
+ # Add tool response to conversation
514
+ messages.append(assistant_message)
515
+ messages.append({
516
+ "role": "tool",
517
+ "name": tool_name,
518
+ "content": json.dumps(tool_result)
519
+ })
520
+
521
+ # Get Claude's follow-up response with the tool result
522
+ follow_up = self.anthropic.messages.create(
523
+ model="claude-3-5-sonnet-20241022",
524
+ max_tokens=1000,
525
+ messages=messages,
526
+ tools=claude_tools
527
+ )
528
+
529
+ # Print Claude's response after using the tool
530
+ for fb_content in follow_up.content:
531
+ if fb_content.type == "text":
532
+ print(f"\nClaude: {fb_content.text}")
533
+
534
+ # Update messages for next turn
535
+ assistant_message = {"role": "assistant", "content": follow_up.content}
536
+
537
+ # Add assistant's response to conversation history
538
+ messages.append(assistant_message)
539
+
540
+ async def cleanup(self):
541
+ """Clean up resources"""
542
+ await self.exit_stack.aclose()
543
+
544
+ async def main():
545
+ if len(sys.argv) < 2:
546
+ print("Usage: python client.py <path_to_server_script>")
547
+ sys.exit(1)
548
+
549
+ client = MCPClientApp()
550
+ try:
551
+ await client.connect_to_server(sys.argv[1])
552
+ await client.chat_loop()
553
+ finally:
554
+ await client.cleanup()
555
+
556
+ if __name__ == "__main__":
557
+ import sys
558
+ asyncio.run(main())
559
+ ```
560
+
561
+ ## Best Practices for MCP Clients
562
+
563
+ 1. **Error Handling**: Implement robust error handling for all MCP operations
564
+ 2. **Authentication**: Support secure authentication methods for remote servers
565
+ 3. **Rate Limiting**: Implement rate limiting to avoid overwhelming servers
566
+ 4. **Caching**: Cache server capabilities to reduce latency
567
+ 5. **Timeouts**: Set appropriate timeouts for server operations
568
+ 6. **Logging**: Implement comprehensive logging for debugging
569
+ 7. **Reconnection Logic**: Handle disconnections gracefully with reconnection attempts
570
+ 8. **Security Checks**: Validate server responses before processing
571
+ 9. **Platform Compatibility**:
572
+ - Handle Windows/Unix line ending differences
573
+ - Use binary mode for stdio on Windows
574
+ - Implement proper path handling
575
+ - Consider cross-platform transport options
576
+ 10. **Resource Management**:
577
+ - Clean up resources properly
578
+ - Monitor memory usage
579
+ - Handle connection pooling
580
+ - Implement proper shutdown procedures
581
+ 11. **Performance Optimization**:
582
+ - Batch requests when possible
583
+ - Implement response caching
584
+ - Use connection pooling
585
+ - Monitor and optimize memory usage
586
+
587
+ ## Platform-Specific Considerations
588
+
589
+ ### Windows Implementation
590
+
591
+ 1. **stdio Handling**:
592
+ ```python
593
+ # Python
594
+ if sys.platform == 'win32':
595
+ import msvcrt
596
+ msvcrt.setmode(sys.stdin.fileno(), os.O_BINARY)
597
+ msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY)
598
+ ```
599
+
600
+ ```typescript
601
+ // TypeScript
602
+ if (process.platform === 'win32') {
603
+ process.stdin.setEncoding('binary');
604
+ process.stdout.setDefaultEncoding('binary');
605
+ }
606
+ ```
607
+
608
+ 2. **Path Management**:
609
+ ```typescript
610
+ import { join } from 'path';
611
+
612
+ const configPath = join(process.cwd(), 'config.json');
613
+ ```
614
+
615
+ 3. **Error Handling**:
616
+ ```typescript
617
+ process.on('uncaughtException', (error) => {
618
+ console.error(`Uncaught Exception: ${error.message}`);
619
+ process.exit(1);
620
+ });
621
+ ```
622
+
623
+ ### Unix Implementation
624
+
625
+ 1. **Signal Handling**:
626
+ ```typescript
627
+ process.on('SIGTERM', () => {
628
+ console.error('Received SIGTERM, cleaning up...');
629
+ // Perform cleanup
630
+ process.exit(0);
631
+ });
632
+ ```
633
+
634
+ 2. **File Permissions**:
635
+ ```python
636
+ import os
637
+ os.chmod('client.sh', 0o755)
638
+ ```
639
+
640
+ ## Advanced Features
641
+
642
+ ### 1. Sampling
643
+
644
+ Sampling is a powerful MCP feature where servers can request LLM completions from the client, reversing the usual flow:
645
+
646
+ ```python
647
+ async def handle_sampling(session):
648
+ # Set up a sampling handler
649
+ def sampling_handler(request, extra):
650
+ # Process sampling request
651
+ prompt = request.get("prompt", "")
652
+
653
+ # Generate completion with your LLM
654
+ # This is a simplified example
655
+ completion = generate_completion(prompt)
656
+
657
+ # Return completion
658
+ return {"completion": completion}
659
+
660
+ # Register the sampling handler
661
+ await session.set_sampling_handler(sampling_handler)
662
+ ```
663
+
664
+ ### 2. Multi-Server Management
665
+
666
+ For applications that need to connect to multiple MCP servers:
667
+
668
+ ```python
669
+ class McpManager:
670
+ def __init__(self):
671
+ self.servers = {}
672
+
673
+ async def add_server(self, server_id, params):
674
+ """Add a new MCP server connection"""
675
+ if server_id in self.servers:
676
+ await self.remove_server(server_id)
677
+
678
+ read, write = await stdio_client(params)
679
+ session = ClientSession(read, write)
680
+ await session.initialize()
681
+
682
+ self.servers[server_id] = session
683
+ return session
684
+
685
+ async def remove_server(self, server_id):
686
+ """Remove and cleanup an MCP server connection"""
687
+ if server_id in self.servers:
688
+ session = self.servers[server_id]
689
+ await session.shutdown()
690
+ del self.servers[server_id]
691
+ ```
692
+
693
+ ### 3. LLM-Powered MCP Development
694
+
695
+ You can use LLMs like Claude to help build and debug MCP implementations:
696
+
697
+ ```python
698
+ async def get_mcp_help(query):
699
+ """Use Claude to help with MCP development questions"""
700
+ client = Anthropic(api_key=os.environ.get("ANTHROPIC_API_KEY"))
701
+
702
+ system_prompt = """
703
+ You are an expert in Model Context Protocol (MCP) development.
704
+ Provide specific, technical advice on implementing MCP clients and servers.
705
+ Include code examples when relevant.
706
+ """
707
+
708
+ response = client.messages.create(
709
+ model="claude-3-5-sonnet-20241022",
710
+ system=system_prompt,
711
+ messages=[{"role": "user", "content": query}]
712
+ )
713
+
714
+ return response.content[0].text
715
+ ```
716
+
717
+ ## Troubleshooting Common Issues
718
+
719
+ 1. **Connection Failures**: Ensure server is running and accessible
720
+ 2. **Protocol Errors**: Check client and server protocol versions are compatible
721
+ 3. **Tool Execution Errors**: Validate parameters before sending to server
722
+ 4. **Authentication Issues**: Verify credentials and token validity
723
+ 5. **Timeout Errors**: Adjust timeout settings for long-running operations
724
+
725
+ ## Resources
726
+
727
+ - [Official MCP Documentation](https://modelcontextprotocol.io/)
728
+ - [Python SDK Repository](https://github.com/modelcontextprotocol/python-sdk)
729
+ - [TypeScript SDK Repository](https://github.com/modelcontextprotocol/typescript-sdk)
730
+ - [MCP Client Examples](https://modelcontextprotocol.io/clients)
731
+
732
+ ## Conclusion
733
+
734
+ Building an MCP client allows your application to connect seamlessly with a wide range of data sources and tools through a standardized protocol. This guide covered the basics of implementing a client, from establishing connections to integrating with LLMs.
735
+
736
+ As the MCP ecosystem continues to grow, your client implementation can leverage an expanding catalog of servers without requiring custom integrations for each new data source or tool.