prisma-goat 0.3.6 → 0.3.8
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +1 -1
- package/dist/prisma-goat.js +449 -449
- package/dist/prisma-goat.umd.cjs +8 -8
- package/package.json +1 -1
package/dist/prisma-goat.js
CHANGED
|
@@ -91,18 +91,18 @@ function pe(g) {
|
|
|
91
91
|
attr: M,
|
|
92
92
|
size: D,
|
|
93
93
|
title: e
|
|
94
|
-
} = g, w = de(g, fe),
|
|
95
|
-
return B.className && (
|
|
94
|
+
} = g, w = de(g, fe), t = D || B.size || "1em", Q;
|
|
95
|
+
return B.className && (Q = B.className), g.className && (Q = (Q ? Q + " " : "") + g.className), /* @__PURE__ */ N.createElement("svg", ug({
|
|
96
96
|
stroke: "currentColor",
|
|
97
97
|
fill: "currentColor",
|
|
98
98
|
strokeWidth: "0"
|
|
99
99
|
}, B.attr, M, w, {
|
|
100
|
-
className:
|
|
100
|
+
className: Q,
|
|
101
101
|
style: mg(mg({
|
|
102
102
|
color: g.color || B.color
|
|
103
103
|
}, B.style), g.style),
|
|
104
|
-
height:
|
|
105
|
-
width:
|
|
104
|
+
height: t,
|
|
105
|
+
width: t,
|
|
106
106
|
xmlns: "http://www.w3.org/2000/svg"
|
|
107
107
|
}), e && /* @__PURE__ */ N.createElement("title", null, e), g.children);
|
|
108
108
|
};
|
|
@@ -208,8 +208,8 @@ const _g = oA(
|
|
|
208
208
|
loadingPosition: D = "left",
|
|
209
209
|
disabled: e = !1,
|
|
210
210
|
isSubmit: w = !1,
|
|
211
|
-
icon:
|
|
212
|
-
iconPosition:
|
|
211
|
+
icon: t,
|
|
212
|
+
iconPosition: Q = "left",
|
|
213
213
|
iconType: C,
|
|
214
214
|
label: i,
|
|
215
215
|
className: o,
|
|
@@ -245,7 +245,7 @@ const _g = oA(
|
|
|
245
245
|
A === "secondary" ? "border-[#1F2937]" : "border-white"
|
|
246
246
|
)
|
|
247
247
|
}
|
|
248
|
-
), Z = () => N.isValidElement(
|
|
248
|
+
), Z = () => N.isValidElement(t) ? N.cloneElement(t, { className: "w-5 h-5" }) : l(), n = i || g;
|
|
249
249
|
return tA(() => {
|
|
250
250
|
const u = (d) => {
|
|
251
251
|
if (w && d.key === "Enter" && !e && I) {
|
|
@@ -280,9 +280,9 @@ const _g = oA(
|
|
|
280
280
|
...E,
|
|
281
281
|
children: [
|
|
282
282
|
M && D === "left" && /* @__PURE__ */ s("span", { className: "mr-2", children: Y }),
|
|
283
|
-
|
|
283
|
+
Q === "left" && /* @__PURE__ */ s("span", { className: "mr-2", children: Z() }),
|
|
284
284
|
n,
|
|
285
|
-
|
|
285
|
+
Q === "right" && /* @__PURE__ */ s("span", { className: "ml-2", children: Z() }),
|
|
286
286
|
M && D === "right" && /* @__PURE__ */ s("span", { className: "ml-2", children: Y })
|
|
287
287
|
]
|
|
288
288
|
}
|
|
@@ -371,7 +371,7 @@ const QA = {
|
|
|
371
371
|
strokeWidth: D = "10",
|
|
372
372
|
...e
|
|
373
373
|
}, w) => {
|
|
374
|
-
const
|
|
374
|
+
const t = {
|
|
375
375
|
primary: "#1F2937",
|
|
376
376
|
secondary: "#ededed",
|
|
377
377
|
vividPink: "#ff0145",
|
|
@@ -380,7 +380,7 @@ const QA = {
|
|
|
380
380
|
danger: "#b91c1c",
|
|
381
381
|
warning: "#f59e0b",
|
|
382
382
|
success: "#047857"
|
|
383
|
-
},
|
|
383
|
+
}, Q = {
|
|
384
384
|
black: "bg-black",
|
|
385
385
|
white: "bg-white"
|
|
386
386
|
}, C = {
|
|
@@ -405,7 +405,7 @@ const QA = {
|
|
|
405
405
|
{
|
|
406
406
|
ref: w,
|
|
407
407
|
...e,
|
|
408
|
-
className: `fixed flex justify-center items-center top-0 left-0 right-0 bottom-0 ${
|
|
408
|
+
className: `fixed flex justify-center items-center top-0 left-0 right-0 bottom-0 ${Q[A]} bg-opacity-60 z-[1201]`,
|
|
409
409
|
children: [
|
|
410
410
|
/* @__PURE__ */ s(
|
|
411
411
|
"svg",
|
|
@@ -422,7 +422,7 @@ const QA = {
|
|
|
422
422
|
cy: "55",
|
|
423
423
|
r: "45",
|
|
424
424
|
fill: "none",
|
|
425
|
-
stroke:
|
|
425
|
+
stroke: t[g],
|
|
426
426
|
strokeWidth: i[D],
|
|
427
427
|
strokeDasharray: "314",
|
|
428
428
|
strokeDashoffset: "314",
|
|
@@ -516,8 +516,8 @@ const kA = "
|
|
|
516
516
|
listMenu: D = [],
|
|
517
517
|
logo: e,
|
|
518
518
|
heightLogo: w,
|
|
519
|
-
widthLogo:
|
|
520
|
-
activeRoute:
|
|
519
|
+
widthLogo: t,
|
|
520
|
+
activeRoute: Q,
|
|
521
521
|
router: C,
|
|
522
522
|
toggleTheme: i,
|
|
523
523
|
toggeInstallApp: o,
|
|
@@ -578,7 +578,7 @@ const kA = "
|
|
|
578
578
|
{
|
|
579
579
|
alt: "logo",
|
|
580
580
|
className: "block w-auto lg:hidden",
|
|
581
|
-
style: { height: w && w.trim() !== "" ? w : "40px", width:
|
|
581
|
+
style: { height: w && w.trim() !== "" ? w : "40px", width: t && t.trim() !== "" ? t : "65px" },
|
|
582
582
|
src: e && e.trim() !== "" ? e : A === "secondary" ? kA : "https://goatdata.com.ar/images/logogoatblanco.png"
|
|
583
583
|
}
|
|
584
584
|
),
|
|
@@ -587,7 +587,7 @@ const kA = "
|
|
|
587
587
|
{
|
|
588
588
|
alt: "logo",
|
|
589
589
|
className: "hidden lg:block",
|
|
590
|
-
style: { height: w && w.trim() !== "" ? w : "40px", width:
|
|
590
|
+
style: { height: w && w.trim() !== "" ? w : "40px", width: t && t.trim() !== "" ? t : "65px" },
|
|
591
591
|
src: e && e.trim() !== "" ? e : A === "secondary" ? kA : "https://goatdata.com.ar/images/logogoatblanco.png"
|
|
592
592
|
}
|
|
593
593
|
),
|
|
@@ -603,11 +603,11 @@ const kA = "
|
|
|
603
603
|
type: "button",
|
|
604
604
|
className: J(
|
|
605
605
|
"flex items-center justify-center px-4 py-2 text-sm cursor-pointer rounded-md transition duration-300 focus:outline-none focus:ring-2 focus:ring-offset-2",
|
|
606
|
-
|
|
606
|
+
Q === m.link || (MA = m.subItems) != null && MA.some((S) => S.link === Q) ? BA[A] : "",
|
|
607
607
|
j[A],
|
|
608
608
|
wA[A],
|
|
609
|
-
|
|
610
|
-
|
|
609
|
+
Q === m.link ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
|
|
610
|
+
Q === m.link ? "font-semibold" : "font-normal"
|
|
611
611
|
),
|
|
612
612
|
onClick: () => Eg(m, k),
|
|
613
613
|
onMouseEnter: () => XA(k),
|
|
@@ -648,9 +648,9 @@ const kA = "
|
|
|
648
648
|
className: J(
|
|
649
649
|
`block px-4 py-2 text-sm cursor-pointer ${QA[A]}e`,
|
|
650
650
|
j[A] && `${j[A]}`,
|
|
651
|
-
|
|
652
|
-
|
|
653
|
-
|
|
651
|
+
Q === S.link ? BA[A] : "",
|
|
652
|
+
Q === S.link ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
|
|
653
|
+
Q === S.link ? "font-semibold" : "font-normal"
|
|
654
654
|
),
|
|
655
655
|
onClick: () => NA(S, k),
|
|
656
656
|
children: S.label
|
|
@@ -709,9 +709,9 @@ const kA = "
|
|
|
709
709
|
className: J(
|
|
710
710
|
"block px-4 py-2 text-sm cursor-pointer",
|
|
711
711
|
j[A] && `${j[A]}`,
|
|
712
|
-
|
|
713
|
-
|
|
714
|
-
|
|
712
|
+
Q === m.link ? BA[A] : "",
|
|
713
|
+
Q === m.link ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
|
|
714
|
+
Q === m.link ? "font-semibold" : "font-normal"
|
|
715
715
|
),
|
|
716
716
|
onClick: m.label === "Cerrar sesion" ? I : () => {
|
|
717
717
|
ng(m);
|
|
@@ -730,9 +730,9 @@ const kA = "
|
|
|
730
730
|
`items-center justify-center px-4 py-2 text-sm cursor-pointer hidden sm:block
|
|
731
731
|
${j[A]}
|
|
732
732
|
rounded-md transition duration-300 focus:outline-none focus:ring-2 ${wA[A]} focus:ring-offset-2`,
|
|
733
|
-
|
|
734
|
-
|
|
735
|
-
|
|
733
|
+
Q === "/login" ? BA[A] : "",
|
|
734
|
+
Q === "/login" ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
|
|
735
|
+
Q === "/login" ? "font-semibold" : "font-normal"
|
|
736
736
|
),
|
|
737
737
|
onClick: () => {
|
|
738
738
|
C.push("/login"), IA();
|
|
@@ -752,9 +752,9 @@ const kA = "
|
|
|
752
752
|
className: J(
|
|
753
753
|
`block w-full px-4 py-2 text-base ${j[A]}
|
|
754
754
|
rounded-md transition duration-300 focus:outline-none focus:ring-2 ${wA[A]} focus:ring-offset-2 text-left`,
|
|
755
|
-
|
|
756
|
-
|
|
757
|
-
|
|
755
|
+
Q === m.link || (MA = m.subItems) != null && MA.some((S) => S.link === Q) ? BA[A] : "",
|
|
756
|
+
Q === m.link ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
|
|
757
|
+
Q === m.link ? "font-semibold" : "font-normal"
|
|
758
758
|
),
|
|
759
759
|
onClick: () => {
|
|
760
760
|
Pg(m, k);
|
|
@@ -768,9 +768,9 @@ const kA = "
|
|
|
768
768
|
className: J(
|
|
769
769
|
`block w-full px-4 py-1 text-sm ${j[A]}
|
|
770
770
|
rounded-md transition duration-300 focus:outline-none focus:ring-2 ${wA[A]} focus:ring-offset-2 text-left`,
|
|
771
|
-
|
|
772
|
-
|
|
773
|
-
|
|
771
|
+
Q === S.link ? BA[A] : "",
|
|
772
|
+
Q === S.link ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
|
|
773
|
+
Q === S.link ? "font-semibold" : "font-normal"
|
|
774
774
|
),
|
|
775
775
|
onClick: () => {
|
|
776
776
|
NA(m, k), y(!1);
|
|
@@ -820,9 +820,9 @@ const kA = "
|
|
|
820
820
|
className: J(
|
|
821
821
|
`block w-full px-4 py-2 text-base ${j[A]}
|
|
822
822
|
rounded-md transition duration-300 focus:outline-none focus:ring-2 ${wA[A]} focus:ring-offset-2 text-left`,
|
|
823
|
-
|
|
824
|
-
|
|
825
|
-
|
|
823
|
+
Q === m.link ? BA[A] : "",
|
|
824
|
+
Q === m.link ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
|
|
825
|
+
Q === m.link ? "font-semibold" : "font-normal"
|
|
826
826
|
),
|
|
827
827
|
onClick: m.label === "Cerrar sesion" ? I : () => f(m),
|
|
828
828
|
children: m.label
|
|
@@ -836,9 +836,9 @@ const kA = "
|
|
|
836
836
|
className: J(
|
|
837
837
|
`block w-full px-4 py-2 text-base ${j[A]}
|
|
838
838
|
rounded-md transition duration-300 focus:outline-none focus:ring-2 ${wA[A]} focus:ring-offset-2 text-left`,
|
|
839
|
-
|
|
840
|
-
|
|
841
|
-
|
|
839
|
+
Q === "/login" ? BA[A] : "",
|
|
840
|
+
Q === "/login" ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
|
|
841
|
+
Q === "/login" ? "font-semibold" : "font-normal"
|
|
842
842
|
),
|
|
843
843
|
onClick: () => {
|
|
844
844
|
C.push("/login"), y(!1);
|
|
@@ -870,7 +870,7 @@ const Te = oA(
|
|
|
870
870
|
height: D = "",
|
|
871
871
|
...e
|
|
872
872
|
}, w) => {
|
|
873
|
-
const
|
|
873
|
+
const t = {
|
|
874
874
|
primary: "#1F2937",
|
|
875
875
|
secondary: "#ededed",
|
|
876
876
|
vividPink: "#ff0145",
|
|
@@ -879,7 +879,7 @@ const Te = oA(
|
|
|
879
879
|
danger: "#b91c1c",
|
|
880
880
|
warning: "#f59e0b",
|
|
881
881
|
success: "#047857"
|
|
882
|
-
},
|
|
882
|
+
}, Q = {
|
|
883
883
|
logoRed: jD,
|
|
884
884
|
logoBlack: JB,
|
|
885
885
|
logo6: HD,
|
|
@@ -926,7 +926,7 @@ const Te = oA(
|
|
|
926
926
|
cy: "55",
|
|
927
927
|
r: "45",
|
|
928
928
|
fill: "none",
|
|
929
|
-
stroke:
|
|
929
|
+
stroke: t[g],
|
|
930
930
|
strokeWidth: C[M],
|
|
931
931
|
strokeDasharray: "314",
|
|
932
932
|
strokeDashoffset: "314",
|
|
@@ -945,7 +945,7 @@ const Te = oA(
|
|
|
945
945
|
style: {
|
|
946
946
|
animation: "blink 1s ease-in-out infinite"
|
|
947
947
|
},
|
|
948
|
-
children: /* @__PURE__ */ s("div", { className: "ml-1", children: /* @__PURE__ */ s("img", { src: B && B.trim() !== "" ? B :
|
|
948
|
+
children: /* @__PURE__ */ s("div", { className: "ml-1", children: /* @__PURE__ */ s("img", { src: B && B.trim() !== "" ? B : Q[A], alt: "logo" }) })
|
|
949
949
|
}
|
|
950
950
|
)
|
|
951
951
|
]
|
|
@@ -963,8 +963,8 @@ const Se = oA(
|
|
|
963
963
|
logo: D,
|
|
964
964
|
heightLogo: e,
|
|
965
965
|
widthLogo: w,
|
|
966
|
-
activeRoute:
|
|
967
|
-
router:
|
|
966
|
+
activeRoute: t,
|
|
967
|
+
router: Q,
|
|
968
968
|
user: C,
|
|
969
969
|
theme: i,
|
|
970
970
|
InstallApp: o,
|
|
@@ -982,24 +982,24 @@ const Se = oA(
|
|
|
982
982
|
const [u, d] = F(!0), [y, q] = F(null), [v, W] = F(!1), [yA, UA] = F(null), [lA, SA] = F(!1), XA = eA(null), P = () => W(!v), $ = () => W(!1), GA = () => {
|
|
983
983
|
d((f) => !f);
|
|
984
984
|
}, IA = (f, p) => {
|
|
985
|
-
f.subItems && f.subItems.length > 0 ? q((EA) => EA === p ? -1 : p) : f.link &&
|
|
985
|
+
f.subItems && f.subItems.length > 0 ? q((EA) => EA === p ? -1 : p) : f.link && Q && Q.push(f.link);
|
|
986
986
|
}, Eg = (f, p) => {
|
|
987
|
-
q((EA) => EA === p ? -1 : p), f.link &&
|
|
987
|
+
q((EA) => EA === p ? -1 : p), f.link && Q && Q.push(f.link);
|
|
988
988
|
}, Pg = (f) => {
|
|
989
|
-
f.link &&
|
|
989
|
+
f.link && Q && (Q.push(f.link), $());
|
|
990
990
|
};
|
|
991
991
|
return tA(() => {
|
|
992
|
-
if (typeof window < "u" && (
|
|
992
|
+
if (typeof window < "u" && (Q != null && Q.events)) {
|
|
993
993
|
const f = () => {
|
|
994
994
|
SA(!0);
|
|
995
995
|
}, p = () => {
|
|
996
996
|
SA(!1);
|
|
997
997
|
};
|
|
998
|
-
return
|
|
999
|
-
|
|
998
|
+
return Q.events.on("routeChangeStart", f), Q.events.on("routeChangeComplete", p), Q.events.on("routeChangeError", p), () => {
|
|
999
|
+
Q.events.off("routeChangeStart", f), Q.events.off("routeChangeComplete", p), Q.events.off("routeChangeError", p);
|
|
1000
1000
|
};
|
|
1001
1001
|
}
|
|
1002
|
-
}, [
|
|
1002
|
+
}, [Q]), /* @__PURE__ */ U(
|
|
1003
1003
|
"div",
|
|
1004
1004
|
{
|
|
1005
1005
|
ref: n,
|
|
@@ -1052,9 +1052,9 @@ const Se = oA(
|
|
|
1052
1052
|
`flex items-center justify-start w-full ${u ? "px-4" : ""} ${u ? "py-2" : ""} text-sm cursor-pointer rounded-md transition duration-300 focus:outline-none focus:ring-2 focus:ring-offset-2`,
|
|
1053
1053
|
j[B],
|
|
1054
1054
|
wA[B],
|
|
1055
|
-
|
|
1056
|
-
|
|
1057
|
-
|
|
1055
|
+
t === f.link || (EA = f.subItems) != null && EA.some((O) => O.link === t) ? BA[B] : "",
|
|
1056
|
+
t === f.link ? B === "secondary" || B === "primary" || B === "darkMagenta" || B === "veryDarkViolet" || B === "success" ? "text-custom-red" : "text-custom-blue" : B === "primary" || B === "vividPink" || B === "darkMagenta" || B === "veryDarkViolet" || B === "danger" || B === "warning" || B === "success" ? "text-white" : "text-custom-blue",
|
|
1057
|
+
t === f.link ? "font-semibold" : "font-normal"
|
|
1058
1058
|
),
|
|
1059
1059
|
onClick: () => {
|
|
1060
1060
|
IA(f, p);
|
|
@@ -1113,9 +1113,9 @@ const Se = oA(
|
|
|
1113
1113
|
className: J(
|
|
1114
1114
|
`block w-full px-4 py-1 text-sm ${j[B]}
|
|
1115
1115
|
rounded-md transition duration-300 focus:outline-none focus:ring-2 ${wA[B]} focus:ring-offset-2 text-left`,
|
|
1116
|
-
|
|
1117
|
-
|
|
1118
|
-
|
|
1116
|
+
t === O.link ? BA[B] : "",
|
|
1117
|
+
t === O.link ? B === "secondary" || B === "primary" || B === "darkMagenta" || B === "veryDarkViolet" || B === "success" ? "text-custom-red" : "text-custom-blue" : B === "primary" || B === "vividPink" || B === "darkMagenta" || B === "veryDarkViolet" || B === "danger" || B === "warning" || B === "success" ? "text-white" : "text-custom-blue",
|
|
1118
|
+
t === O.link ? "font-semibold" : "font-normal"
|
|
1119
1119
|
),
|
|
1120
1120
|
onClick: () => {
|
|
1121
1121
|
Eg(O, p);
|
|
@@ -1135,9 +1135,9 @@ const Se = oA(
|
|
|
1135
1135
|
className: J(
|
|
1136
1136
|
`block px-4 py-2 text-sm cursor-pointer ${QA[B]}e`,
|
|
1137
1137
|
j[B] && `${j[B]}`,
|
|
1138
|
-
|
|
1139
|
-
|
|
1140
|
-
|
|
1138
|
+
t === O.link ? BA[B] : "",
|
|
1139
|
+
t === O.link ? B === "secondary" || B === "primary" || B === "darkMagenta" || B === "veryDarkViolet" || B === "success" ? "text-custom-red" : "text-custom-blue" : B === "primary" || B === "vividPink" || B === "darkMagenta" || B === "veryDarkViolet" || B === "danger" || B === "warning" || B === "success" ? "text-white" : "text-custom-blue",
|
|
1140
|
+
t === O.link ? "font-semibold" : "font-normal"
|
|
1141
1141
|
),
|
|
1142
1142
|
onClick: () => {
|
|
1143
1143
|
Eg(O, p);
|
|
@@ -1193,9 +1193,9 @@ const Se = oA(
|
|
|
1193
1193
|
className: J(
|
|
1194
1194
|
"block px-4 py-2 text-sm cursor-pointer",
|
|
1195
1195
|
j[B] && `${j[B]}`,
|
|
1196
|
-
|
|
1197
|
-
|
|
1198
|
-
|
|
1196
|
+
t === f.link ? BA[B] : "",
|
|
1197
|
+
t === f.link ? B === "secondary" || B === "primary" || B === "darkMagenta" || B === "veryDarkViolet" || B === "success" ? "text-custom-red" : "text-custom-blue" : B === "primary" || B === "vividPink" || B === "darkMagenta" || B === "veryDarkViolet" || B === "danger" || B === "warning" || B === "success" ? "text-white" : "text-custom-blue",
|
|
1198
|
+
t === f.link ? "font-semibold" : "font-normal"
|
|
1199
1199
|
),
|
|
1200
1200
|
onClick: f.label === "Cerrar sesion" ? a : () => {
|
|
1201
1201
|
Pg(f);
|
|
@@ -1228,36 +1228,36 @@ const Se = oA(
|
|
|
1228
1228
|
}
|
|
1229
1229
|
);
|
|
1230
1230
|
Se.displayName = "Sidebar";
|
|
1231
|
-
const AB = "", aM = ({ children: g, href: A, Viewport: B, colorButton: M }) => {
|
|
1232
|
-
const
|
|
1231
|
+
const AB = "", aM = ({ children: g, href: A, Viewport: B, colorButton: M, setIsOpen: D }) => {
|
|
1232
|
+
const e = eA(null), [w, t] = F(M);
|
|
1233
1233
|
return tA(() => {
|
|
1234
|
-
const
|
|
1235
|
-
const
|
|
1236
|
-
if (
|
|
1237
|
-
const
|
|
1238
|
-
|
|
1234
|
+
const C = () => {
|
|
1235
|
+
const i = document.getElementById(A.slice(1));
|
|
1236
|
+
if (i) {
|
|
1237
|
+
const o = i.getBoundingClientRect(), I = o.top >= 0 && o.bottom <= window.innerHeight;
|
|
1238
|
+
t(I ? B : M);
|
|
1239
1239
|
}
|
|
1240
1240
|
};
|
|
1241
|
-
return
|
|
1242
|
-
window.removeEventListener("scroll",
|
|
1241
|
+
return C(), window.addEventListener("scroll", C), () => {
|
|
1242
|
+
window.removeEventListener("scroll", C);
|
|
1243
1243
|
};
|
|
1244
1244
|
}, [A, B, M]), /* @__PURE__ */ s(
|
|
1245
1245
|
"button",
|
|
1246
1246
|
{
|
|
1247
1247
|
onClick: () => {
|
|
1248
|
-
const
|
|
1249
|
-
|
|
1250
|
-
const
|
|
1251
|
-
|
|
1248
|
+
const C = document.getElementById(A.slice(1));
|
|
1249
|
+
C && (C.scrollIntoView({ behavior: "smooth" }), setTimeout(() => {
|
|
1250
|
+
const i = C.getBoundingClientRect(), o = i.top >= 0 && i.bottom <= window.innerHeight;
|
|
1251
|
+
t(o ? B : M), D(!1);
|
|
1252
1252
|
}, 300));
|
|
1253
1253
|
},
|
|
1254
|
-
ref:
|
|
1254
|
+
ref: e,
|
|
1255
1255
|
style: {
|
|
1256
1256
|
display: "block",
|
|
1257
1257
|
padding: "8px 12px",
|
|
1258
1258
|
borderRadius: "6px",
|
|
1259
1259
|
fontSize: "14px",
|
|
1260
|
-
color:
|
|
1260
|
+
color: w,
|
|
1261
1261
|
background: "transparent",
|
|
1262
1262
|
opacity: 0.7,
|
|
1263
1263
|
textDecoration: "none",
|
|
@@ -1320,10 +1320,10 @@ function $e(g) {
|
|
|
1320
1320
|
timestamp: 0,
|
|
1321
1321
|
isProcessing: !1
|
|
1322
1322
|
};
|
|
1323
|
-
function
|
|
1324
|
-
e.has(C) && (
|
|
1323
|
+
function t(C) {
|
|
1324
|
+
e.has(C) && (Q.schedule(C), g()), C(w);
|
|
1325
1325
|
}
|
|
1326
|
-
const
|
|
1326
|
+
const Q = {
|
|
1327
1327
|
/**
|
|
1328
1328
|
* Schedule a process to run on the next frame.
|
|
1329
1329
|
*/
|
|
@@ -1345,10 +1345,10 @@ function $e(g) {
|
|
|
1345
1345
|
D = !0;
|
|
1346
1346
|
return;
|
|
1347
1347
|
}
|
|
1348
|
-
M = !0, [A, B] = [B, A], A.forEach(
|
|
1348
|
+
M = !0, [A, B] = [B, A], A.forEach(t), A.clear(), M = !1, D && (D = !1, Q.process(C));
|
|
1349
1349
|
}
|
|
1350
1350
|
};
|
|
1351
|
-
return
|
|
1351
|
+
return Q;
|
|
1352
1352
|
}
|
|
1353
1353
|
const rg = [
|
|
1354
1354
|
"read",
|
|
@@ -1370,9 +1370,9 @@ function xD(g, A) {
|
|
|
1370
1370
|
delta: 0,
|
|
1371
1371
|
timestamp: 0,
|
|
1372
1372
|
isProcessing: !1
|
|
1373
|
-
}, e = () => B = !0, w = rg.reduce((a, l) => (a[l] = $e(e), a), {}), { read:
|
|
1373
|
+
}, e = () => B = !0, w = rg.reduce((a, l) => (a[l] = $e(e), a), {}), { read: t, resolveKeyframes: Q, update: C, preRender: i, render: o, postRender: I } = w, E = () => {
|
|
1374
1374
|
const a = performance.now();
|
|
1375
|
-
B = !1, D.delta = M ? 1e3 / 60 : Math.max(Math.min(a - D.timestamp, _e), 1), D.timestamp = a, D.isProcessing = !0,
|
|
1375
|
+
B = !1, D.delta = M ? 1e3 / 60 : Math.max(Math.min(a - D.timestamp, _e), 1), D.timestamp = a, D.isProcessing = !0, t.process(D), Q.process(D), C.process(D), i.process(D), o.process(D), I.process(D), D.isProcessing = !1, B && A && (M = !1, g(E));
|
|
1376
1376
|
}, r = () => {
|
|
1377
1377
|
B = !0, M = !0, D.isProcessing || g(E);
|
|
1378
1378
|
};
|
|
@@ -1541,10 +1541,10 @@ function Qt(g, A, B) {
|
|
|
1541
1541
|
const OB = (g) => g.replace(/([a-z])([A-Z])/gu, "$1-$2").toLowerCase(), Ct = "framerAppearId", Aw = "data-" + OB(Ct), { schedule: jB, cancel: fs } = xD(queueMicrotask, !1), gw = OA({});
|
|
1542
1542
|
function it(g, A, B, M, D) {
|
|
1543
1543
|
var e, w;
|
|
1544
|
-
const { visualElement:
|
|
1545
|
-
M = M ||
|
|
1544
|
+
const { visualElement: t } = X(pg), Q = X(WD), C = X(vB), i = X(ND).reducedMotion, o = eA(null);
|
|
1545
|
+
M = M || Q.renderer, !o.current && M && (o.current = M(g, {
|
|
1546
1546
|
visualState: A,
|
|
1547
|
-
parent:
|
|
1547
|
+
parent: t,
|
|
1548
1548
|
props: B,
|
|
1549
1549
|
presenceContext: C,
|
|
1550
1550
|
blockInitialAnimation: C ? C.initial === !1 : !1,
|
|
@@ -1567,11 +1567,11 @@ function it(g, A, B, M, D) {
|
|
|
1567
1567
|
}), I;
|
|
1568
1568
|
}
|
|
1569
1569
|
function st(g, A, B, M) {
|
|
1570
|
-
const { layoutId: D, layout: e, drag: w, dragConstraints:
|
|
1570
|
+
const { layoutId: D, layout: e, drag: w, dragConstraints: t, layoutScroll: Q, layoutRoot: C } = A;
|
|
1571
1571
|
g.projection = new B(g.latestValues, A["data-framer-portal-id"] ? void 0 : Bw(g.parent)), g.projection.setOptions({
|
|
1572
1572
|
layoutId: D,
|
|
1573
1573
|
layout: e,
|
|
1574
|
-
alwaysMeasureLayout: !!w ||
|
|
1574
|
+
alwaysMeasureLayout: !!w || t && pA(t),
|
|
1575
1575
|
visualElement: g,
|
|
1576
1576
|
/**
|
|
1577
1577
|
* TODO: Update options in an effect. This could be tricky as it'll be too late
|
|
@@ -1582,7 +1582,7 @@ function st(g, A, B, M) {
|
|
|
1582
1582
|
*/
|
|
1583
1583
|
animationType: typeof e == "string" ? e : "both",
|
|
1584
1584
|
initialPromotionConfig: M,
|
|
1585
|
-
layoutScroll:
|
|
1585
|
+
layoutScroll: Q,
|
|
1586
1586
|
layoutRoot: C
|
|
1587
1587
|
});
|
|
1588
1588
|
}
|
|
@@ -1593,7 +1593,7 @@ function Bw(g) {
|
|
|
1593
1593
|
function ot({ preloadedFeatures: g, createVisualElement: A, useRender: B, useVisualState: M, Component: D }) {
|
|
1594
1594
|
var e, w;
|
|
1595
1595
|
g && At(g);
|
|
1596
|
-
function
|
|
1596
|
+
function t(C, i) {
|
|
1597
1597
|
let o;
|
|
1598
1598
|
const I = {
|
|
1599
1599
|
...X(ND),
|
|
@@ -1607,9 +1607,9 @@ function ot({ preloadedFeatures: g, createVisualElement: A, useRender: B, useVis
|
|
|
1607
1607
|
}
|
|
1608
1608
|
return U(pg.Provider, { value: r, children: [o && r.visualElement ? s(o, { visualElement: r.visualElement, ...I }) : null, B(D, C, Qt(G, r.visualElement, i), G, E, r.visualElement)] });
|
|
1609
1609
|
}
|
|
1610
|
-
|
|
1611
|
-
const
|
|
1612
|
-
return
|
|
1610
|
+
t.displayName = `motion.${typeof D == "string" ? D : `create(${(w = (e = D.displayName) !== null && e !== void 0 ? e : D.name) !== null && w !== void 0 ? w : ""})`}`;
|
|
1611
|
+
const Q = oA(t);
|
|
1612
|
+
return Q[tt] = D, Q;
|
|
1613
1613
|
}
|
|
1614
1614
|
function It({ layoutId: g }) {
|
|
1615
1615
|
const A = X(XD).id;
|
|
@@ -1706,7 +1706,7 @@ function at({ scrapeMotionValuesFromProps: g, createRenderState: A, onUpdate: B
|
|
|
1706
1706
|
latestValues: ct(M, D, e, g),
|
|
1707
1707
|
renderState: A()
|
|
1708
1708
|
};
|
|
1709
|
-
return B && (w.onMount = (
|
|
1709
|
+
return B && (w.onMount = (t) => B({ props: M, current: t, ...w }), w.onUpdate = (t) => B(t)), w;
|
|
1710
1710
|
}
|
|
1711
1711
|
const Mw = (g) => (A, B) => {
|
|
1712
1712
|
const M = X(pg), D = X(vB), e = () => at(g, A, M, D);
|
|
@@ -1716,12 +1716,12 @@ function ct(g, A, B, M) {
|
|
|
1716
1716
|
const D = {}, e = M(g, {});
|
|
1717
1717
|
for (const I in e)
|
|
1718
1718
|
D[I] = ag(e[I]);
|
|
1719
|
-
let { initial: w, animate:
|
|
1720
|
-
const
|
|
1721
|
-
A && C && !
|
|
1719
|
+
let { initial: w, animate: t } = g;
|
|
1720
|
+
const Q = Jg(g), C = _D(g);
|
|
1721
|
+
A && C && !Q && g.inherit !== !1 && (w === void 0 && (w = A.initial), t === void 0 && (t = A.animate));
|
|
1722
1722
|
let i = B ? B.initial === !1 : !1;
|
|
1723
1723
|
i = i || w === !1;
|
|
1724
|
-
const o = i ?
|
|
1724
|
+
const o = i ? t : w;
|
|
1725
1725
|
if (o && typeof o != "boolean" && !hg(o)) {
|
|
1726
1726
|
const I = Array.isArray(o) ? o : [o];
|
|
1727
1727
|
for (let E = 0; E < I.length; E++) {
|
|
@@ -1861,13 +1861,13 @@ const HA = [
|
|
|
1861
1861
|
function dt(g, A, B) {
|
|
1862
1862
|
let M = "", D = !0;
|
|
1863
1863
|
for (let e = 0; e < ft; e++) {
|
|
1864
|
-
const w = HA[e],
|
|
1865
|
-
if (
|
|
1864
|
+
const w = HA[e], t = g[w];
|
|
1865
|
+
if (t === void 0)
|
|
1866
1866
|
continue;
|
|
1867
|
-
let
|
|
1868
|
-
if (typeof
|
|
1869
|
-
const C = ew(
|
|
1870
|
-
if (!
|
|
1867
|
+
let Q = !0;
|
|
1868
|
+
if (typeof t == "number" ? Q = t === (w.startsWith("scale") ? 1 : 0) : Q = parseFloat(t) === 0, !Q || B) {
|
|
1869
|
+
const C = ew(t, XB[w]);
|
|
1870
|
+
if (!Q) {
|
|
1871
1871
|
D = !1;
|
|
1872
1872
|
const i = Vt[w] || w;
|
|
1873
1873
|
M += `${i}(${C}) `;
|
|
@@ -1879,23 +1879,23 @@ function dt(g, A, B) {
|
|
|
1879
1879
|
}
|
|
1880
1880
|
function NB(g, A, B) {
|
|
1881
1881
|
const { style: M, vars: D, transformOrigin: e } = g;
|
|
1882
|
-
let w = !1,
|
|
1883
|
-
for (const
|
|
1884
|
-
const C = A[
|
|
1885
|
-
if (KA.has(
|
|
1882
|
+
let w = !1, t = !1;
|
|
1883
|
+
for (const Q in A) {
|
|
1884
|
+
const C = A[Q];
|
|
1885
|
+
if (KA.has(Q)) {
|
|
1886
1886
|
w = !0;
|
|
1887
1887
|
continue;
|
|
1888
|
-
} else if (ww(
|
|
1889
|
-
D[
|
|
1888
|
+
} else if (ww(Q)) {
|
|
1889
|
+
D[Q] = C;
|
|
1890
1890
|
continue;
|
|
1891
1891
|
} else {
|
|
1892
|
-
const i = ew(C, XB[
|
|
1893
|
-
|
|
1892
|
+
const i = ew(C, XB[Q]);
|
|
1893
|
+
Q.startsWith("origin") ? (t = !0, e[Q] = i) : M[Q] = i;
|
|
1894
1894
|
}
|
|
1895
1895
|
}
|
|
1896
|
-
if (A.transform || (w || B ? M.transform = dt(A, g.transform, B) : M.transform && (M.transform = "none")),
|
|
1897
|
-
const { originX:
|
|
1898
|
-
M.transformOrigin = `${
|
|
1896
|
+
if (A.transform || (w || B ? M.transform = dt(A, g.transform, B) : M.transform && (M.transform = "none")), t) {
|
|
1897
|
+
const { originX: Q = "50%", originY: C = "50%", originZ: i = 0 } = e;
|
|
1898
|
+
M.transformOrigin = `${Q} ${C} ${i}`;
|
|
1899
1899
|
}
|
|
1900
1900
|
}
|
|
1901
1901
|
const qt = {
|
|
@@ -1909,8 +1909,8 @@ function Kt(g, A, B = 1, M = 0, D = !0) {
|
|
|
1909
1909
|
g.pathLength = 1;
|
|
1910
1910
|
const e = D ? qt : kt;
|
|
1911
1911
|
g[e.offset] = V.transform(-M);
|
|
1912
|
-
const w = V.transform(A),
|
|
1913
|
-
g[e.array] = `${w} ${
|
|
1912
|
+
const w = V.transform(A), t = V.transform(B);
|
|
1913
|
+
g[e.array] = `${w} ${t}`;
|
|
1914
1914
|
}
|
|
1915
1915
|
function ZM(g, A, B) {
|
|
1916
1916
|
return typeof g == "string" ? g : V.transform(A + B * g);
|
|
@@ -1926,8 +1926,8 @@ function xB(g, {
|
|
|
1926
1926
|
originX: D,
|
|
1927
1927
|
originY: e,
|
|
1928
1928
|
pathLength: w,
|
|
1929
|
-
pathSpacing:
|
|
1930
|
-
pathOffset:
|
|
1929
|
+
pathSpacing: t = 1,
|
|
1930
|
+
pathOffset: Q = 0,
|
|
1931
1931
|
// This is object creation, which we try to avoid per-frame.
|
|
1932
1932
|
...C
|
|
1933
1933
|
}, i, o) {
|
|
@@ -1937,7 +1937,7 @@ function xB(g, {
|
|
|
1937
1937
|
}
|
|
1938
1938
|
g.attrs = g.style, g.style = {};
|
|
1939
1939
|
const { attrs: I, style: E, dimensions: r } = g;
|
|
1940
|
-
I.transform && (r && (E.transform = I.transform), delete I.transform), r && (D !== void 0 || e !== void 0 || E.transform) && (E.transformOrigin = Rt(r, D !== void 0 ? D : 0.5, e !== void 0 ? e : 0.5)), A !== void 0 && (I.x = A), B !== void 0 && (I.y = B), M !== void 0 && (I.scale = M), w !== void 0 && Kt(I, w,
|
|
1940
|
+
I.transform && (r && (E.transform = I.transform), delete I.transform), r && (D !== void 0 || e !== void 0 || E.transform) && (E.transformOrigin = Rt(r, D !== void 0 ? D : 0.5, e !== void 0 ? e : 0.5)), A !== void 0 && (I.x = A), B !== void 0 && (I.y = B), M !== void 0 && (I.scale = M), w !== void 0 && Kt(I, w, t, Q, !1);
|
|
1941
1941
|
}
|
|
1942
1942
|
const WB = () => ({
|
|
1943
1943
|
style: {},
|
|
@@ -2027,8 +2027,8 @@ const VM = ["x", "y", "width", "height", "cx", "cy", "r"], Jt = {
|
|
|
2027
2027
|
return;
|
|
2028
2028
|
let e = !!g.drag;
|
|
2029
2029
|
if (!e) {
|
|
2030
|
-
for (const
|
|
2031
|
-
if (KA.has(
|
|
2030
|
+
for (const t in D)
|
|
2031
|
+
if (KA.has(t)) {
|
|
2032
2032
|
e = !0;
|
|
2033
2033
|
break;
|
|
2034
2034
|
}
|
|
@@ -2037,9 +2037,9 @@ const VM = ["x", "y", "width", "height", "cx", "cy", "r"], Jt = {
|
|
|
2037
2037
|
return;
|
|
2038
2038
|
let w = !A;
|
|
2039
2039
|
if (A)
|
|
2040
|
-
for (let
|
|
2041
|
-
const
|
|
2042
|
-
g[
|
|
2040
|
+
for (let t = 0; t < VM.length; t++) {
|
|
2041
|
+
const Q = VM[t];
|
|
2042
|
+
g[Q] !== A[Q] && (w = !0);
|
|
2043
2043
|
}
|
|
2044
2044
|
w && R.read(() => {
|
|
2045
2045
|
ht(B, M), R.render(() => {
|
|
@@ -2088,7 +2088,7 @@ function Ft(g, A, B, M) {
|
|
|
2088
2088
|
}
|
|
2089
2089
|
function bt(g = !1) {
|
|
2090
2090
|
return (B, M, D, { latestValues: e }, w) => {
|
|
2091
|
-
const
|
|
2091
|
+
const Q = (HB(B) ? Ft : Lt)(M, e, w, B), C = Mt(M, typeof B == "string", g), i = B !== vD ? { ...C, ...Q, ref: D } : {}, { children: o } = M, I = Kg(() => T(o) ? o.get() : o, [o]);
|
|
2092
2092
|
return Ze(B, {
|
|
2093
2093
|
...i,
|
|
2094
2094
|
children: I
|
|
@@ -2288,19 +2288,19 @@ function dM(g) {
|
|
|
2288
2288
|
return !(g.pointerType === "touch" || aw());
|
|
2289
2289
|
}
|
|
2290
2290
|
function xt(g, A, B = {}) {
|
|
2291
|
-
const [M, D, e] = cw(g, B), w = (
|
|
2292
|
-
if (!dM(
|
|
2291
|
+
const [M, D, e] = cw(g, B), w = (t) => {
|
|
2292
|
+
if (!dM(t))
|
|
2293
2293
|
return;
|
|
2294
|
-
const { target:
|
|
2295
|
-
if (typeof C != "function" || !
|
|
2294
|
+
const { target: Q } = t, C = A(Q, t);
|
|
2295
|
+
if (typeof C != "function" || !Q)
|
|
2296
2296
|
return;
|
|
2297
2297
|
const i = (o) => {
|
|
2298
|
-
dM(o) && (C(o),
|
|
2298
|
+
dM(o) && (C(o), Q.removeEventListener("pointerleave", i));
|
|
2299
2299
|
};
|
|
2300
|
-
|
|
2300
|
+
Q.addEventListener("pointerleave", i, D);
|
|
2301
2301
|
};
|
|
2302
|
-
return M.forEach((
|
|
2303
|
-
|
|
2302
|
+
return M.forEach((t) => {
|
|
2303
|
+
t.addEventListener("pointerenter", w, D);
|
|
2304
2304
|
}), e;
|
|
2305
2305
|
}
|
|
2306
2306
|
const Yw = (g, A) => A ? g === A ? !0 : Yw(g, A.parentElement) : !1, MM = (g) => g.pointerType === "mouse" ? typeof g.button != "number" || g.button <= 0 : g.isPrimary !== !1, Wt = /* @__PURE__ */ new Set([
|
|
@@ -2341,22 +2341,22 @@ function kM(g) {
|
|
|
2341
2341
|
return MM(g) && !aw();
|
|
2342
2342
|
}
|
|
2343
2343
|
function AQ(g, A, B = {}) {
|
|
2344
|
-
const [M, D, e] = cw(g, B), w = (
|
|
2345
|
-
const
|
|
2346
|
-
if (!kM(
|
|
2344
|
+
const [M, D, e] = cw(g, B), w = (t) => {
|
|
2345
|
+
const Q = t.currentTarget;
|
|
2346
|
+
if (!kM(t) || $A.has(Q))
|
|
2347
2347
|
return;
|
|
2348
|
-
$A.add(
|
|
2349
|
-
const C = A(
|
|
2350
|
-
window.removeEventListener("pointerup", o), window.removeEventListener("pointercancel", I), !(!kM(E) || !$A.has(
|
|
2348
|
+
$A.add(Q);
|
|
2349
|
+
const C = A(Q, t), i = (E, r) => {
|
|
2350
|
+
window.removeEventListener("pointerup", o), window.removeEventListener("pointercancel", I), !(!kM(E) || !$A.has(Q)) && ($A.delete(Q), typeof C == "function" && C(E, { success: r }));
|
|
2351
2351
|
}, o = (E) => {
|
|
2352
|
-
i(E, B.useGlobalTarget || Yw(
|
|
2352
|
+
i(E, B.useGlobalTarget || Yw(Q, E.target));
|
|
2353
2353
|
}, I = (E) => {
|
|
2354
2354
|
i(E, !1);
|
|
2355
2355
|
};
|
|
2356
2356
|
window.addEventListener("pointerup", o, D), window.addEventListener("pointercancel", I, D);
|
|
2357
2357
|
};
|
|
2358
|
-
return M.forEach((
|
|
2359
|
-
!$t(
|
|
2358
|
+
return M.forEach((t) => {
|
|
2359
|
+
!$t(t) && t.getAttribute("tabindex") === null && (t.tabIndex = 0), (B.useGlobalTarget ? window : t).addEventListener("pointerdown", w, D), t.addEventListener("focus", (C) => _t(C, D), D);
|
|
2360
2360
|
}), e;
|
|
2361
2361
|
}
|
|
2362
2362
|
function gQ(g) {
|
|
@@ -2626,8 +2626,8 @@ function eQ(g, A) {
|
|
|
2626
2626
|
let { transitionEnd: M = {}, transition: D = {}, ...e } = B || {};
|
|
2627
2627
|
e = { ...e, ...M };
|
|
2628
2628
|
for (const w in e) {
|
|
2629
|
-
const
|
|
2630
|
-
wQ(g, w,
|
|
2629
|
+
const t = Gt(e[w]);
|
|
2630
|
+
wQ(g, w, t);
|
|
2631
2631
|
}
|
|
2632
2632
|
}
|
|
2633
2633
|
function tQ(g) {
|
|
@@ -2643,10 +2643,10 @@ function yw(g) {
|
|
|
2643
2643
|
}
|
|
2644
2644
|
const Uw = (g, A, B) => (((1 - 3 * B + 3 * A) * g + (3 * B - 6 * A)) * g + 3 * A) * g, QQ = 1e-7, CQ = 12;
|
|
2645
2645
|
function iQ(g, A, B, M, D) {
|
|
2646
|
-
let e, w,
|
|
2646
|
+
let e, w, t = 0;
|
|
2647
2647
|
do
|
|
2648
2648
|
w = A + (B - A) / 2, e = Uw(w, M, D) - g, e > 0 ? B = w : A = w;
|
|
2649
|
-
while (Math.abs(e) > QQ && ++
|
|
2649
|
+
while (Math.abs(e) > QQ && ++t < CQ);
|
|
2650
2650
|
return w;
|
|
2651
2651
|
}
|
|
2652
2652
|
function sg(g, A, B, M) {
|
|
@@ -2666,12 +2666,12 @@ function oQ(g) {
|
|
|
2666
2666
|
const IQ = /^(?:#[\da-f]{3,8}|(?:rgb|hsl)a?\((?:-?[\d.]+%?[,\s]+){2}-?[\d.]+%?\s*(?:[,/]\s*)?(?:\b\d+(?:\.\d+)?|\.\d+)?%?\))$/iu, iM = (g, A) => (B) => !!(typeof B == "string" && IQ.test(B) && B.startsWith(g) || A && !oQ(B) && Object.prototype.hasOwnProperty.call(B, A)), pw = (g, A, B) => (M) => {
|
|
2667
2667
|
if (typeof M != "string")
|
|
2668
2668
|
return M;
|
|
2669
|
-
const [D, e, w,
|
|
2669
|
+
const [D, e, w, t] = M.match(CM);
|
|
2670
2670
|
return {
|
|
2671
2671
|
[g]: parseFloat(D),
|
|
2672
2672
|
[A]: parseFloat(e),
|
|
2673
2673
|
[B]: parseFloat(w),
|
|
2674
|
-
alpha:
|
|
2674
|
+
alpha: t !== void 0 ? parseFloat(t) : 1
|
|
2675
2675
|
};
|
|
2676
2676
|
}, EQ = (g) => rA(0, 255, g), Og = {
|
|
2677
2677
|
...TA,
|
|
@@ -2715,8 +2715,8 @@ function Qg(g) {
|
|
|
2715
2715
|
var: []
|
|
2716
2716
|
}, D = [];
|
|
2717
2717
|
let e = 0;
|
|
2718
|
-
const
|
|
2719
|
-
return { values: B, split:
|
|
2718
|
+
const t = A.replace(cQ, (Q) => (H.test(Q) ? (M.color.push(e), D.push(Jw), B.push(H.parse(Q))) : Q.startsWith(aQ) ? (M.var.push(e), D.push(GQ), B.push(Q)) : (M.number.push(e), D.push(hw), B.push(parseFloat(Q))), ++e, RM)).split(RM);
|
|
2719
|
+
return { values: B, split: t, indexes: M, types: D };
|
|
2720
2720
|
}
|
|
2721
2721
|
function zw(g) {
|
|
2722
2722
|
return Qg(g).values;
|
|
@@ -2727,8 +2727,8 @@ function vw(g) {
|
|
|
2727
2727
|
let e = "";
|
|
2728
2728
|
for (let w = 0; w < M; w++)
|
|
2729
2729
|
if (e += A[w], D[w] !== void 0) {
|
|
2730
|
-
const
|
|
2731
|
-
|
|
2730
|
+
const t = B[w];
|
|
2731
|
+
t === hw ? e += gg(D[w]) : t === Jw ? e += H.transform(D[w]) : e += D[w];
|
|
2732
2732
|
}
|
|
2733
2733
|
return e;
|
|
2734
2734
|
};
|
|
@@ -2837,8 +2837,8 @@ function Lw() {
|
|
|
2837
2837
|
M.render();
|
|
2838
2838
|
const D = B.get(M);
|
|
2839
2839
|
D && D.forEach(([e, w]) => {
|
|
2840
|
-
var
|
|
2841
|
-
(
|
|
2840
|
+
var t;
|
|
2841
|
+
(t = M.getValue(e)) === null || t === void 0 || t.set(w);
|
|
2842
2842
|
});
|
|
2843
2843
|
}), g.forEach((M) => M.measureEndState()), g.forEach((M) => {
|
|
2844
2844
|
M.suspendedScrollY !== void 0 && window.scrollTo(0, M.suspendedScrollY);
|
|
@@ -2866,14 +2866,14 @@ class oM {
|
|
|
2866
2866
|
for (let e = 0; e < A.length; e++)
|
|
2867
2867
|
if (A[e] === null)
|
|
2868
2868
|
if (e === 0) {
|
|
2869
|
-
const w = D == null ? void 0 : D.get(),
|
|
2869
|
+
const w = D == null ? void 0 : D.get(), t = A[A.length - 1];
|
|
2870
2870
|
if (w !== void 0)
|
|
2871
2871
|
A[0] = w;
|
|
2872
2872
|
else if (M && B) {
|
|
2873
|
-
const
|
|
2874
|
-
|
|
2873
|
+
const Q = M.readValue(B, t);
|
|
2874
|
+
Q != null && (A[0] = Q);
|
|
2875
2875
|
}
|
|
2876
|
-
A[0] === void 0 && (A[0] =
|
|
2876
|
+
A[0] === void 0 && (A[0] = t), D && w === void 0 && D.set(A[0]);
|
|
2877
2877
|
} else
|
|
2878
2878
|
A[e] = A[e - 1];
|
|
2879
2879
|
}
|
|
@@ -2932,21 +2932,21 @@ class Tw extends oM {
|
|
|
2932
2932
|
if (!B || !B.current)
|
|
2933
2933
|
return;
|
|
2934
2934
|
super.readKeyframes();
|
|
2935
|
-
for (let
|
|
2936
|
-
let C = A[
|
|
2935
|
+
for (let Q = 0; Q < A.length; Q++) {
|
|
2936
|
+
let C = A[Q];
|
|
2937
2937
|
if (typeof C == "string" && (C = C.trim(), SB(C))) {
|
|
2938
2938
|
const i = Ow(C, B.current);
|
|
2939
|
-
i !== void 0 && (A[
|
|
2939
|
+
i !== void 0 && (A[Q] = i), Q === A.length - 1 && (this.finalKeyframe = C);
|
|
2940
2940
|
}
|
|
2941
2941
|
}
|
|
2942
2942
|
if (this.resolveNoneKeyframes(), !uw.has(M) || A.length !== 2)
|
|
2943
2943
|
return;
|
|
2944
|
-
const [D, e] = A, w = zM(D),
|
|
2945
|
-
if (w !==
|
|
2946
|
-
if (pM(w) && pM(
|
|
2947
|
-
for (let
|
|
2948
|
-
const C = A[
|
|
2949
|
-
typeof C == "string" && (A[
|
|
2944
|
+
const [D, e] = A, w = zM(D), t = zM(e);
|
|
2945
|
+
if (w !== t)
|
|
2946
|
+
if (pM(w) && pM(t))
|
|
2947
|
+
for (let Q = 0; Q < A.length; Q++) {
|
|
2948
|
+
const C = A[Q];
|
|
2949
|
+
typeof C == "string" && (A[Q] = parseFloat(C));
|
|
2950
2950
|
}
|
|
2951
2951
|
else
|
|
2952
2952
|
this.needsMeasurement = !0;
|
|
@@ -2972,9 +2972,9 @@ class Tw extends oM {
|
|
|
2972
2972
|
return;
|
|
2973
2973
|
const e = B.getValue(M);
|
|
2974
2974
|
e && e.jump(this.measuredOrigin, !1);
|
|
2975
|
-
const w = D.length - 1,
|
|
2976
|
-
D[w] = bA[M](B.measureViewportBox(), window.getComputedStyle(B.current)),
|
|
2977
|
-
B.getValue(
|
|
2975
|
+
const w = D.length - 1, t = D[w];
|
|
2976
|
+
D[w] = bA[M](B.measureViewportBox(), window.getComputedStyle(B.current)), t !== null && this.finalKeyframe === void 0 && (this.finalKeyframe = t), !((A = this.removedTransforms) === null || A === void 0) && A.length && this.removedTransforms.forEach(([Q, C]) => {
|
|
2977
|
+
B.getValue(Q).set(C);
|
|
2978
2978
|
}), this.resolveNoneKeyframes();
|
|
2979
2979
|
}
|
|
2980
2980
|
}
|
|
@@ -2995,8 +2995,8 @@ function vQ(g, A, B, M) {
|
|
|
2995
2995
|
return !1;
|
|
2996
2996
|
if (A === "display" || A === "visibility")
|
|
2997
2997
|
return !0;
|
|
2998
|
-
const e = g[g.length - 1], w = vM(D, A),
|
|
2999
|
-
return jA(w ===
|
|
2998
|
+
const e = g[g.length - 1], w = vM(D, A), t = vM(e, A);
|
|
2999
|
+
return jA(w === t, `You are trying to animate ${A} from "${D}" to "${e}". ${D} is not an animatable value - to enable this animation set ${D} to a value animatable to ${e} via the \`style\` property.`), !w || !t ? !1 : zQ(g) || (B === "spring" || gM(B)) && M;
|
|
3000
3000
|
}
|
|
3001
3001
|
const PQ = (g) => g !== null;
|
|
3002
3002
|
function vg(g, { repeat: A, repeatType: B = "loop" }, M) {
|
|
@@ -3005,7 +3005,7 @@ function vg(g, { repeat: A, repeatType: B = "loop" }, M) {
|
|
|
3005
3005
|
}
|
|
3006
3006
|
const LQ = 40;
|
|
3007
3007
|
class Sw {
|
|
3008
|
-
constructor({ autoplay: A = !0, delay: B = 0, type: M = "keyframes", repeat: D = 0, repeatDelay: e = 0, repeatType: w = "loop", ...
|
|
3008
|
+
constructor({ autoplay: A = !0, delay: B = 0, type: M = "keyframes", repeat: D = 0, repeatDelay: e = 0, repeatType: w = "loop", ...t }) {
|
|
3009
3009
|
this.isStopped = !1, this.hasAttemptedResolve = !1, this.createdAt = sA.now(), this.options = {
|
|
3010
3010
|
autoplay: A,
|
|
3011
3011
|
delay: B,
|
|
@@ -3013,7 +3013,7 @@ class Sw {
|
|
|
3013
3013
|
repeat: D,
|
|
3014
3014
|
repeatDelay: e,
|
|
3015
3015
|
repeatType: w,
|
|
3016
|
-
...
|
|
3016
|
+
...t
|
|
3017
3017
|
}, this.updateFinishedPromise();
|
|
3018
3018
|
}
|
|
3019
3019
|
/**
|
|
@@ -3044,12 +3044,12 @@ class Sw {
|
|
|
3044
3044
|
*/
|
|
3045
3045
|
onKeyframesResolved(A, B) {
|
|
3046
3046
|
this.resolvedAt = sA.now(), this.hasAttemptedResolve = !0;
|
|
3047
|
-
const { name: M, type: D, velocity: e, delay: w, onComplete:
|
|
3047
|
+
const { name: M, type: D, velocity: e, delay: w, onComplete: t, onUpdate: Q, isGenerator: C } = this.options;
|
|
3048
3048
|
if (!C && !vQ(A, M, D, e))
|
|
3049
3049
|
if (w)
|
|
3050
3050
|
this.options.duration = 0;
|
|
3051
3051
|
else {
|
|
3052
|
-
|
|
3052
|
+
Q && Q(vg(A, this.options, B)), t && t(), this.resolveFinishedPromise();
|
|
3053
3053
|
return;
|
|
3054
3054
|
}
|
|
3055
3055
|
const i = this.initPlayback(A, B);
|
|
@@ -3088,8 +3088,8 @@ function FQ({ hue: g, saturation: A, lightness: B, alpha: M }) {
|
|
|
3088
3088
|
if (!A)
|
|
3089
3089
|
D = e = w = B;
|
|
3090
3090
|
else {
|
|
3091
|
-
const
|
|
3092
|
-
D = jg(
|
|
3091
|
+
const t = B < 0.5 ? B * (1 + A) : B + A - B * A, Q = 2 * B - t;
|
|
3092
|
+
D = jg(Q, t, g + 1 / 3), e = jg(Q, t, g), w = jg(Q, t, g - 1 / 3);
|
|
3093
3093
|
}
|
|
3094
3094
|
return {
|
|
3095
3095
|
red: Math.round(D * 255),
|
|
@@ -3150,8 +3150,8 @@ function XQ(g, A) {
|
|
|
3150
3150
|
var B;
|
|
3151
3151
|
const M = [], D = { color: 0, var: 0, number: 0 };
|
|
3152
3152
|
for (let e = 0; e < A.values.length; e++) {
|
|
3153
|
-
const w = A.types[e],
|
|
3154
|
-
M[e] =
|
|
3153
|
+
const w = A.types[e], t = g.indexes[w][D[w]], Q = (B = g.values[t]) !== null && B !== void 0 ? B : 0;
|
|
3154
|
+
M[e] = Q, D[w]++;
|
|
3155
3155
|
}
|
|
3156
3156
|
return M;
|
|
3157
3157
|
}
|
|
@@ -3213,15 +3213,15 @@ function WQ({ duration: g = h.duration, bounce: A = h.bounce, velocity: B = h.ve
|
|
|
3213
3213
|
const i = Math.exp(-C * g), o = (B - C) * (g * g);
|
|
3214
3214
|
return i * o;
|
|
3215
3215
|
});
|
|
3216
|
-
const
|
|
3217
|
-
if (g = /* @__PURE__ */ CA(g), isNaN(
|
|
3216
|
+
const t = 5 / g, Q = _Q(D, e, t);
|
|
3217
|
+
if (g = /* @__PURE__ */ CA(g), isNaN(Q))
|
|
3218
3218
|
return {
|
|
3219
3219
|
stiffness: h.stiffness,
|
|
3220
3220
|
damping: h.damping,
|
|
3221
3221
|
duration: g
|
|
3222
3222
|
};
|
|
3223
3223
|
{
|
|
3224
|
-
const C = Math.pow(
|
|
3224
|
+
const C = Math.pow(Q, 2) * M;
|
|
3225
3225
|
return {
|
|
3226
3226
|
stiffness: C,
|
|
3227
3227
|
damping: w * 2 * Math.sqrt(M * C),
|
|
@@ -3278,10 +3278,10 @@ function Ww(g = h.visualDuration, A = h.bounce) {
|
|
|
3278
3278
|
bounce: A
|
|
3279
3279
|
} : g;
|
|
3280
3280
|
let { restSpeed: M, restDelta: D } = B;
|
|
3281
|
-
const e = B.keyframes[0], w = B.keyframes[B.keyframes.length - 1],
|
|
3281
|
+
const e = B.keyframes[0], w = B.keyframes[B.keyframes.length - 1], t = { done: !1, value: e }, { stiffness: Q, damping: C, mass: i, duration: o, velocity: I, isResolvedFromDuration: E } = BC({
|
|
3282
3282
|
...B,
|
|
3283
3283
|
velocity: -/* @__PURE__ */ nA(B.velocity || 0)
|
|
3284
|
-
}), r = I || 0, G = C / (2 * Math.sqrt(
|
|
3284
|
+
}), r = I || 0, G = C / (2 * Math.sqrt(Q * i)), c = w - e, a = /* @__PURE__ */ nA(Math.sqrt(Q / i)), l = Math.abs(c) < 5;
|
|
3285
3285
|
M || (M = l ? h.restSpeed.granular : h.restSpeed.default), D || (D = l ? h.restDelta.granular : h.restDelta.default);
|
|
3286
3286
|
let Y;
|
|
3287
3287
|
if (G < 1) {
|
|
@@ -3304,14 +3304,14 @@ function Ww(g = h.visualDuration, A = h.bounce) {
|
|
|
3304
3304
|
next: (n) => {
|
|
3305
3305
|
const u = Y(n);
|
|
3306
3306
|
if (E)
|
|
3307
|
-
|
|
3307
|
+
t.done = n >= o;
|
|
3308
3308
|
else {
|
|
3309
3309
|
let d = 0;
|
|
3310
3310
|
G < 1 && (d = n === 0 ? /* @__PURE__ */ CA(r) : xw(Y, n, u));
|
|
3311
3311
|
const y = Math.abs(d) <= M, q = Math.abs(w - u) <= D;
|
|
3312
|
-
|
|
3312
|
+
t.done = y && q;
|
|
3313
3313
|
}
|
|
3314
|
-
return
|
|
3314
|
+
return t.value = t.done ? w : u, t;
|
|
3315
3315
|
},
|
|
3316
3316
|
toString: () => {
|
|
3317
3317
|
const n = Math.min(nw(Z), BB), u = rw((d) => Z.next(n * d).value, n, 30);
|
|
@@ -3320,11 +3320,11 @@ function Ww(g = h.visualDuration, A = h.bounce) {
|
|
|
3320
3320
|
};
|
|
3321
3321
|
return Z;
|
|
3322
3322
|
}
|
|
3323
|
-
function OM({ keyframes: g, velocity: A = 0, power: B = 0.8, timeConstant: M = 325, bounceDamping: D = 10, bounceStiffness: e = 500, modifyTarget: w, min:
|
|
3323
|
+
function OM({ keyframes: g, velocity: A = 0, power: B = 0.8, timeConstant: M = 325, bounceDamping: D = 10, bounceStiffness: e = 500, modifyTarget: w, min: t, max: Q, restDelta: C = 0.5, restSpeed: i }) {
|
|
3324
3324
|
const o = g[0], I = {
|
|
3325
3325
|
done: !1,
|
|
3326
3326
|
value: o
|
|
3327
|
-
}, E = (y) =>
|
|
3327
|
+
}, E = (y) => t !== void 0 && y < t || Q !== void 0 && y > Q, r = (y) => t === void 0 ? Q : Q === void 0 || Math.abs(t - y) < Math.abs(Q - y) ? t : Q;
|
|
3328
3328
|
let G = B * A;
|
|
3329
3329
|
const c = o + G, a = w === void 0 ? c : w(c);
|
|
3330
3330
|
a !== c && (G = a - o);
|
|
@@ -3376,12 +3376,12 @@ const MC = /* @__PURE__ */ sg(0.42, 0, 1, 1), DC = /* @__PURE__ */ sg(0, 0, 0.58
|
|
|
3376
3376
|
function eC(g, A, B) {
|
|
3377
3377
|
const M = [], D = B || Nw, e = g.length - 1;
|
|
3378
3378
|
for (let w = 0; w < e; w++) {
|
|
3379
|
-
let
|
|
3379
|
+
let t = D(g[w], g[w + 1]);
|
|
3380
3380
|
if (A) {
|
|
3381
|
-
const
|
|
3382
|
-
|
|
3381
|
+
const Q = Array.isArray(A) ? A[w] || x : A;
|
|
3382
|
+
t = og(Q, t);
|
|
3383
3383
|
}
|
|
3384
|
-
M.push(
|
|
3384
|
+
M.push(t);
|
|
3385
3385
|
}
|
|
3386
3386
|
return M;
|
|
3387
3387
|
}
|
|
@@ -3393,15 +3393,15 @@ function tC(g, A, { clamp: B = !0, ease: M, mixer: D } = {}) {
|
|
|
3393
3393
|
return () => A[1];
|
|
3394
3394
|
const w = g[0] === g[1];
|
|
3395
3395
|
g[0] > g[e - 1] && (g = [...g].reverse(), A = [...A].reverse());
|
|
3396
|
-
const
|
|
3396
|
+
const t = eC(A, M, D), Q = t.length, C = (i) => {
|
|
3397
3397
|
if (w && i < g[0])
|
|
3398
3398
|
return A[0];
|
|
3399
3399
|
let o = 0;
|
|
3400
|
-
if (
|
|
3400
|
+
if (Q > 1)
|
|
3401
3401
|
for (; o < g.length - 2 && !(i < g[o + 1]); o++)
|
|
3402
3402
|
;
|
|
3403
3403
|
const I = /* @__PURE__ */ LA(g[o], g[o + 1], i);
|
|
3404
|
-
return
|
|
3404
|
+
return t[o](I);
|
|
3405
3405
|
};
|
|
3406
3406
|
return B ? (i) => C(rA(g[0], g[e - 1], i)) : C;
|
|
3407
3407
|
}
|
|
@@ -3431,12 +3431,12 @@ function dg({ duration: g = 300, keyframes: A, times: B, ease: M = "easeInOut" }
|
|
|
3431
3431
|
// TODO Maybe we should warn here if there's a length mismatch
|
|
3432
3432
|
B && B.length === A.length ? B : CC(A),
|
|
3433
3433
|
g
|
|
3434
|
-
),
|
|
3434
|
+
), t = tC(w, A, {
|
|
3435
3435
|
ease: Array.isArray(D) ? D : sC(A, D)
|
|
3436
3436
|
});
|
|
3437
3437
|
return {
|
|
3438
3438
|
calculatedDuration: g,
|
|
3439
|
-
next: (
|
|
3439
|
+
next: (Q) => (e.value = t(Q), e.done = Q >= g, e)
|
|
3440
3440
|
};
|
|
3441
3441
|
}
|
|
3442
3442
|
const oC = (g) => {
|
|
@@ -3463,21 +3463,21 @@ class EM extends Sw {
|
|
|
3463
3463
|
if (this.resolver.cancel(), this.isStopped = !0, this.state === "idle")
|
|
3464
3464
|
return;
|
|
3465
3465
|
this.teardown();
|
|
3466
|
-
const { onStop:
|
|
3467
|
-
|
|
3466
|
+
const { onStop: Q } = this.options;
|
|
3467
|
+
Q && Q();
|
|
3468
3468
|
};
|
|
3469
|
-
const { name: B, motionValue: M, element: D, keyframes: e } = this.options, w = (D == null ? void 0 : D.KeyframeResolver) || oM,
|
|
3470
|
-
this.resolver = new w(e,
|
|
3469
|
+
const { name: B, motionValue: M, element: D, keyframes: e } = this.options, w = (D == null ? void 0 : D.KeyframeResolver) || oM, t = (Q, C) => this.onKeyframesResolved(Q, C);
|
|
3470
|
+
this.resolver = new w(e, t, B, M, D), this.resolver.scheduleResolve();
|
|
3471
3471
|
}
|
|
3472
3472
|
flatten() {
|
|
3473
3473
|
super.flatten(), this._resolved && Object.assign(this._resolved, this.initPlayback(this._resolved.keyframes));
|
|
3474
3474
|
}
|
|
3475
3475
|
initPlayback(A) {
|
|
3476
|
-
const { type: B = "keyframes", repeat: M = 0, repeatDelay: D = 0, repeatType: e, velocity: w = 0 } = this.options,
|
|
3477
|
-
let
|
|
3478
|
-
|
|
3479
|
-
const i =
|
|
3480
|
-
e === "mirror" && (C =
|
|
3476
|
+
const { type: B = "keyframes", repeat: M = 0, repeatDelay: D = 0, repeatType: e, velocity: w = 0 } = this.options, t = gM(B) ? B : IC[B] || dg;
|
|
3477
|
+
let Q, C;
|
|
3478
|
+
t !== dg && typeof A[0] != "number" && (process.env.NODE_ENV !== "production" && cA(A.length === 2, `Only two keyframes currently supported with spring and inertia animations. Trying to animate ${A}`), Q = og(EC, Nw(A[0], A[1])), A = [0, 100]);
|
|
3479
|
+
const i = t({ ...this.options, keyframes: A });
|
|
3480
|
+
e === "mirror" && (C = t({
|
|
3481
3481
|
...this.options,
|
|
3482
3482
|
keyframes: [...A].reverse(),
|
|
3483
3483
|
velocity: -w
|
|
@@ -3486,7 +3486,7 @@ class EM extends Sw {
|
|
|
3486
3486
|
return {
|
|
3487
3487
|
generator: i,
|
|
3488
3488
|
mirroredGenerator: C,
|
|
3489
|
-
mapPercentToKeyframes:
|
|
3489
|
+
mapPercentToKeyframes: Q,
|
|
3490
3490
|
calculatedDuration: o,
|
|
3491
3491
|
resolvedDuration: I,
|
|
3492
3492
|
totalDuration: E
|
|
@@ -3502,7 +3502,7 @@ class EM extends Sw {
|
|
|
3502
3502
|
const { keyframes: y } = this.options;
|
|
3503
3503
|
return { done: !0, value: y[y.length - 1] };
|
|
3504
3504
|
}
|
|
3505
|
-
const { finalKeyframe: D, generator: e, mirroredGenerator: w, mapPercentToKeyframes:
|
|
3505
|
+
const { finalKeyframe: D, generator: e, mirroredGenerator: w, mapPercentToKeyframes: t, keyframes: Q, calculatedDuration: C, totalDuration: i, resolvedDuration: o } = M;
|
|
3506
3506
|
if (this.startTime === null)
|
|
3507
3507
|
return e.next(0);
|
|
3508
3508
|
const { delay: I, repeat: E, repeatType: r, repeatDelay: G, onUpdate: c } = this.options;
|
|
@@ -3515,12 +3515,12 @@ class EM extends Sw {
|
|
|
3515
3515
|
let q = Math.floor(y), v = y % 1;
|
|
3516
3516
|
!v && y >= 1 && (v = 1), v === 1 && q--, q = Math.min(q, E + 1), !!(q % 2) && (r === "reverse" ? (v = 1 - v, G && (v -= G / o)) : r === "mirror" && (Z = w)), Y = rA(0, 1, v) * o;
|
|
3517
3517
|
}
|
|
3518
|
-
const n = l ? { done: !1, value:
|
|
3519
|
-
|
|
3518
|
+
const n = l ? { done: !1, value: Q[0] } : Z.next(Y);
|
|
3519
|
+
t && (n.value = t(n.value));
|
|
3520
3520
|
let { done: u } = n;
|
|
3521
3521
|
!l && C !== null && (u = this.speed >= 0 ? this.currentTime >= i : this.currentTime <= 0);
|
|
3522
3522
|
const d = this.holdTime === null && (this.state === "finished" || this.state === "running" && u);
|
|
3523
|
-
return d && D !== void 0 && (n.value = vg(
|
|
3523
|
+
return d && D !== void 0 && (n.value = vg(Q, this.options, D)), c && c(n.value), d && this.finish(), n;
|
|
3524
3524
|
}
|
|
3525
3525
|
get duration() {
|
|
3526
3526
|
const { resolved: A } = this;
|
|
@@ -3589,10 +3589,10 @@ const nC = /* @__PURE__ */ new Set([
|
|
|
3589
3589
|
// or until we implement support for linear() easing.
|
|
3590
3590
|
// "background-color"
|
|
3591
3591
|
]);
|
|
3592
|
-
function rC(g, A, B, { delay: M = 0, duration: D = 300, repeat: e = 0, repeatType: w = "loop", ease:
|
|
3592
|
+
function rC(g, A, B, { delay: M = 0, duration: D = 300, repeat: e = 0, repeatType: w = "loop", ease: t = "easeInOut", times: Q } = {}) {
|
|
3593
3593
|
const C = { [A]: B };
|
|
3594
|
-
|
|
3595
|
-
const i = Gw(
|
|
3594
|
+
Q && (C.offset = Q);
|
|
3595
|
+
const i = Gw(t, D);
|
|
3596
3596
|
return Array.isArray(i) && (C.easing = i), g.animate(C, {
|
|
3597
3597
|
delay: M,
|
|
3598
3598
|
duration: D,
|
|
@@ -3638,20 +3638,20 @@ class TM extends Sw {
|
|
|
3638
3638
|
constructor(A) {
|
|
3639
3639
|
super(A);
|
|
3640
3640
|
const { name: B, motionValue: M, element: D, keyframes: e } = this.options;
|
|
3641
|
-
this.resolver = new Tw(e, (w,
|
|
3641
|
+
this.resolver = new Tw(e, (w, t) => this.onKeyframesResolved(w, t), B, M, D), this.resolver.scheduleResolve();
|
|
3642
3642
|
}
|
|
3643
3643
|
initPlayback(A, B) {
|
|
3644
|
-
let { duration: M = 300, times: D, ease: e, type: w, motionValue:
|
|
3645
|
-
if (!
|
|
3644
|
+
let { duration: M = 300, times: D, ease: e, type: w, motionValue: t, name: Q, startTime: C } = this.options;
|
|
3645
|
+
if (!t.owner || !t.owner.current)
|
|
3646
3646
|
return !1;
|
|
3647
3647
|
if (typeof e == "string" && Vg() && YC(e) && (e = _w[e]), aC(this.options)) {
|
|
3648
3648
|
const { onComplete: o, onUpdate: I, motionValue: E, element: r, ...G } = this.options, c = cC(A, G);
|
|
3649
3649
|
A = c.keyframes, A.length === 1 && (A[1] = A[0]), M = c.duration, D = c.times, e = c.ease, w = "keyframes";
|
|
3650
3650
|
}
|
|
3651
|
-
const i = rC(
|
|
3651
|
+
const i = rC(t.owner.current, Q, A, { ...this.options, duration: M, times: D, ease: e });
|
|
3652
3652
|
return i.startTime = C ?? this.calcStartTime(), this.pendingTimeline ? (fM(i, this.pendingTimeline), this.pendingTimeline = void 0) : i.onfinish = () => {
|
|
3653
3653
|
const { onComplete: o } = this.options;
|
|
3654
|
-
|
|
3654
|
+
t.set(vg(A, this.options, B)), o && o(), this.cancel(), this.resolveFinishedPromise();
|
|
3655
3655
|
}, {
|
|
3656
3656
|
animation: i,
|
|
3657
3657
|
duration: M,
|
|
@@ -3749,7 +3749,7 @@ class TM extends Sw {
|
|
|
3749
3749
|
const { resolved: A } = this;
|
|
3750
3750
|
if (!A)
|
|
3751
3751
|
return;
|
|
3752
|
-
const { animation: B, keyframes: M, duration: D, type: e, ease: w, times:
|
|
3752
|
+
const { animation: B, keyframes: M, duration: D, type: e, ease: w, times: t } = A;
|
|
3753
3753
|
if (B.playState === "idle" || B.playState === "finished")
|
|
3754
3754
|
return;
|
|
3755
3755
|
if (this.time) {
|
|
@@ -3759,13 +3759,13 @@ class TM extends Sw {
|
|
|
3759
3759
|
duration: D,
|
|
3760
3760
|
type: e,
|
|
3761
3761
|
ease: w,
|
|
3762
|
-
times:
|
|
3762
|
+
times: t,
|
|
3763
3763
|
isGenerator: !0
|
|
3764
3764
|
}), G = /* @__PURE__ */ CA(this.time);
|
|
3765
3765
|
C.setWithVelocity(r.sample(G - qg).value, r.sample(G).value, qg);
|
|
3766
3766
|
}
|
|
3767
|
-
const { onStop:
|
|
3768
|
-
|
|
3767
|
+
const { onStop: Q } = this.options;
|
|
3768
|
+
Q && Q(), this.cancel();
|
|
3769
3769
|
}
|
|
3770
3770
|
complete() {
|
|
3771
3771
|
const { resolved: A } = this;
|
|
@@ -3776,15 +3776,15 @@ class TM extends Sw {
|
|
|
3776
3776
|
A && A.animation.cancel();
|
|
3777
3777
|
}
|
|
3778
3778
|
static supports(A) {
|
|
3779
|
-
const { motionValue: B, name: M, repeatDelay: D, repeatType: e, damping: w, type:
|
|
3779
|
+
const { motionValue: B, name: M, repeatDelay: D, repeatType: e, damping: w, type: t } = A;
|
|
3780
3780
|
if (!B || !B.owner || !(B.owner.current instanceof HTMLElement))
|
|
3781
3781
|
return !1;
|
|
3782
|
-
const { onUpdate:
|
|
3782
|
+
const { onUpdate: Q, transformTemplate: C } = B.owner.getProps();
|
|
3783
3783
|
return lC() && M && nC.has(M) && /**
|
|
3784
3784
|
* If we're outputting values to onUpdate then we can't use WAAPI as there's
|
|
3785
3785
|
* no way to read the value from WAAPI every frame.
|
|
3786
3786
|
*/
|
|
3787
|
-
!
|
|
3787
|
+
!Q && !C && !D && e !== "mirror" && w !== 0 && t !== "inertia";
|
|
3788
3788
|
}
|
|
3789
3789
|
}
|
|
3790
3790
|
const uC = {
|
|
@@ -3805,36 +3805,36 @@ const uC = {
|
|
|
3805
3805
|
ease: [0.25, 0.1, 0.35, 1],
|
|
3806
3806
|
duration: 0.3
|
|
3807
3807
|
}, ZC = (g, { keyframes: A }) => A.length > 2 ? yC : KA.has(g) ? g.startsWith("scale") ? mC(A[1]) : uC : UC;
|
|
3808
|
-
function VC({ when: g, delay: A, delayChildren: B, staggerChildren: M, staggerDirection: D, repeat: e, repeatType: w, repeatDelay:
|
|
3808
|
+
function VC({ when: g, delay: A, delayChildren: B, staggerChildren: M, staggerDirection: D, repeat: e, repeatType: w, repeatDelay: t, from: Q, elapsed: C, ...i }) {
|
|
3809
3809
|
return !!Object.keys(i).length;
|
|
3810
3810
|
}
|
|
3811
3811
|
const nM = (g, A, B, M = {}, D, e) => (w) => {
|
|
3812
|
-
const
|
|
3812
|
+
const t = AM(M, g) || {}, Q = t.delay || M.delay || 0;
|
|
3813
3813
|
let { elapsed: C = 0 } = M;
|
|
3814
|
-
C = C - /* @__PURE__ */ CA(
|
|
3814
|
+
C = C - /* @__PURE__ */ CA(Q);
|
|
3815
3815
|
let i = {
|
|
3816
3816
|
keyframes: Array.isArray(B) ? B : [null, B],
|
|
3817
3817
|
ease: "easeOut",
|
|
3818
3818
|
velocity: A.getVelocity(),
|
|
3819
|
-
...
|
|
3819
|
+
...t,
|
|
3820
3820
|
delay: -C,
|
|
3821
3821
|
onUpdate: (I) => {
|
|
3822
|
-
A.set(I),
|
|
3822
|
+
A.set(I), t.onUpdate && t.onUpdate(I);
|
|
3823
3823
|
},
|
|
3824
3824
|
onComplete: () => {
|
|
3825
|
-
w(),
|
|
3825
|
+
w(), t.onComplete && t.onComplete();
|
|
3826
3826
|
},
|
|
3827
3827
|
name: g,
|
|
3828
3828
|
motionValue: A,
|
|
3829
3829
|
element: e ? void 0 : D
|
|
3830
3830
|
};
|
|
3831
|
-
VC(
|
|
3831
|
+
VC(t) || (i = {
|
|
3832
3832
|
...i,
|
|
3833
3833
|
...ZC(g, i)
|
|
3834
3834
|
}), i.duration && (i.duration = /* @__PURE__ */ CA(i.duration)), i.repeatDelay && (i.repeatDelay = /* @__PURE__ */ CA(i.repeatDelay)), i.from !== void 0 && (i.keyframes[0] = i.from);
|
|
3835
3835
|
let o = !1;
|
|
3836
3836
|
if ((i.type === !1 || i.duration === 0 && !i.repeatDelay) && (i.duration = 0, i.delay === 0 && (o = !0)), o && !e && A.get() !== void 0) {
|
|
3837
|
-
const I = vg(i.keyframes,
|
|
3837
|
+
const I = vg(i.keyframes, t);
|
|
3838
3838
|
if (I !== void 0)
|
|
3839
3839
|
return R.update(() => {
|
|
3840
3840
|
i.onUpdate(I), i.onComplete();
|
|
@@ -3848,11 +3848,11 @@ function fC({ protectedKeys: g, needsAnimating: A }, B) {
|
|
|
3848
3848
|
}
|
|
3849
3849
|
function Ae(g, A, { delay: B = 0, transitionOverride: M, type: D } = {}) {
|
|
3850
3850
|
var e;
|
|
3851
|
-
let { transition: w = g.getDefaultTransition(), transitionEnd:
|
|
3851
|
+
let { transition: w = g.getDefaultTransition(), transitionEnd: t, ...Q } = A;
|
|
3852
3852
|
M && (w = M);
|
|
3853
3853
|
const C = [], i = D && g.animationState && g.animationState.getState()[D];
|
|
3854
|
-
for (const o in
|
|
3855
|
-
const I = g.getValue(o, (e = g.latestValues[o]) !== null && e !== void 0 ? e : null), E =
|
|
3854
|
+
for (const o in Q) {
|
|
3855
|
+
const I = g.getValue(o, (e = g.latestValues[o]) !== null && e !== void 0 ? e : null), E = Q[o];
|
|
3856
3856
|
if (E === void 0 || i && fC(i, o))
|
|
3857
3857
|
continue;
|
|
3858
3858
|
const r = {
|
|
@@ -3871,9 +3871,9 @@ function Ae(g, A, { delay: B = 0, transitionOverride: M, type: D } = {}) {
|
|
|
3871
3871
|
const c = I.animation;
|
|
3872
3872
|
c && C.push(c);
|
|
3873
3873
|
}
|
|
3874
|
-
return
|
|
3874
|
+
return t && Promise.all(C).then(() => {
|
|
3875
3875
|
R.update(() => {
|
|
3876
|
-
|
|
3876
|
+
t && eQ(g, t);
|
|
3877
3877
|
});
|
|
3878
3878
|
}), C;
|
|
3879
3879
|
}
|
|
@@ -3882,22 +3882,22 @@ function sB(g, A, B = {}) {
|
|
|
3882
3882
|
const D = zg(g, A, B.type === "exit" ? (M = g.presenceContext) === null || M === void 0 ? void 0 : M.custom : void 0);
|
|
3883
3883
|
let { transition: e = g.getDefaultTransition() || {} } = D || {};
|
|
3884
3884
|
B.transitionOverride && (e = B.transitionOverride);
|
|
3885
|
-
const w = D ? () => Promise.all(Ae(g, D, B)) : () => Promise.resolve(),
|
|
3885
|
+
const w = D ? () => Promise.all(Ae(g, D, B)) : () => Promise.resolve(), t = g.variantChildren && g.variantChildren.size ? (C = 0) => {
|
|
3886
3886
|
const { delayChildren: i = 0, staggerChildren: o, staggerDirection: I } = e;
|
|
3887
3887
|
return dC(g, A, i + C, o, I, B);
|
|
3888
|
-
} : () => Promise.resolve(), { when:
|
|
3889
|
-
if (
|
|
3890
|
-
const [C, i] =
|
|
3888
|
+
} : () => Promise.resolve(), { when: Q } = e;
|
|
3889
|
+
if (Q) {
|
|
3890
|
+
const [C, i] = Q === "beforeChildren" ? [w, t] : [t, w];
|
|
3891
3891
|
return C().then(() => i());
|
|
3892
3892
|
} else
|
|
3893
|
-
return Promise.all([w(),
|
|
3893
|
+
return Promise.all([w(), t(B.delay)]);
|
|
3894
3894
|
}
|
|
3895
3895
|
function dC(g, A, B = 0, M = 0, D = 1, e) {
|
|
3896
|
-
const w = [],
|
|
3896
|
+
const w = [], t = (g.variantChildren.size - 1) * M, Q = D === 1 ? (C = 0) => C * M : (C = 0) => t - C * M;
|
|
3897
3897
|
return Array.from(g.variantChildren).sort(qC).forEach((C, i) => {
|
|
3898
3898
|
C.notify("AnimationStart", A), w.push(sB(C, A, {
|
|
3899
3899
|
...e,
|
|
3900
|
-
delay: B +
|
|
3900
|
+
delay: B + Q(i)
|
|
3901
3901
|
}).then(() => C.notify("AnimationComplete", A)));
|
|
3902
3902
|
}), Promise.all(w);
|
|
3903
3903
|
}
|
|
@@ -3941,23 +3941,23 @@ function hC(g) {
|
|
|
3941
3941
|
}
|
|
3942
3942
|
function JC(g) {
|
|
3943
3943
|
let A = hC(g), B = SM(), M = !0;
|
|
3944
|
-
const D = (
|
|
3944
|
+
const D = (Q) => (C, i) => {
|
|
3945
3945
|
var o;
|
|
3946
|
-
const I = zg(g, i,
|
|
3946
|
+
const I = zg(g, i, Q === "exit" ? (o = g.presenceContext) === null || o === void 0 ? void 0 : o.custom : void 0);
|
|
3947
3947
|
if (I) {
|
|
3948
3948
|
const { transition: E, transitionEnd: r, ...G } = I;
|
|
3949
3949
|
C = { ...C, ...G, ...r };
|
|
3950
3950
|
}
|
|
3951
3951
|
return C;
|
|
3952
3952
|
};
|
|
3953
|
-
function e(
|
|
3954
|
-
A =
|
|
3953
|
+
function e(Q) {
|
|
3954
|
+
A = Q(g);
|
|
3955
3955
|
}
|
|
3956
|
-
function w(
|
|
3956
|
+
function w(Q) {
|
|
3957
3957
|
const { props: C } = g, i = ge(g.parent) || {}, o = [], I = /* @__PURE__ */ new Set();
|
|
3958
3958
|
let E = {}, r = 1 / 0;
|
|
3959
3959
|
for (let c = 0; c < pC; c++) {
|
|
3960
|
-
const a = RC[c], l = B[a], Y = C[a] !== void 0 ? C[a] : i[a], Z = wg(Y), n = a ===
|
|
3960
|
+
const a = RC[c], l = B[a], Y = C[a] !== void 0 ? C[a] : i[a], Z = wg(Y), n = a === Q ? l.isActive : null;
|
|
3961
3961
|
n === !1 && (r = c);
|
|
3962
3962
|
let u = Y === i[a] && Y !== C[a] && Z;
|
|
3963
3963
|
if (u && M && g.manuallyAnimateOnMount && (u = !1), l.protectedKeys = { ...E }, // If it isn't active and hasn't *just* been set as inactive
|
|
@@ -3967,7 +3967,7 @@ function JC(g) {
|
|
|
3967
3967
|
continue;
|
|
3968
3968
|
const d = zC(l.prevProp, Y);
|
|
3969
3969
|
let y = d || // If we're making this variant active, we want to always make it active
|
|
3970
|
-
a ===
|
|
3970
|
+
a === Q && l.isActive && !u && Z || // If we removed a higher-priority variant (i is in reverse order)
|
|
3971
3971
|
c > r && Z, q = !1;
|
|
3972
3972
|
const v = Array.isArray(Y) ? Y : [Y];
|
|
3973
3973
|
let W = v.reduce(D(a), {});
|
|
@@ -4002,22 +4002,22 @@ function JC(g) {
|
|
|
4002
4002
|
let G = !!o.length;
|
|
4003
4003
|
return M && (C.initial === !1 || C.initial === C.animate) && !g.manuallyAnimateOnMount && (G = !1), M = !1, G ? A(o) : Promise.resolve();
|
|
4004
4004
|
}
|
|
4005
|
-
function Q
|
|
4005
|
+
function t(Q, C) {
|
|
4006
4006
|
var i;
|
|
4007
|
-
if (B[
|
|
4007
|
+
if (B[Q].isActive === C)
|
|
4008
4008
|
return Promise.resolve();
|
|
4009
4009
|
(i = g.variantChildren) === null || i === void 0 || i.forEach((I) => {
|
|
4010
4010
|
var E;
|
|
4011
|
-
return (E = I.animationState) === null || E === void 0 ? void 0 : E.setActive(
|
|
4012
|
-
}), B[
|
|
4013
|
-
const o = w(
|
|
4011
|
+
return (E = I.animationState) === null || E === void 0 ? void 0 : E.setActive(Q, C);
|
|
4012
|
+
}), B[Q].isActive = C;
|
|
4013
|
+
const o = w(Q);
|
|
4014
4014
|
for (const I in B)
|
|
4015
4015
|
B[I].protectedKeys = {};
|
|
4016
4016
|
return o;
|
|
4017
4017
|
}
|
|
4018
4018
|
return {
|
|
4019
4019
|
animateChanges: w,
|
|
4020
|
-
setActive:
|
|
4020
|
+
setActive: t,
|
|
4021
4021
|
setAnimateFunction: e,
|
|
4022
4022
|
getState: () => B,
|
|
4023
4023
|
reset: () => {
|
|
@@ -4155,10 +4155,10 @@ class Be {
|
|
|
4155
4155
|
}, !MM(A))
|
|
4156
4156
|
return;
|
|
4157
4157
|
this.dragSnapToOrigin = e, this.handlers = B, this.transformPagePoint = M, this.contextWindow = D || window;
|
|
4158
|
-
const w = Ig(A),
|
|
4159
|
-
this.history = [{ ...
|
|
4158
|
+
const w = Ig(A), t = Tg(w, this.transformPagePoint), { point: Q } = t, { timestamp: C } = b;
|
|
4159
|
+
this.history = [{ ...Q, timestamp: C }];
|
|
4160
4160
|
const { onSessionStart: i } = B;
|
|
4161
|
-
i && i(A, Sg(
|
|
4161
|
+
i && i(A, Sg(t, this.history)), this.removeListeners = og(Bg(this.contextWindow, "pointermove", this.handlePointerMove), Bg(this.contextWindow, "pointerup", this.handlePointerUp), Bg(this.contextWindow, "pointercancel", this.handlePointerUp));
|
|
4162
4162
|
}
|
|
4163
4163
|
updateHandlers(A) {
|
|
4164
4164
|
this.handlers = A;
|
|
@@ -4350,10 +4350,10 @@ function ei(g, A, B, M = !1) {
|
|
|
4350
4350
|
return;
|
|
4351
4351
|
A.x = A.y = 1;
|
|
4352
4352
|
let e, w;
|
|
4353
|
-
for (let
|
|
4354
|
-
e = B[
|
|
4355
|
-
const { visualElement:
|
|
4356
|
-
|
|
4353
|
+
for (let t = 0; t < D; t++) {
|
|
4354
|
+
e = B[t], w = e.projectionDelta;
|
|
4355
|
+
const { visualElement: Q } = e.options;
|
|
4356
|
+
Q && Q.props.style && Q.props.style.display === "contents" || (M && e.options.layoutScroll && e.scroll && e !== e.root && vA(g, {
|
|
4357
4357
|
x: -e.scroll.offset.x,
|
|
4358
4358
|
y: -e.scroll.offset.y
|
|
4359
4359
|
}), w && (A.x *= w.x.scale, A.y *= w.y.scale, Qe(g, w)), M && VA(e.latestValues) && vA(g, e.latestValues));
|
|
@@ -4416,7 +4416,7 @@ class Ci {
|
|
|
4416
4416
|
return;
|
|
4417
4417
|
}
|
|
4418
4418
|
this.updateAxis("x", o.point, c), this.updateAxis("y", o.point, c), this.visualElement.render(), G && G(i, o);
|
|
4419
|
-
},
|
|
4419
|
+
}, t = (i, o) => this.stop(i, o), Q = () => gA((i) => {
|
|
4420
4420
|
var o;
|
|
4421
4421
|
return this.getAnimationState(i) === "paused" && ((o = this.getAxisMotionValue(i).animation) === null || o === void 0 ? void 0 : o.play());
|
|
4422
4422
|
}), { dragSnapToOrigin: C } = this.getProps();
|
|
@@ -4424,8 +4424,8 @@ class Ci {
|
|
|
4424
4424
|
onSessionStart: D,
|
|
4425
4425
|
onStart: e,
|
|
4426
4426
|
onMove: w,
|
|
4427
|
-
onSessionEnd:
|
|
4428
|
-
resumeAnimation:
|
|
4427
|
+
onSessionEnd: t,
|
|
4428
|
+
resumeAnimation: Q
|
|
4429
4429
|
}, {
|
|
4430
4430
|
transformPagePoint: this.visualElement.getTransformPagePoint(),
|
|
4431
4431
|
dragSnapToOrigin: C,
|
|
@@ -4475,16 +4475,16 @@ class Ci {
|
|
|
4475
4475
|
const e = ti(M, D.root, this.visualElement.getTransformPagePoint());
|
|
4476
4476
|
let w = Ai(D.layout.layoutBox, e);
|
|
4477
4477
|
if (B) {
|
|
4478
|
-
const
|
|
4479
|
-
this.hasMutatedConstraints = !!
|
|
4478
|
+
const t = B(Di(w));
|
|
4479
|
+
this.hasMutatedConstraints = !!t, t && (w = ee(t));
|
|
4480
4480
|
}
|
|
4481
4481
|
return w;
|
|
4482
4482
|
}
|
|
4483
4483
|
startAnimation(A) {
|
|
4484
|
-
const { drag: B, dragMomentum: M, dragElastic: D, dragTransition: e, dragSnapToOrigin: w, onDragTransitionEnd:
|
|
4484
|
+
const { drag: B, dragMomentum: M, dragElastic: D, dragTransition: e, dragSnapToOrigin: w, onDragTransitionEnd: t } = this.getProps(), Q = this.constraints || {}, C = gA((i) => {
|
|
4485
4485
|
if (!Gg(i, B, this.currentDirection))
|
|
4486
4486
|
return;
|
|
4487
|
-
let o =
|
|
4487
|
+
let o = Q[i] || {};
|
|
4488
4488
|
w && (o = { min: 0, max: 0 });
|
|
4489
4489
|
const I = D ? 200 : 1e6, E = D ? 40 : 1e7, r = {
|
|
4490
4490
|
type: "inertia",
|
|
@@ -4499,7 +4499,7 @@ class Ci {
|
|
|
4499
4499
|
};
|
|
4500
4500
|
return this.startAxisValueAnimation(i, r);
|
|
4501
4501
|
});
|
|
4502
|
-
return Promise.all(C).then(
|
|
4502
|
+
return Promise.all(C).then(t);
|
|
4503
4503
|
}
|
|
4504
4504
|
startAxisValueAnimation(A, B) {
|
|
4505
4505
|
const M = this.getAxisMotionValue(A);
|
|
@@ -4535,8 +4535,8 @@ class Ci {
|
|
|
4535
4535
|
return;
|
|
4536
4536
|
const { projection: D } = this.visualElement, e = this.getAxisMotionValue(B);
|
|
4537
4537
|
if (D && D.layout) {
|
|
4538
|
-
const { min: w, max:
|
|
4539
|
-
e.set(A[B] - z(w,
|
|
4538
|
+
const { min: w, max: t } = D.layout.layoutBox[B];
|
|
4539
|
+
e.set(A[B] - z(w, t, 0.5));
|
|
4540
4540
|
}
|
|
4541
4541
|
});
|
|
4542
4542
|
}
|
|
@@ -4554,44 +4554,44 @@ class Ci {
|
|
|
4554
4554
|
this.stopAnimation();
|
|
4555
4555
|
const D = { x: 0, y: 0 };
|
|
4556
4556
|
gA((w) => {
|
|
4557
|
-
const
|
|
4558
|
-
if (
|
|
4559
|
-
const
|
|
4560
|
-
D[w] = gi({ min:
|
|
4557
|
+
const t = this.getAxisMotionValue(w);
|
|
4558
|
+
if (t && this.constraints !== !1) {
|
|
4559
|
+
const Q = t.get();
|
|
4560
|
+
D[w] = gi({ min: Q, max: Q }, this.constraints[w]);
|
|
4561
4561
|
}
|
|
4562
4562
|
});
|
|
4563
4563
|
const { transformTemplate: e } = this.visualElement.getProps();
|
|
4564
4564
|
this.visualElement.current.style.transform = e ? e({}, "") : "none", M.root && M.root.updateScroll(), M.updateLayout(), this.resolveConstraints(), gA((w) => {
|
|
4565
4565
|
if (!Gg(w, A, null))
|
|
4566
4566
|
return;
|
|
4567
|
-
const
|
|
4568
|
-
|
|
4567
|
+
const t = this.getAxisMotionValue(w), { min: Q, max: C } = this.constraints[w];
|
|
4568
|
+
t.set(z(Q, C, D[w]));
|
|
4569
4569
|
});
|
|
4570
4570
|
}
|
|
4571
4571
|
addListeners() {
|
|
4572
4572
|
if (!this.visualElement.current)
|
|
4573
4573
|
return;
|
|
4574
4574
|
Qi.set(this.visualElement, this);
|
|
4575
|
-
const A = this.visualElement.current, B = Bg(A, "pointerdown", (
|
|
4575
|
+
const A = this.visualElement.current, B = Bg(A, "pointerdown", (Q) => {
|
|
4576
4576
|
const { drag: C, dragListener: i = !0 } = this.getProps();
|
|
4577
|
-
C && i && this.start(
|
|
4577
|
+
C && i && this.start(Q);
|
|
4578
4578
|
}), M = () => {
|
|
4579
|
-
const { dragConstraints:
|
|
4580
|
-
pA(
|
|
4579
|
+
const { dragConstraints: Q } = this.getProps();
|
|
4580
|
+
pA(Q) && Q.current && (this.constraints = this.resolveRefConstraints());
|
|
4581
4581
|
}, { projection: D } = this.visualElement, e = D.addEventListener("measure", M);
|
|
4582
4582
|
D && !D.layout && (D.root && D.root.updateScroll(), D.updateLayout()), R.read(M);
|
|
4583
|
-
const w = Cg(window, "resize", () => this.scalePositionWithinConstraints()),
|
|
4583
|
+
const w = Cg(window, "resize", () => this.scalePositionWithinConstraints()), t = D.addEventListener("didUpdate", ({ delta: Q, hasLayoutChanged: C }) => {
|
|
4584
4584
|
this.isDragging && C && (gA((i) => {
|
|
4585
4585
|
const o = this.getAxisMotionValue(i);
|
|
4586
|
-
o && (this.originPoint[i] +=
|
|
4586
|
+
o && (this.originPoint[i] += Q[i].translate, o.set(o.get() + Q[i].translate));
|
|
4587
4587
|
}), this.visualElement.render());
|
|
4588
4588
|
});
|
|
4589
4589
|
return () => {
|
|
4590
|
-
w(), B(), e(),
|
|
4590
|
+
w(), B(), e(), t && t();
|
|
4591
4591
|
};
|
|
4592
4592
|
}
|
|
4593
4593
|
getProps() {
|
|
4594
|
-
const A = this.visualElement.getProps(), { drag: B = !1, dragDirectionLock: M = !1, dragPropagation: D = !1, dragConstraints: e = !1, dragElastic: w = oB, dragMomentum:
|
|
4594
|
+
const A = this.visualElement.getProps(), { drag: B = !1, dragDirectionLock: M = !1, dragPropagation: D = !1, dragConstraints: e = !1, dragElastic: w = oB, dragMomentum: t = !0 } = A;
|
|
4595
4595
|
return {
|
|
4596
4596
|
...A,
|
|
4597
4597
|
drag: B,
|
|
@@ -4599,7 +4599,7 @@ class Ci {
|
|
|
4599
4599
|
dragPropagation: D,
|
|
4600
4600
|
dragConstraints: e,
|
|
4601
4601
|
dragElastic: w,
|
|
4602
|
-
dragMomentum:
|
|
4602
|
+
dragMomentum: t
|
|
4603
4603
|
};
|
|
4604
4604
|
}
|
|
4605
4605
|
}
|
|
@@ -4688,9 +4688,9 @@ const xA = {
|
|
|
4688
4688
|
const M = g, D = uA.parse(g);
|
|
4689
4689
|
if (D.length > 5)
|
|
4690
4690
|
return M;
|
|
4691
|
-
const e = uA.createTransformer(g), w = typeof D[0] != "number" ? 1 : 0,
|
|
4692
|
-
D[0 + w] /=
|
|
4693
|
-
const C = z(
|
|
4691
|
+
const e = uA.createTransformer(g), w = typeof D[0] != "number" ? 1 : 0, t = B.x.scale * A.x, Q = B.y.scale * A.y;
|
|
4692
|
+
D[0 + w] /= t, D[1 + w] /= Q;
|
|
4693
|
+
const C = z(t, Q, 0.5);
|
|
4694
4694
|
return typeof D[2 + w] == "number" && (D[2 + w] /= C), typeof D[3 + w] == "number" && (D[3 + w] /= C), e(D);
|
|
4695
4695
|
}
|
|
4696
4696
|
};
|
|
@@ -4712,8 +4712,8 @@ class Ei extends Ve {
|
|
|
4712
4712
|
getSnapshotBeforeUpdate(A) {
|
|
4713
4713
|
const { layoutDependency: B, visualElement: M, drag: D, isPresent: e } = this.props, w = M.projection;
|
|
4714
4714
|
return w && (w.isPresent = e, D || A.layoutDependency !== B || B === void 0 ? w.willUpdate() : this.safeToRemove(), A.isPresent !== e && (e ? w.promote() : w.relegate() || R.postRender(() => {
|
|
4715
|
-
const
|
|
4716
|
-
(!
|
|
4715
|
+
const t = w.getStack();
|
|
4716
|
+
(!t || !t.members.length) && this.safeToRemove();
|
|
4717
4717
|
}))), null;
|
|
4718
4718
|
}
|
|
4719
4719
|
componentDidUpdate() {
|
|
@@ -4792,11 +4792,11 @@ function ui(g, A, B, M, D, e) {
|
|
|
4792
4792
|
mi(M)
|
|
4793
4793
|
), g.opacityExit = z(A.opacity !== void 0 ? A.opacity : 1, 0, yi(M))) : e && (g.opacity = z(A.opacity !== void 0 ? A.opacity : 1, B.opacity !== void 0 ? B.opacity : 1, M));
|
|
4794
4794
|
for (let w = 0; w < Yi; w++) {
|
|
4795
|
-
const
|
|
4796
|
-
let
|
|
4797
|
-
if (
|
|
4795
|
+
const t = `border${oe[w]}Radius`;
|
|
4796
|
+
let Q = ED(A, t), C = ED(B, t);
|
|
4797
|
+
if (Q === void 0 && C === void 0)
|
|
4798
4798
|
continue;
|
|
4799
|
-
|
|
4799
|
+
Q || (Q = 0), C || (C = 0), Q === 0 || C === 0 || ID(Q) === ID(C) ? (g[t] = Math.max(z(oD(Q), oD(C), M), 0), (iA.test(C) || iA.test(Q)) && (g[t] += "%")) : g[t] = C;
|
|
4800
4800
|
}
|
|
4801
4801
|
(A.rotate || B.rotate) && (g.rotate = z(A.rotate || 0, B.rotate || 0, M));
|
|
4802
4802
|
}
|
|
@@ -4822,8 +4822,8 @@ function lD(g, A, B, M, D) {
|
|
|
4822
4822
|
function Ui(g, A = 0, B = 1, M = 0.5, D, e = g, w = g) {
|
|
4823
4823
|
if (iA.test(A) && (A = parseFloat(A), A = z(w.min, w.max, A / 100) - w.min), typeof A != "number")
|
|
4824
4824
|
return;
|
|
4825
|
-
let
|
|
4826
|
-
g === e && (
|
|
4825
|
+
let t = z(e.min, e.max, M);
|
|
4826
|
+
g === e && (t -= A), g.min = lD(g.min, A, B, t, D), g.max = lD(g.max, A, B, t, D);
|
|
4827
4827
|
}
|
|
4828
4828
|
function GD(g, A, [B, M, D], e, w) {
|
|
4829
4829
|
Ui(g, A[B], A[M], A[D], A.scale, e, w);
|
|
@@ -4917,8 +4917,8 @@ function qi(g, A, B) {
|
|
|
4917
4917
|
const { transformPerspective: C, rotate: i, rotateX: o, rotateY: I, skewX: E, skewY: r } = B;
|
|
4918
4918
|
C && (M = `perspective(${C}px) ${M}`), i && (M += `rotate(${i}deg) `), o && (M += `rotateX(${o}deg) `), I && (M += `rotateY(${I}deg) `), E && (M += `skewX(${E}deg) `), r && (M += `skewY(${r}deg) `);
|
|
4919
4919
|
}
|
|
4920
|
-
const
|
|
4921
|
-
return (
|
|
4920
|
+
const t = g.x.scale * A.x, Q = g.y.scale * A.y;
|
|
4921
|
+
return (t !== 1 || Q !== 1) && (M += `scale(${t}, ${Q})`), M || "none";
|
|
4922
4922
|
}
|
|
4923
4923
|
const fA = {
|
|
4924
4924
|
type: "projectionFrame",
|
|
@@ -4947,22 +4947,22 @@ function re(g) {
|
|
|
4947
4947
|
}
|
|
4948
4948
|
function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, checkIsScrollRoot: M, resetTransform: D }) {
|
|
4949
4949
|
return class {
|
|
4950
|
-
constructor(w = {},
|
|
4950
|
+
constructor(w = {}, t = A == null ? void 0 : A()) {
|
|
4951
4951
|
this.id = Ki++, this.animationId = 0, this.children = /* @__PURE__ */ new Set(), this.options = {}, this.isTreeAnimating = !1, this.isAnimationBlocked = !1, this.isLayoutDirty = !1, this.isProjectionDirty = !1, this.isSharedProjectionDirty = !1, this.isTransformDirty = !1, this.updateManuallyBlocked = !1, this.updateBlockedByResize = !1, this.isUpdating = !1, this.isSVG = !1, this.needsReset = !1, this.shouldResetTransform = !1, this.hasCheckedOptimisedAppear = !1, this.treeScale = { x: 1, y: 1 }, this.eventHandlers = /* @__PURE__ */ new Map(), this.hasTreeAnimated = !1, this.updateScheduled = !1, this.scheduleUpdate = () => this.update(), this.projectionUpdateScheduled = !1, this.checkUpdateFailed = () => {
|
|
4952
4952
|
this.isUpdating && (this.isUpdating = !1, this.clearAllSnapshots());
|
|
4953
4953
|
}, this.updateProjection = () => {
|
|
4954
4954
|
this.projectionUpdateScheduled = !1, _A && (fA.totalNodes = fA.resolvedTargetDeltas = fA.recalculatedProjection = 0), this.nodes.forEach(hi), this.nodes.forEach(Li), this.nodes.forEach(Fi), this.nodes.forEach(Ji), _A && window.MotionDebug.record(fA);
|
|
4955
|
-
}, this.resolvedRelativeTargetAt = 0, this.hasProjected = !1, this.isVisible = !0, this.animationProgress = 0, this.sharedNodes = /* @__PURE__ */ new Map(), this.latestValues = w, this.root =
|
|
4956
|
-
for (let
|
|
4957
|
-
this.path[
|
|
4955
|
+
}, this.resolvedRelativeTargetAt = 0, this.hasProjected = !1, this.isVisible = !0, this.animationProgress = 0, this.sharedNodes = /* @__PURE__ */ new Map(), this.latestValues = w, this.root = t ? t.root || t : this, this.path = t ? [...t.path, t] : [], this.parent = t, this.depth = t ? t.depth + 1 : 0;
|
|
4956
|
+
for (let Q = 0; Q < this.path.length; Q++)
|
|
4957
|
+
this.path[Q].shouldResetTransform = !0;
|
|
4958
4958
|
this.root === this && (this.nodes = new ai());
|
|
4959
4959
|
}
|
|
4960
|
-
addEventListener(w,
|
|
4961
|
-
return this.eventHandlers.has(w) || this.eventHandlers.set(w, new eM()), this.eventHandlers.get(w).add(
|
|
4960
|
+
addEventListener(w, t) {
|
|
4961
|
+
return this.eventHandlers.has(w) || this.eventHandlers.set(w, new eM()), this.eventHandlers.get(w).add(t);
|
|
4962
4962
|
}
|
|
4963
|
-
notifyListeners(w, ...
|
|
4964
|
-
const
|
|
4965
|
-
|
|
4963
|
+
notifyListeners(w, ...t) {
|
|
4964
|
+
const Q = this.eventHandlers.get(w);
|
|
4965
|
+
Q && Q.notify(...t);
|
|
4966
4966
|
}
|
|
4967
4967
|
hasListeners(w) {
|
|
4968
4968
|
return this.eventHandlers.has(w);
|
|
@@ -4970,19 +4970,19 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
|
|
|
4970
4970
|
/**
|
|
4971
4971
|
* Lifecycles
|
|
4972
4972
|
*/
|
|
4973
|
-
mount(w,
|
|
4973
|
+
mount(w, t = this.root.hasTreeAnimated) {
|
|
4974
4974
|
if (this.instance)
|
|
4975
4975
|
return;
|
|
4976
4976
|
this.isSVG = li(w), this.instance = w;
|
|
4977
|
-
const { layoutId:
|
|
4978
|
-
if (i && !i.current && i.mount(w), this.root.nodes.add(this), this.parent && this.parent.children.add(this),
|
|
4977
|
+
const { layoutId: Q, layout: C, visualElement: i } = this.options;
|
|
4978
|
+
if (i && !i.current && i.mount(w), this.root.nodes.add(this), this.parent && this.parent.children.add(this), t && (C || Q) && (this.isLayoutDirty = !0), g) {
|
|
4979
4979
|
let o;
|
|
4980
4980
|
const I = () => this.root.updateBlockedByResize = !1;
|
|
4981
4981
|
g(w, () => {
|
|
4982
4982
|
this.root.updateBlockedByResize = !0, o && o(), o = ci(I, 250), Yg.hasAnimatedSinceResize && (Yg.hasAnimatedSinceResize = !1, this.nodes.forEach(VD));
|
|
4983
4983
|
});
|
|
4984
4984
|
}
|
|
4985
|
-
|
|
4985
|
+
Q && this.root.registerSharedNode(Q, this), this.options.animate !== !1 && i && (Q || C) && this.addEventListener("didUpdate", ({ delta: o, hasLayoutChanged: I, hasRelativeLayoutChanged: E, layout: r }) => {
|
|
4986
4986
|
if (this.isTreeAnimationBlocked()) {
|
|
4987
4987
|
this.target = void 0, this.relativeTarget = void 0;
|
|
4988
4988
|
return;
|
|
@@ -5039,8 +5039,8 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
|
|
|
5039
5039
|
const o = this.path[i];
|
|
5040
5040
|
o.shouldResetTransform = !0, o.updateScroll("snapshot"), o.options.layoutRoot && o.willUpdate(!1);
|
|
5041
5041
|
}
|
|
5042
|
-
const { layoutId:
|
|
5043
|
-
if (
|
|
5042
|
+
const { layoutId: t, layout: Q } = this.options;
|
|
5043
|
+
if (t === void 0 && !Q)
|
|
5044
5044
|
return;
|
|
5045
5045
|
const C = this.getTransformTemplate();
|
|
5046
5046
|
this.prevTransformTemplateValue = C ? C(this.latestValues, "") : void 0, this.updateSnapshot(), w && this.notifyListeners("willUpdate");
|
|
@@ -5051,8 +5051,8 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
|
|
|
5051
5051
|
return;
|
|
5052
5052
|
}
|
|
5053
5053
|
this.isUpdating || this.nodes.forEach(vi), this.isUpdating = !1, this.nodes.forEach(Pi), this.nodes.forEach(Ri), this.nodes.forEach(pi), this.clearAllSnapshots();
|
|
5054
|
-
const
|
|
5055
|
-
b.delta = rA(0, 1e3 / 60,
|
|
5054
|
+
const t = sA.now();
|
|
5055
|
+
b.delta = rA(0, 1e3 / 60, t - b.timestamp), b.timestamp = t, b.isProcessing = !0, Fg.update.process(b), Fg.preRender.process(b), Fg.render.process(b), b.isProcessing = !1;
|
|
5056
5056
|
}
|
|
5057
5057
|
didUpdate() {
|
|
5058
5058
|
this.updateScheduled || (this.updateScheduled = !0, jB.read(this.scheduleUpdate));
|
|
@@ -5078,90 +5078,90 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
|
|
|
5078
5078
|
if (!this.instance || (this.updateScroll(), !(this.options.alwaysMeasureLayout && this.isLead()) && !this.isLayoutDirty))
|
|
5079
5079
|
return;
|
|
5080
5080
|
if (this.resumeFrom && !this.resumeFrom.instance)
|
|
5081
|
-
for (let
|
|
5082
|
-
this.path[
|
|
5081
|
+
for (let Q = 0; Q < this.path.length; Q++)
|
|
5082
|
+
this.path[Q].updateScroll();
|
|
5083
5083
|
const w = this.layout;
|
|
5084
5084
|
this.layout = this.measure(!1), this.layoutCorrected = L(), this.isLayoutDirty = !1, this.projectionDelta = void 0, this.notifyListeners("measure", this.layout.layoutBox);
|
|
5085
|
-
const { visualElement:
|
|
5086
|
-
|
|
5085
|
+
const { visualElement: t } = this.options;
|
|
5086
|
+
t && t.notify("LayoutMeasure", this.layout.layoutBox, w ? w.layoutBox : void 0);
|
|
5087
5087
|
}
|
|
5088
5088
|
updateScroll(w = "measure") {
|
|
5089
|
-
let
|
|
5090
|
-
if (this.scroll && this.scroll.animationId === this.root.animationId && this.scroll.phase === w && (
|
|
5091
|
-
const
|
|
5089
|
+
let t = !!(this.options.layoutScroll && this.instance);
|
|
5090
|
+
if (this.scroll && this.scroll.animationId === this.root.animationId && this.scroll.phase === w && (t = !1), t) {
|
|
5091
|
+
const Q = M(this.instance);
|
|
5092
5092
|
this.scroll = {
|
|
5093
5093
|
animationId: this.root.animationId,
|
|
5094
5094
|
phase: w,
|
|
5095
|
-
isRoot:
|
|
5095
|
+
isRoot: Q,
|
|
5096
5096
|
offset: B(this.instance),
|
|
5097
|
-
wasRoot: this.scroll ? this.scroll.isRoot :
|
|
5097
|
+
wasRoot: this.scroll ? this.scroll.isRoot : Q
|
|
5098
5098
|
};
|
|
5099
5099
|
}
|
|
5100
5100
|
}
|
|
5101
5101
|
resetTransform() {
|
|
5102
5102
|
if (!D)
|
|
5103
5103
|
return;
|
|
5104
|
-
const w = this.isLayoutDirty || this.shouldResetTransform || this.options.alwaysMeasureLayout,
|
|
5105
|
-
w && (
|
|
5104
|
+
const w = this.isLayoutDirty || this.shouldResetTransform || this.options.alwaysMeasureLayout, t = this.projectionDelta && !Ee(this.projectionDelta), Q = this.getTransformTemplate(), C = Q ? Q(this.latestValues, "") : void 0, i = C !== this.prevTransformTemplateValue;
|
|
5105
|
+
w && (t || VA(this.latestValues) || i) && (D(this.instance, C), this.shouldResetTransform = !1, this.scheduleRender());
|
|
5106
5106
|
}
|
|
5107
5107
|
measure(w = !0) {
|
|
5108
|
-
const
|
|
5109
|
-
let
|
|
5110
|
-
return w && (
|
|
5108
|
+
const t = this.measurePageBox();
|
|
5109
|
+
let Q = this.removeElementScroll(t);
|
|
5110
|
+
return w && (Q = this.removeTransform(Q)), Si(Q), {
|
|
5111
5111
|
animationId: this.root.animationId,
|
|
5112
|
-
measuredBox:
|
|
5113
|
-
layoutBox:
|
|
5112
|
+
measuredBox: t,
|
|
5113
|
+
layoutBox: Q,
|
|
5114
5114
|
latestValues: {},
|
|
5115
5115
|
source: this.id
|
|
5116
5116
|
};
|
|
5117
5117
|
}
|
|
5118
5118
|
measurePageBox() {
|
|
5119
5119
|
var w;
|
|
5120
|
-
const { visualElement:
|
|
5121
|
-
if (!
|
|
5120
|
+
const { visualElement: t } = this.options;
|
|
5121
|
+
if (!t)
|
|
5122
5122
|
return L();
|
|
5123
|
-
const
|
|
5123
|
+
const Q = t.measureViewportBox();
|
|
5124
5124
|
if (!(((w = this.scroll) === null || w === void 0 ? void 0 : w.wasRoot) || this.path.some(Xi))) {
|
|
5125
5125
|
const { scroll: i } = this.root;
|
|
5126
|
-
i && (zA(
|
|
5126
|
+
i && (zA(Q.x, i.offset.x), zA(Q.y, i.offset.y));
|
|
5127
5127
|
}
|
|
5128
|
-
return
|
|
5128
|
+
return Q;
|
|
5129
5129
|
}
|
|
5130
5130
|
removeElementScroll(w) {
|
|
5131
|
-
var
|
|
5132
|
-
const
|
|
5133
|
-
if (AA(
|
|
5134
|
-
return
|
|
5131
|
+
var t;
|
|
5132
|
+
const Q = L();
|
|
5133
|
+
if (AA(Q, w), !((t = this.scroll) === null || t === void 0) && t.wasRoot)
|
|
5134
|
+
return Q;
|
|
5135
5135
|
for (let C = 0; C < this.path.length; C++) {
|
|
5136
5136
|
const i = this.path[C], { scroll: o, options: I } = i;
|
|
5137
|
-
i !== this.root && o && I.layoutScroll && (o.wasRoot && AA(
|
|
5137
|
+
i !== this.root && o && I.layoutScroll && (o.wasRoot && AA(Q, w), zA(Q.x, o.offset.x), zA(Q.y, o.offset.y));
|
|
5138
5138
|
}
|
|
5139
|
-
return
|
|
5139
|
+
return Q;
|
|
5140
5140
|
}
|
|
5141
|
-
applyTransform(w,
|
|
5142
|
-
const
|
|
5143
|
-
AA(
|
|
5141
|
+
applyTransform(w, t = !1) {
|
|
5142
|
+
const Q = L();
|
|
5143
|
+
AA(Q, w);
|
|
5144
5144
|
for (let C = 0; C < this.path.length; C++) {
|
|
5145
5145
|
const i = this.path[C];
|
|
5146
|
-
!
|
|
5146
|
+
!t && i.options.layoutScroll && i.scroll && i !== i.root && vA(Q, {
|
|
5147
5147
|
x: -i.scroll.offset.x,
|
|
5148
5148
|
y: -i.scroll.offset.y
|
|
5149
|
-
}), VA(i.latestValues) && vA(
|
|
5149
|
+
}), VA(i.latestValues) && vA(Q, i.latestValues);
|
|
5150
5150
|
}
|
|
5151
|
-
return VA(this.latestValues) && vA(
|
|
5151
|
+
return VA(this.latestValues) && vA(Q, this.latestValues), Q;
|
|
5152
5152
|
}
|
|
5153
5153
|
removeTransform(w) {
|
|
5154
|
-
const
|
|
5155
|
-
AA(
|
|
5156
|
-
for (let
|
|
5157
|
-
const C = this.path[
|
|
5154
|
+
const t = L();
|
|
5155
|
+
AA(t, w);
|
|
5156
|
+
for (let Q = 0; Q < this.path.length; Q++) {
|
|
5157
|
+
const C = this.path[Q];
|
|
5158
5158
|
if (!C.instance || !VA(C.latestValues))
|
|
5159
5159
|
continue;
|
|
5160
5160
|
IB(C.latestValues) && C.updateSnapshot();
|
|
5161
5161
|
const i = L(), o = C.measurePageBox();
|
|
5162
|
-
AA(i, o), aD(
|
|
5162
|
+
AA(i, o), aD(t, C.latestValues, C.snapshot ? C.snapshot.layoutBox : void 0, i);
|
|
5163
5163
|
}
|
|
5164
|
-
return VA(this.latestValues) && aD(
|
|
5164
|
+
return VA(this.latestValues) && aD(t, this.latestValues), t;
|
|
5165
5165
|
}
|
|
5166
5166
|
setTargetDelta(w) {
|
|
5167
5167
|
this.targetDelta = w, this.root.scheduleUpdateProjection(), this.isProjectionDirty = !0;
|
|
@@ -5180,11 +5180,11 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
|
|
|
5180
5180
|
this.relativeParent && this.relativeParent.resolvedRelativeTargetAt !== b.timestamp && this.relativeParent.resolveTargetDelta(!0);
|
|
5181
5181
|
}
|
|
5182
5182
|
resolveTargetDelta(w = !1) {
|
|
5183
|
-
var
|
|
5184
|
-
const
|
|
5185
|
-
this.isProjectionDirty || (this.isProjectionDirty =
|
|
5186
|
-
const C = !!this.resumingFrom || this !==
|
|
5187
|
-
if (!(w || C && this.isSharedProjectionDirty || this.isProjectionDirty || !((
|
|
5183
|
+
var t;
|
|
5184
|
+
const Q = this.getLead();
|
|
5185
|
+
this.isProjectionDirty || (this.isProjectionDirty = Q.isProjectionDirty), this.isTransformDirty || (this.isTransformDirty = Q.isTransformDirty), this.isSharedProjectionDirty || (this.isSharedProjectionDirty = Q.isSharedProjectionDirty);
|
|
5186
|
+
const C = !!this.resumingFrom || this !== Q;
|
|
5187
|
+
if (!(w || C && this.isSharedProjectionDirty || this.isProjectionDirty || !((t = this.parent) === null || t === void 0) && t.isProjectionDirty || this.attemptToResolveRelativeTarget || this.root.updateBlockedByResize))
|
|
5188
5188
|
return;
|
|
5189
5189
|
const { layout: o, layoutId: I } = this.options;
|
|
5190
5190
|
if (!(!this.layout || !(o || I))) {
|
|
@@ -5211,17 +5211,17 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
|
|
|
5211
5211
|
}
|
|
5212
5212
|
calcProjection() {
|
|
5213
5213
|
var w;
|
|
5214
|
-
const
|
|
5214
|
+
const t = this.getLead(), Q = !!this.resumingFrom || this !== t;
|
|
5215
5215
|
let C = !0;
|
|
5216
|
-
if ((this.isProjectionDirty || !((w = this.parent) === null || w === void 0) && w.isProjectionDirty) && (C = !1),
|
|
5216
|
+
if ((this.isProjectionDirty || !((w = this.parent) === null || w === void 0) && w.isProjectionDirty) && (C = !1), Q && (this.isSharedProjectionDirty || this.isTransformDirty) && (C = !1), this.resolvedRelativeTargetAt === b.timestamp && (C = !1), C)
|
|
5217
5217
|
return;
|
|
5218
5218
|
const { layout: i, layoutId: o } = this.options;
|
|
5219
5219
|
if (this.isTreeAnimating = !!(this.parent && this.parent.isTreeAnimating || this.currentAnimation || this.pendingAnimation), this.isTreeAnimating || (this.targetDelta = this.relativeTarget = void 0), !this.layout || !(i || o))
|
|
5220
5220
|
return;
|
|
5221
5221
|
AA(this.layoutCorrected, this.layout.layoutBox);
|
|
5222
5222
|
const I = this.treeScale.x, E = this.treeScale.y;
|
|
5223
|
-
ei(this.layoutCorrected, this.treeScale, this.path,
|
|
5224
|
-
const { target: r } =
|
|
5223
|
+
ei(this.layoutCorrected, this.treeScale, this.path, Q), t.layout && !t.target && (this.treeScale.x !== 1 || this.treeScale.y !== 1) && (t.target = t.layout.layoutBox, t.targetWithTransforms = L());
|
|
5224
|
+
const { target: r } = t;
|
|
5225
5225
|
if (!r) {
|
|
5226
5226
|
this.prevProjectionDelta && (this.createProjectionDeltas(), this.scheduleRender());
|
|
5227
5227
|
return;
|
|
@@ -5235,20 +5235,20 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
|
|
|
5235
5235
|
this.isVisible = !0;
|
|
5236
5236
|
}
|
|
5237
5237
|
scheduleRender(w = !0) {
|
|
5238
|
-
var
|
|
5239
|
-
if ((
|
|
5240
|
-
const
|
|
5241
|
-
|
|
5238
|
+
var t;
|
|
5239
|
+
if ((t = this.options.visualElement) === null || t === void 0 || t.scheduleRender(), w) {
|
|
5240
|
+
const Q = this.getStack();
|
|
5241
|
+
Q && Q.scheduleRender();
|
|
5242
5242
|
}
|
|
5243
5243
|
this.resumingFrom && !this.resumingFrom.instance && (this.resumingFrom = void 0);
|
|
5244
5244
|
}
|
|
5245
5245
|
createProjectionDeltas() {
|
|
5246
5246
|
this.prevProjectionDelta = JA(), this.projectionDelta = JA(), this.projectionDeltaWithTransform = JA();
|
|
5247
5247
|
}
|
|
5248
|
-
setAnimationOrigin(w,
|
|
5249
|
-
const
|
|
5250
|
-
(!this.relativeParent || !this.relativeParent.options.layoutRoot) && (this.relativeTarget = this.relativeTargetOrigin = void 0), this.attemptToResolveRelativeTarget = !
|
|
5251
|
-
const I = L(), E =
|
|
5248
|
+
setAnimationOrigin(w, t = !1) {
|
|
5249
|
+
const Q = this.snapshot, C = Q ? Q.latestValues : {}, i = { ...this.latestValues }, o = JA();
|
|
5250
|
+
(!this.relativeParent || !this.relativeParent.options.layoutRoot) && (this.relativeTarget = this.relativeTargetOrigin = void 0), this.attemptToResolveRelativeTarget = !t;
|
|
5251
|
+
const I = L(), E = Q ? Q.source : void 0, r = this.layout ? this.layout.source : void 0, G = E !== r, c = this.getStack(), a = !c || c.members.length <= 1, l = !!(G && !a && this.options.crossfade === !0 && !this.path.some(Hi));
|
|
5252
5252
|
this.animationProgress = 0;
|
|
5253
5253
|
let Y;
|
|
5254
5254
|
this.mixTargetDelta = (Z) => {
|
|
@@ -5260,8 +5260,8 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
|
|
|
5260
5260
|
this.notifyListeners("animationStart"), this.currentAnimation && this.currentAnimation.stop(), this.resumingFrom && this.resumingFrom.currentAnimation && this.resumingFrom.currentAnimation.stop(), this.pendingAnimation && (YA(this.pendingAnimation), this.pendingAnimation = void 0), this.pendingAnimation = R.update(() => {
|
|
5261
5261
|
Yg.hasAnimatedSinceResize = !0, this.currentAnimation = ri(0, UD, {
|
|
5262
5262
|
...w,
|
|
5263
|
-
onUpdate: (
|
|
5264
|
-
this.mixTargetDelta(
|
|
5263
|
+
onUpdate: (t) => {
|
|
5264
|
+
this.mixTargetDelta(t), w.onUpdate && w.onUpdate(t);
|
|
5265
5265
|
},
|
|
5266
5266
|
onComplete: () => {
|
|
5267
5267
|
w.onComplete && w.onComplete(), this.completeAnimation();
|
|
@@ -5279,24 +5279,24 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
|
|
|
5279
5279
|
}
|
|
5280
5280
|
applyTransformsToTarget() {
|
|
5281
5281
|
const w = this.getLead();
|
|
5282
|
-
let { targetWithTransforms:
|
|
5283
|
-
if (!(!
|
|
5282
|
+
let { targetWithTransforms: t, target: Q, layout: C, latestValues: i } = w;
|
|
5283
|
+
if (!(!t || !Q || !C)) {
|
|
5284
5284
|
if (this !== w && this.layout && C && Ge(this.options.animationType, this.layout.layoutBox, C.layoutBox)) {
|
|
5285
|
-
|
|
5285
|
+
Q = this.target || L();
|
|
5286
5286
|
const o = _(this.layout.layoutBox.x);
|
|
5287
|
-
|
|
5287
|
+
Q.x.min = w.target.x.min, Q.x.max = Q.x.min + o;
|
|
5288
5288
|
const I = _(this.layout.layoutBox.y);
|
|
5289
|
-
|
|
5289
|
+
Q.y.min = w.target.y.min, Q.y.max = Q.y.min + I;
|
|
5290
5290
|
}
|
|
5291
|
-
AA(
|
|
5291
|
+
AA(t, Q), vA(t, i), Mg(this.projectionDeltaWithTransform, this.layoutCorrected, t, i);
|
|
5292
5292
|
}
|
|
5293
5293
|
}
|
|
5294
|
-
registerSharedNode(w,
|
|
5295
|
-
this.sharedNodes.has(w) || this.sharedNodes.set(w, new di()), this.sharedNodes.get(w).add(
|
|
5296
|
-
const C =
|
|
5297
|
-
|
|
5294
|
+
registerSharedNode(w, t) {
|
|
5295
|
+
this.sharedNodes.has(w) || this.sharedNodes.set(w, new di()), this.sharedNodes.get(w).add(t);
|
|
5296
|
+
const C = t.options.initialPromotionConfig;
|
|
5297
|
+
t.promote({
|
|
5298
5298
|
transition: C ? C.transition : void 0,
|
|
5299
|
-
preserveFollowOpacity: C && C.shouldPreserveFollowOpacity ? C.shouldPreserveFollowOpacity(
|
|
5299
|
+
preserveFollowOpacity: C && C.shouldPreserveFollowOpacity ? C.shouldPreserveFollowOpacity(t) : void 0
|
|
5300
5300
|
});
|
|
5301
5301
|
}
|
|
5302
5302
|
isLead() {
|
|
@@ -5305,22 +5305,22 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
|
|
|
5305
5305
|
}
|
|
5306
5306
|
getLead() {
|
|
5307
5307
|
var w;
|
|
5308
|
-
const { layoutId:
|
|
5309
|
-
return
|
|
5308
|
+
const { layoutId: t } = this.options;
|
|
5309
|
+
return t ? ((w = this.getStack()) === null || w === void 0 ? void 0 : w.lead) || this : this;
|
|
5310
5310
|
}
|
|
5311
5311
|
getPrevLead() {
|
|
5312
5312
|
var w;
|
|
5313
|
-
const { layoutId:
|
|
5314
|
-
return
|
|
5313
|
+
const { layoutId: t } = this.options;
|
|
5314
|
+
return t ? (w = this.getStack()) === null || w === void 0 ? void 0 : w.prevLead : void 0;
|
|
5315
5315
|
}
|
|
5316
5316
|
getStack() {
|
|
5317
5317
|
const { layoutId: w } = this.options;
|
|
5318
5318
|
if (w)
|
|
5319
5319
|
return this.root.sharedNodes.get(w);
|
|
5320
5320
|
}
|
|
5321
|
-
promote({ needsReset: w, transition:
|
|
5321
|
+
promote({ needsReset: w, transition: t, preserveFollowOpacity: Q } = {}) {
|
|
5322
5322
|
const C = this.getStack();
|
|
5323
|
-
C && C.promote(this,
|
|
5323
|
+
C && C.promote(this, Q), w && (this.projectionDelta = void 0, this.needsReset = !0), t && this.setOptions({ transition: t });
|
|
5324
5324
|
}
|
|
5325
5325
|
relegate() {
|
|
5326
5326
|
const w = this.getStack();
|
|
@@ -5330,12 +5330,12 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
|
|
|
5330
5330
|
const { visualElement: w } = this.options;
|
|
5331
5331
|
if (!w)
|
|
5332
5332
|
return;
|
|
5333
|
-
let
|
|
5334
|
-
const { latestValues:
|
|
5335
|
-
if ((
|
|
5333
|
+
let t = !1;
|
|
5334
|
+
const { latestValues: Q } = w;
|
|
5335
|
+
if ((Q.z || Q.rotate || Q.rotateX || Q.rotateY || Q.rotateZ || Q.skewX || Q.skewY) && (t = !0), !t)
|
|
5336
5336
|
return;
|
|
5337
5337
|
const C = {};
|
|
5338
|
-
|
|
5338
|
+
Q.z && xg("z", w, C, this.animationValues);
|
|
5339
5339
|
for (let i = 0; i < Ng.length; i++)
|
|
5340
5340
|
xg(`rotate${Ng[i]}`, w, C, this.animationValues), xg(`skew${Ng[i]}`, w, C, this.animationValues);
|
|
5341
5341
|
w.render();
|
|
@@ -5344,7 +5344,7 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
|
|
|
5344
5344
|
w.scheduleRender();
|
|
5345
5345
|
}
|
|
5346
5346
|
getProjectionStyles(w) {
|
|
5347
|
-
var
|
|
5347
|
+
var t, Q;
|
|
5348
5348
|
if (!this.instance || this.isSVG)
|
|
5349
5349
|
return;
|
|
5350
5350
|
if (!this.isVisible)
|
|
@@ -5362,7 +5362,7 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
|
|
|
5362
5362
|
const I = o.animationValues || o.latestValues;
|
|
5363
5363
|
this.applyTransformsToTarget(), C.transform = qi(this.projectionDeltaWithTransform, this.treeScale, I), i && (C.transform = i(I, C.transform));
|
|
5364
5364
|
const { x: E, y: r } = this.projectionDelta;
|
|
5365
|
-
C.transformOrigin = `${E.origin * 100}% ${r.origin * 100}% 0`, o.animationValues ? C.opacity = o === this ? (
|
|
5365
|
+
C.transformOrigin = `${E.origin * 100}% ${r.origin * 100}% 0`, o.animationValues ? C.opacity = o === this ? (Q = (t = I.opacity) !== null && t !== void 0 ? t : this.latestValues.opacity) !== null && Q !== void 0 ? Q : 1 : this.preserveOpacity ? this.latestValues.opacity : I.opacityExit : C.opacity = o === this ? I.opacity !== void 0 ? I.opacity : "" : I.opacityExit !== void 0 ? I.opacityExit : 0;
|
|
5366
5366
|
for (const G in Zg) {
|
|
5367
5367
|
if (I[G] === void 0)
|
|
5368
5368
|
continue;
|
|
@@ -5382,8 +5382,8 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
|
|
|
5382
5382
|
// Only run on root
|
|
5383
5383
|
resetTree() {
|
|
5384
5384
|
this.root.nodes.forEach((w) => {
|
|
5385
|
-
var
|
|
5386
|
-
return (
|
|
5385
|
+
var t;
|
|
5386
|
+
return (t = w.currentAnimation) === null || t === void 0 ? void 0 : t.stop();
|
|
5387
5387
|
}), this.root.nodes.forEach(ZD), this.root.sharedNodes.clear();
|
|
5388
5388
|
}
|
|
5389
5389
|
};
|
|
@@ -5403,11 +5403,11 @@ function pi(g) {
|
|
|
5403
5403
|
const I = w ? B.measuredBox[o] : B.layoutBox[o], E = _(M[o]);
|
|
5404
5404
|
I.max = I.min + E, g.relativeTarget && !g.currentAnimation && (g.isProjectionDirty = !0, g.relativeTarget[o].max = g.relativeTarget[o].min + E);
|
|
5405
5405
|
});
|
|
5406
|
-
const Q = JA();
|
|
5407
|
-
Mg(Q, M, B.layoutBox);
|
|
5408
5406
|
const t = JA();
|
|
5409
|
-
|
|
5410
|
-
const
|
|
5407
|
+
Mg(t, M, B.layoutBox);
|
|
5408
|
+
const Q = JA();
|
|
5409
|
+
w ? Mg(Q, g.applyTransform(D, !0), B.measuredBox) : Mg(Q, M, B.layoutBox);
|
|
5410
|
+
const C = !Ee(t);
|
|
5411
5411
|
let i = !1;
|
|
5412
5412
|
if (!g.resumeFrom) {
|
|
5413
5413
|
const o = g.getClosestProjectingParent();
|
|
@@ -5424,8 +5424,8 @@ function pi(g) {
|
|
|
5424
5424
|
g.notifyListeners("didUpdate", {
|
|
5425
5425
|
layout: M,
|
|
5426
5426
|
snapshot: B,
|
|
5427
|
-
delta:
|
|
5428
|
-
layoutDelta:
|
|
5427
|
+
delta: Q,
|
|
5428
|
+
layoutDelta: t,
|
|
5429
5429
|
hasLayoutChanged: C,
|
|
5430
5430
|
hasRelativeLayoutChanged: i
|
|
5431
5431
|
});
|
|
@@ -5615,15 +5615,15 @@ class ws extends mA {
|
|
|
5615
5615
|
root: B ? B.current : void 0,
|
|
5616
5616
|
rootMargin: M,
|
|
5617
5617
|
threshold: typeof D == "number" ? D : Ds[D]
|
|
5618
|
-
},
|
|
5619
|
-
const { isIntersecting: C } =
|
|
5618
|
+
}, t = (Q) => {
|
|
5619
|
+
const { isIntersecting: C } = Q;
|
|
5620
5620
|
if (this.isInView === C || (this.isInView = C, e && !C && this.hasEnteredView))
|
|
5621
5621
|
return;
|
|
5622
5622
|
C && (this.hasEnteredView = !0), this.node.animationState && this.node.animationState.setActive("whileInView", C);
|
|
5623
5623
|
const { onViewportEnter: i, onViewportLeave: o } = this.node.getProps(), I = C ? i : o;
|
|
5624
|
-
I && I(
|
|
5624
|
+
I && I(Q);
|
|
5625
5625
|
};
|
|
5626
|
-
return Ms(this.node.current, w,
|
|
5626
|
+
return Ms(this.node.current, w, t);
|
|
5627
5627
|
}
|
|
5628
5628
|
mount() {
|
|
5629
5629
|
this.startObserver();
|
|
@@ -5708,19 +5708,19 @@ class Is {
|
|
|
5708
5708
|
scrapeMotionValuesFromProps(A, B, M) {
|
|
5709
5709
|
return {};
|
|
5710
5710
|
}
|
|
5711
|
-
constructor({ parent: A, props: B, presenceContext: M, reducedMotionConfig: D, blockInitialAnimation: e, visualState: w },
|
|
5711
|
+
constructor({ parent: A, props: B, presenceContext: M, reducedMotionConfig: D, blockInitialAnimation: e, visualState: w }, t = {}) {
|
|
5712
5712
|
this.current = null, this.children = /* @__PURE__ */ new Set(), this.isVariantNode = !1, this.isControllingVariants = !1, this.shouldReduceMotion = null, this.values = /* @__PURE__ */ new Map(), this.KeyframeResolver = oM, this.features = {}, this.valueSubscriptions = /* @__PURE__ */ new Map(), this.prevMotionValues = {}, this.events = {}, this.propEventSubscriptions = {}, this.notifyUpdate = () => this.notify("Update", this.latestValues), this.render = () => {
|
|
5713
5713
|
this.current && (this.triggerBuild(), this.renderInstance(this.current, this.renderState, this.props.style, this.projection));
|
|
5714
5714
|
}, this.renderScheduledAt = 0, this.scheduleRender = () => {
|
|
5715
5715
|
const E = sA.now();
|
|
5716
5716
|
this.renderScheduledAt < E && (this.renderScheduledAt = E, R.render(this.render, !1, !0));
|
|
5717
5717
|
};
|
|
5718
|
-
const { latestValues:
|
|
5719
|
-
this.onUpdate = i, this.latestValues =
|
|
5718
|
+
const { latestValues: Q, renderState: C, onUpdate: i } = w;
|
|
5719
|
+
this.onUpdate = i, this.latestValues = Q, this.baseTarget = { ...Q }, this.initialValues = B.initial ? { ...Q } : {}, this.renderState = C, this.parent = A, this.props = B, this.presenceContext = M, this.depth = A ? A.depth + 1 : 0, this.reducedMotionConfig = D, this.options = t, this.blockInitialAnimation = !!e, this.isControllingVariants = Jg(B), this.isVariantNode = _D(B), this.isVariantNode && (this.variantChildren = /* @__PURE__ */ new Set()), this.manuallyAnimateOnMount = !!(A && A.current);
|
|
5720
5720
|
const { willChange: o, ...I } = this.scrapeMotionValuesFromProps(B, {}, this);
|
|
5721
5721
|
for (const E in I) {
|
|
5722
5722
|
const r = I[E];
|
|
5723
|
-
|
|
5723
|
+
Q[E] !== void 0 && T(r) && r.set(Q[E], !1);
|
|
5724
5724
|
}
|
|
5725
5725
|
}
|
|
5726
5726
|
mount(A) {
|
|
@@ -5738,8 +5738,8 @@ class Is {
|
|
|
5738
5738
|
}
|
|
5739
5739
|
bindToMotionValue(A, B) {
|
|
5740
5740
|
this.valueSubscriptions.has(A) && this.valueSubscriptions.get(A)();
|
|
5741
|
-
const M = KA.has(A), D = B.on("change", (
|
|
5742
|
-
this.latestValues[A] =
|
|
5741
|
+
const M = KA.has(A), D = B.on("change", (t) => {
|
|
5742
|
+
this.latestValues[A] = t, this.props.onUpdate && R.preRender(this.notifyUpdate), M && this.projection && (this.projection.isTransformDirty = !0);
|
|
5743
5743
|
}), e = B.on("renderRequest", this.scheduleRender);
|
|
5744
5744
|
let w;
|
|
5745
5745
|
window.MotionCheckAppearSync && (w = window.MotionCheckAppearSync(this, A, B)), this.valueSubscriptions.set(A, () => {
|
|
@@ -5980,7 +5980,7 @@ const ls = (g, A) => HB(g) ? new rs(A) : new ns(A, {
|
|
|
5980
5980
|
widthLogo: D = "65px",
|
|
5981
5981
|
...e
|
|
5982
5982
|
}, w) => {
|
|
5983
|
-
const [
|
|
5983
|
+
const [t, Q] = F(!1), C = eA(/* @__PURE__ */ new Map()), i = () => Q(!t), [o, I] = F({
|
|
5984
5984
|
top: 0,
|
|
5985
5985
|
left: 0,
|
|
5986
5986
|
width: 0,
|
|
@@ -6001,12 +6001,12 @@ const ls = (g, A) => HB(g) ? new rs(A) : new ns(A, {
|
|
|
6001
6001
|
});
|
|
6002
6002
|
}, [A]), tA(() => {
|
|
6003
6003
|
const l = window.matchMedia("(min-width: 640px)"), Y = () => {
|
|
6004
|
-
l.matches &&
|
|
6004
|
+
l.matches && t && Q(!1);
|
|
6005
6005
|
};
|
|
6006
6006
|
return l.addEventListener("change", Y), () => {
|
|
6007
6007
|
l.removeEventListener("change", Y);
|
|
6008
6008
|
};
|
|
6009
|
-
}, [
|
|
6009
|
+
}, [t]);
|
|
6010
6010
|
const E = {
|
|
6011
6011
|
goatData: "bg-zinc-900",
|
|
6012
6012
|
secondary: "bg-[#ededed]",
|
|
@@ -6044,7 +6044,7 @@ const ls = (g, A) => HB(g) ? new rs(A) : new ns(A, {
|
|
|
6044
6044
|
}
|
|
6045
6045
|
),
|
|
6046
6046
|
/* @__PURE__ */ U("div", { className: "relative flex h-16 items-center justify-between", children: [
|
|
6047
|
-
/* @__PURE__ */ s("div", { className: "absolute inset-y-0 left-0 flex items-center sm:hidden", children: /* @__PURE__ */ s("button", { className: `menu ${
|
|
6047
|
+
/* @__PURE__ */ s("div", { className: "absolute inset-y-0 left-0 flex items-center sm:hidden", children: /* @__PURE__ */ s("button", { className: `menu ${t ? g === "secondary" ? "openedark" : "opened" : ""}`, onClick: i, "aria-label": "Main Menu", children: /* @__PURE__ */ U("svg", { width: "45", height: "45", viewBox: "0 0 100 100", style: { fill: "#f9f8f8 !important" }, children: [
|
|
6048
6048
|
/* @__PURE__ */ s("path", { className: g === "secondary" ? "linedark linedark1" : "line line1", d: "M 20,29.000046 H 80.000231 C 80.000231,29.000046 94.498839,28.817352 94.532987,66.711331 94.543142,77.980673 90.966081,81.670246 85.259173,81.668997 79.552261,81.667751 75.000211,74.999942 75.000211,74.999942 L 25.000021,25.000058" }),
|
|
6049
6049
|
/* @__PURE__ */ s("path", { className: g === "secondary" ? "linedark linedark2" : "line line2", d: "M 20,50 H 80" }),
|
|
6050
6050
|
/* @__PURE__ */ s("path", { className: g === "secondary" ? "linedark linedark3" : "line line3", d: "M 20,70.999954 H 80.000231 C 80.000231,70.999954 94.498839,71.182648 94.532987,33.288669 94.543142,22.019327 90.966081,18.329754 85.259173,18.331003 79.552261,18.332249 75.000211,25.000058 75.000211,25.000058 L 25.000021,74.999942" })
|
|
@@ -6071,7 +6071,7 @@ const ls = (g, A) => HB(g) ? new rs(A) : new ns(A, {
|
|
|
6071
6071
|
),
|
|
6072
6072
|
(!B || B.trim() === "") && /* @__PURE__ */ s("div", { className: `text-[10px] ${a[g]} tracking-[4px]`, children: "DATA" })
|
|
6073
6073
|
] }) }),
|
|
6074
|
-
/* @__PURE__ */ s("div", { className: "hidden sm:ml-6 sm:block flex-grow", children: /* @__PURE__ */ s("nav", { className: "flex justify-end", children: /* @__PURE__ */ s("ul", { className: "flex space-x-4", children: A.map(({ label: l, href: Y, refId: Z }) => /* @__PURE__ */ s("li", { children: /* @__PURE__ */ s(aM, { href: Y, Viewport: G[g], colorButton: c[g], children: /* @__PURE__ */ s(
|
|
6074
|
+
/* @__PURE__ */ s("div", { className: "hidden sm:ml-6 sm:block flex-grow", children: /* @__PURE__ */ s("nav", { className: "flex justify-end", children: /* @__PURE__ */ s("ul", { className: "flex space-x-4", children: A.map(({ label: l, href: Y, refId: Z }) => /* @__PURE__ */ s("li", { children: /* @__PURE__ */ s(aM, { href: Y, Viewport: G[g], colorButton: c[g], setIsOpen: Q, children: /* @__PURE__ */ s(
|
|
6075
6075
|
"div",
|
|
6076
6076
|
{
|
|
6077
6077
|
ref: (n) => n && Z && C.current.set(Z, n),
|
|
@@ -6083,7 +6083,7 @@ const ls = (g, A) => HB(g) ? new rs(A) : new ns(A, {
|
|
|
6083
6083
|
] })
|
|
6084
6084
|
] })
|
|
6085
6085
|
] }),
|
|
6086
|
-
|
|
6086
|
+
t && /* @__PURE__ */ s("div", { className: "space-y-1 px-2 pt-2 pb-3", children: A.map(({ label: l, href: Y }) => /* @__PURE__ */ s(aM, { href: Y, Viewport: G[g], colorButton: c[g], setIsOpen: Q, children: l }, Y)) })
|
|
6087
6087
|
] });
|
|
6088
6088
|
}
|
|
6089
6089
|
);
|
|
@@ -6097,8 +6097,8 @@ const Ys = oA(
|
|
|
6097
6097
|
explore: D = {},
|
|
6098
6098
|
overlap: e = {},
|
|
6099
6099
|
nameImages: w = !1,
|
|
6100
|
-
nameImagesBotton:
|
|
6101
|
-
handletext4:
|
|
6100
|
+
nameImagesBotton: t = !1,
|
|
6101
|
+
handletext4: Q,
|
|
6102
6102
|
handletext5: C,
|
|
6103
6103
|
...i
|
|
6104
6104
|
}, o) => {
|
|
@@ -6149,7 +6149,7 @@ const Ys = oA(
|
|
|
6149
6149
|
] }),
|
|
6150
6150
|
/* @__PURE__ */ s("p", { className: "text-sm md:text-lg mb-6", children: e.text3 }),
|
|
6151
6151
|
/* @__PURE__ */ U("div", { className: "flex gap-4", children: [
|
|
6152
|
-
e.text4 && /* @__PURE__ */ s(_g, { variant: A, onClick:
|
|
6152
|
+
e.text4 && /* @__PURE__ */ s(_g, { variant: A, onClick: Q, size: "small", label: e.text4 }),
|
|
6153
6153
|
e.text5 && /* @__PURE__ */ s(_g, { variant: "tertiary", onClick: C, size: "small", label: e.text5 })
|
|
6154
6154
|
] })
|
|
6155
6155
|
] }),
|
|
@@ -6176,7 +6176,7 @@ const Ys = oA(
|
|
|
6176
6176
|
)
|
|
6177
6177
|
] }) }),
|
|
6178
6178
|
w && /* @__PURE__ */ s("div", { className: "absolute inset-0 flex flex-col justify-center items-center text-white z-10 transition-opacity duration-700 ease-in-out", children: /* @__PURE__ */ s("h1", { className: "text-4xl font-bold", children: ((u = g[I]) == null ? void 0 : u.alt) || "Título dinámico" }, I) }),
|
|
6179
|
-
|
|
6179
|
+
t && /* @__PURE__ */ s("div", { className: "absolute bottom-8 left-1/2 transform -translate-x-1/2 text-center z-10", children: /* @__PURE__ */ s("p", { className: "text-lg font-medium text-white", children: (d = g[I]) == null ? void 0 : d.alt }) }),
|
|
6180
6180
|
/* @__PURE__ */ s(
|
|
6181
6181
|
"div",
|
|
6182
6182
|
{
|
|
@@ -6262,8 +6262,8 @@ const ue = ({ infoText: g, disabled: A = !1, bgStyles: B }) => {
|
|
|
6262
6262
|
icon: D,
|
|
6263
6263
|
placeholder: e = "Enter text",
|
|
6264
6264
|
title: w,
|
|
6265
|
-
info:
|
|
6266
|
-
infoText:
|
|
6265
|
+
info: t = !1,
|
|
6266
|
+
infoText: Q,
|
|
6267
6267
|
positionIcon: C = "left",
|
|
6268
6268
|
type: i = "text",
|
|
6269
6269
|
error: o = !1,
|
|
@@ -6311,7 +6311,7 @@ const ue = ({ infoText: g, disabled: A = !1, bgStyles: B }) => {
|
|
|
6311
6311
|
return /* @__PURE__ */ U("div", { className: "relative", children: [
|
|
6312
6312
|
w && /* @__PURE__ */ U("div", { className: "flex items-center text-xs mb-1 font-medium text-gray-800", children: [
|
|
6313
6313
|
/* @__PURE__ */ s("span", { style: { color: g === "tertiary" ? "#73787f" : "" }, children: w }),
|
|
6314
|
-
|
|
6314
|
+
t && Q && /* @__PURE__ */ s(ue, { infoText: Q, disabled: B, bgStyles: n[g] })
|
|
6315
6315
|
] }),
|
|
6316
6316
|
/* @__PURE__ */ U("div", { className: "relative flex items-center", children: [
|
|
6317
6317
|
D && C === "left" && /* @__PURE__ */ s("span", { className: "absolute left-3", children: y() }),
|
|
@@ -6362,8 +6362,8 @@ const ms = N.forwardRef(
|
|
|
6362
6362
|
icon: D,
|
|
6363
6363
|
placeholder: e = "Select an option",
|
|
6364
6364
|
title: w,
|
|
6365
|
-
info:
|
|
6366
|
-
infoText:
|
|
6365
|
+
info: t = !1,
|
|
6366
|
+
infoText: Q,
|
|
6367
6367
|
positionIcon: C = "left",
|
|
6368
6368
|
error: i = !1,
|
|
6369
6369
|
errorMessage: o = "",
|
|
@@ -6407,7 +6407,7 @@ const ms = N.forwardRef(
|
|
|
6407
6407
|
return /* @__PURE__ */ U("div", { className: "relative", children: [
|
|
6408
6408
|
w && /* @__PURE__ */ U("div", { className: "flex items-center text-xs mb-1 font-medium text-gray-800", children: [
|
|
6409
6409
|
/* @__PURE__ */ s("span", { style: { color: g === "tertiary" ? "#73787f" : "" }, children: w }),
|
|
6410
|
-
|
|
6410
|
+
t && Q && /* @__PURE__ */ s(ue, { infoText: Q, disabled: B, bgStyles: l[g] })
|
|
6411
6411
|
] }),
|
|
6412
6412
|
/* @__PURE__ */ U("div", { className: "relative flex items-center", children: [
|
|
6413
6413
|
D && C === "left" && /* @__PURE__ */ s("span", { className: "absolute left-3", children: n() }),
|
|
@@ -6469,8 +6469,8 @@ const ys = "
|
|
|
6469
6469
|
dataFiscal: D = {},
|
|
6470
6470
|
logo: e,
|
|
6471
6471
|
heightLogo: w = "60px",
|
|
6472
|
-
widthLogo:
|
|
6473
|
-
company:
|
|
6472
|
+
widthLogo: t = "85px",
|
|
6473
|
+
company: Q = "2025 GOAT DATA",
|
|
6474
6474
|
...C
|
|
6475
6475
|
}, i) => {
|
|
6476
6476
|
const [o] = F("Hola, Necesito más información!"), I = `
|
|
@@ -6510,7 +6510,7 @@ const ys = "
|
|
|
6510
6510
|
/* @__PURE__ */ s(
|
|
6511
6511
|
"img",
|
|
6512
6512
|
{
|
|
6513
|
-
style: { height: w && w.trim() !== "" ? w : "40px", width:
|
|
6513
|
+
style: { height: w && w.trim() !== "" ? w : "40px", width: t && t.trim() !== "" ? t : "65px" },
|
|
6514
6514
|
src: e && e.trim() !== "" ? e : g === "secondary" || g === "experiences" ? kA : AB,
|
|
6515
6515
|
alt: "logo"
|
|
6516
6516
|
}
|
|
@@ -6551,7 +6551,7 @@ const ys = "
|
|
|
6551
6551
|
] })
|
|
6552
6552
|
] }),
|
|
6553
6553
|
/* @__PURE__ */ U("div", { className: `${r[g]} py-4 flex flex-col items-center`, children: [
|
|
6554
|
-
/* @__PURE__ */ s("p", { className: "text-xs text-white", children: `© ${
|
|
6554
|
+
/* @__PURE__ */ s("p", { className: "text-xs text-white", children: `© ${Q}. TODOS LOS DERECHOS RESERVADOS.` }),
|
|
6555
6555
|
/* @__PURE__ */ U("a", { href: "https://goatdata.com.ar/", target: "_blank", rel: "noopener noreferrer", className: "mt-2 flex items-center", children: [
|
|
6556
6556
|
/* @__PURE__ */ s("span", { className: "text-xs text-white underline", children: "Diseñado y desarrollado por" }),
|
|
6557
6557
|
/* @__PURE__ */ s("img", { src: ys, alt: "Goat Data Logo", className: "h-2.5 mx-1" }),
|