prisma-goat 0.3.6 → 0.3.8

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -91,18 +91,18 @@ function pe(g) {
91
91
  attr: M,
92
92
  size: D,
93
93
  title: e
94
- } = g, w = de(g, fe), Q = D || B.size || "1em", t;
95
- return B.className && (t = B.className), g.className && (t = (t ? t + " " : "") + g.className), /* @__PURE__ */ N.createElement("svg", ug({
94
+ } = g, w = de(g, fe), t = D || B.size || "1em", Q;
95
+ return B.className && (Q = B.className), g.className && (Q = (Q ? Q + " " : "") + g.className), /* @__PURE__ */ N.createElement("svg", ug({
96
96
  stroke: "currentColor",
97
97
  fill: "currentColor",
98
98
  strokeWidth: "0"
99
99
  }, B.attr, M, w, {
100
- className: t,
100
+ className: Q,
101
101
  style: mg(mg({
102
102
  color: g.color || B.color
103
103
  }, B.style), g.style),
104
- height: Q,
105
- width: Q,
104
+ height: t,
105
+ width: t,
106
106
  xmlns: "http://www.w3.org/2000/svg"
107
107
  }), e && /* @__PURE__ */ N.createElement("title", null, e), g.children);
108
108
  };
@@ -208,8 +208,8 @@ const _g = oA(
208
208
  loadingPosition: D = "left",
209
209
  disabled: e = !1,
210
210
  isSubmit: w = !1,
211
- icon: Q,
212
- iconPosition: t = "left",
211
+ icon: t,
212
+ iconPosition: Q = "left",
213
213
  iconType: C,
214
214
  label: i,
215
215
  className: o,
@@ -245,7 +245,7 @@ const _g = oA(
245
245
  A === "secondary" ? "border-[#1F2937]" : "border-white"
246
246
  )
247
247
  }
248
- ), Z = () => N.isValidElement(Q) ? N.cloneElement(Q, { className: "w-5 h-5" }) : l(), n = i || g;
248
+ ), Z = () => N.isValidElement(t) ? N.cloneElement(t, { className: "w-5 h-5" }) : l(), n = i || g;
249
249
  return tA(() => {
250
250
  const u = (d) => {
251
251
  if (w && d.key === "Enter" && !e && I) {
@@ -280,9 +280,9 @@ const _g = oA(
280
280
  ...E,
281
281
  children: [
282
282
  M && D === "left" && /* @__PURE__ */ s("span", { className: "mr-2", children: Y }),
283
- t === "left" && /* @__PURE__ */ s("span", { className: "mr-2", children: Z() }),
283
+ Q === "left" && /* @__PURE__ */ s("span", { className: "mr-2", children: Z() }),
284
284
  n,
285
- t === "right" && /* @__PURE__ */ s("span", { className: "ml-2", children: Z() }),
285
+ Q === "right" && /* @__PURE__ */ s("span", { className: "ml-2", children: Z() }),
286
286
  M && D === "right" && /* @__PURE__ */ s("span", { className: "ml-2", children: Y })
287
287
  ]
288
288
  }
@@ -371,7 +371,7 @@ const QA = {
371
371
  strokeWidth: D = "10",
372
372
  ...e
373
373
  }, w) => {
374
- const Q = {
374
+ const t = {
375
375
  primary: "#1F2937",
376
376
  secondary: "#ededed",
377
377
  vividPink: "#ff0145",
@@ -380,7 +380,7 @@ const QA = {
380
380
  danger: "#b91c1c",
381
381
  warning: "#f59e0b",
382
382
  success: "#047857"
383
- }, t = {
383
+ }, Q = {
384
384
  black: "bg-black",
385
385
  white: "bg-white"
386
386
  }, C = {
@@ -405,7 +405,7 @@ const QA = {
405
405
  {
406
406
  ref: w,
407
407
  ...e,
408
- className: `fixed flex justify-center items-center top-0 left-0 right-0 bottom-0 ${t[A]} bg-opacity-60 z-[1201]`,
408
+ className: `fixed flex justify-center items-center top-0 left-0 right-0 bottom-0 ${Q[A]} bg-opacity-60 z-[1201]`,
409
409
  children: [
410
410
  /* @__PURE__ */ s(
411
411
  "svg",
@@ -422,7 +422,7 @@ const QA = {
422
422
  cy: "55",
423
423
  r: "45",
424
424
  fill: "none",
425
- stroke: Q[g],
425
+ stroke: t[g],
426
426
  strokeWidth: i[D],
427
427
  strokeDasharray: "314",
428
428
  strokeDashoffset: "314",
@@ -516,8 +516,8 @@ const kA = "
516
516
  listMenu: D = [],
517
517
  logo: e,
518
518
  heightLogo: w,
519
- widthLogo: Q,
520
- activeRoute: t,
519
+ widthLogo: t,
520
+ activeRoute: Q,
521
521
  router: C,
522
522
  toggleTheme: i,
523
523
  toggeInstallApp: o,
@@ -578,7 +578,7 @@ const kA = "
578
578
  {
579
579
  alt: "logo",
580
580
  className: "block w-auto lg:hidden",
581
- style: { height: w && w.trim() !== "" ? w : "40px", width: Q && Q.trim() !== "" ? Q : "65px" },
581
+ style: { height: w && w.trim() !== "" ? w : "40px", width: t && t.trim() !== "" ? t : "65px" },
582
582
  src: e && e.trim() !== "" ? e : A === "secondary" ? kA : "https://goatdata.com.ar/images/logogoatblanco.png"
583
583
  }
584
584
  ),
@@ -587,7 +587,7 @@ const kA = "
587
587
  {
588
588
  alt: "logo",
589
589
  className: "hidden lg:block",
590
- style: { height: w && w.trim() !== "" ? w : "40px", width: Q && Q.trim() !== "" ? Q : "65px" },
590
+ style: { height: w && w.trim() !== "" ? w : "40px", width: t && t.trim() !== "" ? t : "65px" },
591
591
  src: e && e.trim() !== "" ? e : A === "secondary" ? kA : "https://goatdata.com.ar/images/logogoatblanco.png"
592
592
  }
593
593
  ),
@@ -603,11 +603,11 @@ const kA = "
603
603
  type: "button",
604
604
  className: J(
605
605
  "flex items-center justify-center px-4 py-2 text-sm cursor-pointer rounded-md transition duration-300 focus:outline-none focus:ring-2 focus:ring-offset-2",
606
- t === m.link || (MA = m.subItems) != null && MA.some((S) => S.link === t) ? BA[A] : "",
606
+ Q === m.link || (MA = m.subItems) != null && MA.some((S) => S.link === Q) ? BA[A] : "",
607
607
  j[A],
608
608
  wA[A],
609
- t === m.link ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
610
- t === m.link ? "font-semibold" : "font-normal"
609
+ Q === m.link ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
610
+ Q === m.link ? "font-semibold" : "font-normal"
611
611
  ),
612
612
  onClick: () => Eg(m, k),
613
613
  onMouseEnter: () => XA(k),
@@ -648,9 +648,9 @@ const kA = "
648
648
  className: J(
649
649
  `block px-4 py-2 text-sm cursor-pointer ${QA[A]}e`,
650
650
  j[A] && `${j[A]}`,
651
- t === S.link ? BA[A] : "",
652
- t === S.link ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
653
- t === S.link ? "font-semibold" : "font-normal"
651
+ Q === S.link ? BA[A] : "",
652
+ Q === S.link ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
653
+ Q === S.link ? "font-semibold" : "font-normal"
654
654
  ),
655
655
  onClick: () => NA(S, k),
656
656
  children: S.label
@@ -709,9 +709,9 @@ const kA = "
709
709
  className: J(
710
710
  "block px-4 py-2 text-sm cursor-pointer",
711
711
  j[A] && `${j[A]}`,
712
- t === m.link ? BA[A] : "",
713
- t === m.link ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
714
- t === m.link ? "font-semibold" : "font-normal"
712
+ Q === m.link ? BA[A] : "",
713
+ Q === m.link ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
714
+ Q === m.link ? "font-semibold" : "font-normal"
715
715
  ),
716
716
  onClick: m.label === "Cerrar sesion" ? I : () => {
717
717
  ng(m);
@@ -730,9 +730,9 @@ const kA = "
730
730
  `items-center justify-center px-4 py-2 text-sm cursor-pointer hidden sm:block
731
731
  ${j[A]}
732
732
  rounded-md transition duration-300 focus:outline-none focus:ring-2 ${wA[A]} focus:ring-offset-2`,
733
- t === "/login" ? BA[A] : "",
734
- t === "/login" ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
735
- t === "/login" ? "font-semibold" : "font-normal"
733
+ Q === "/login" ? BA[A] : "",
734
+ Q === "/login" ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
735
+ Q === "/login" ? "font-semibold" : "font-normal"
736
736
  ),
737
737
  onClick: () => {
738
738
  C.push("/login"), IA();
@@ -752,9 +752,9 @@ const kA = "
752
752
  className: J(
753
753
  `block w-full px-4 py-2 text-base ${j[A]}
754
754
  rounded-md transition duration-300 focus:outline-none focus:ring-2 ${wA[A]} focus:ring-offset-2 text-left`,
755
- t === m.link || (MA = m.subItems) != null && MA.some((S) => S.link === t) ? BA[A] : "",
756
- t === m.link ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
757
- t === m.link ? "font-semibold" : "font-normal"
755
+ Q === m.link || (MA = m.subItems) != null && MA.some((S) => S.link === Q) ? BA[A] : "",
756
+ Q === m.link ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
757
+ Q === m.link ? "font-semibold" : "font-normal"
758
758
  ),
759
759
  onClick: () => {
760
760
  Pg(m, k);
@@ -768,9 +768,9 @@ const kA = "
768
768
  className: J(
769
769
  `block w-full px-4 py-1 text-sm ${j[A]}
770
770
  rounded-md transition duration-300 focus:outline-none focus:ring-2 ${wA[A]} focus:ring-offset-2 text-left`,
771
- t === S.link ? BA[A] : "",
772
- t === S.link ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
773
- t === S.link ? "font-semibold" : "font-normal"
771
+ Q === S.link ? BA[A] : "",
772
+ Q === S.link ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
773
+ Q === S.link ? "font-semibold" : "font-normal"
774
774
  ),
775
775
  onClick: () => {
776
776
  NA(m, k), y(!1);
@@ -820,9 +820,9 @@ const kA = "
820
820
  className: J(
821
821
  `block w-full px-4 py-2 text-base ${j[A]}
822
822
  rounded-md transition duration-300 focus:outline-none focus:ring-2 ${wA[A]} focus:ring-offset-2 text-left`,
823
- t === m.link ? BA[A] : "",
824
- t === m.link ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
825
- t === m.link ? "font-semibold" : "font-normal"
823
+ Q === m.link ? BA[A] : "",
824
+ Q === m.link ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
825
+ Q === m.link ? "font-semibold" : "font-normal"
826
826
  ),
827
827
  onClick: m.label === "Cerrar sesion" ? I : () => f(m),
828
828
  children: m.label
@@ -836,9 +836,9 @@ const kA = "
836
836
  className: J(
837
837
  `block w-full px-4 py-2 text-base ${j[A]}
838
838
  rounded-md transition duration-300 focus:outline-none focus:ring-2 ${wA[A]} focus:ring-offset-2 text-left`,
839
- t === "/login" ? BA[A] : "",
840
- t === "/login" ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
841
- t === "/login" ? "font-semibold" : "font-normal"
839
+ Q === "/login" ? BA[A] : "",
840
+ Q === "/login" ? A === "secondary" || A === "primary" || A === "darkMagenta" || A === "veryDarkViolet" || A === "success" ? "text-custom-red" : "text-custom-blue" : A === "primary" || A === "vividPink" || A === "darkMagenta" || A === "veryDarkViolet" || A === "danger" || A === "warning" || A === "success" ? "text-white" : "text-custom-blue",
841
+ Q === "/login" ? "font-semibold" : "font-normal"
842
842
  ),
843
843
  onClick: () => {
844
844
  C.push("/login"), y(!1);
@@ -870,7 +870,7 @@ const Te = oA(
870
870
  height: D = "",
871
871
  ...e
872
872
  }, w) => {
873
- const Q = {
873
+ const t = {
874
874
  primary: "#1F2937",
875
875
  secondary: "#ededed",
876
876
  vividPink: "#ff0145",
@@ -879,7 +879,7 @@ const Te = oA(
879
879
  danger: "#b91c1c",
880
880
  warning: "#f59e0b",
881
881
  success: "#047857"
882
- }, t = {
882
+ }, Q = {
883
883
  logoRed: jD,
884
884
  logoBlack: JB,
885
885
  logo6: HD,
@@ -926,7 +926,7 @@ const Te = oA(
926
926
  cy: "55",
927
927
  r: "45",
928
928
  fill: "none",
929
- stroke: Q[g],
929
+ stroke: t[g],
930
930
  strokeWidth: C[M],
931
931
  strokeDasharray: "314",
932
932
  strokeDashoffset: "314",
@@ -945,7 +945,7 @@ const Te = oA(
945
945
  style: {
946
946
  animation: "blink 1s ease-in-out infinite"
947
947
  },
948
- children: /* @__PURE__ */ s("div", { className: "ml-1", children: /* @__PURE__ */ s("img", { src: B && B.trim() !== "" ? B : t[A], alt: "logo" }) })
948
+ children: /* @__PURE__ */ s("div", { className: "ml-1", children: /* @__PURE__ */ s("img", { src: B && B.trim() !== "" ? B : Q[A], alt: "logo" }) })
949
949
  }
950
950
  )
951
951
  ]
@@ -963,8 +963,8 @@ const Se = oA(
963
963
  logo: D,
964
964
  heightLogo: e,
965
965
  widthLogo: w,
966
- activeRoute: Q,
967
- router: t,
966
+ activeRoute: t,
967
+ router: Q,
968
968
  user: C,
969
969
  theme: i,
970
970
  InstallApp: o,
@@ -982,24 +982,24 @@ const Se = oA(
982
982
  const [u, d] = F(!0), [y, q] = F(null), [v, W] = F(!1), [yA, UA] = F(null), [lA, SA] = F(!1), XA = eA(null), P = () => W(!v), $ = () => W(!1), GA = () => {
983
983
  d((f) => !f);
984
984
  }, IA = (f, p) => {
985
- f.subItems && f.subItems.length > 0 ? q((EA) => EA === p ? -1 : p) : f.link && t && t.push(f.link);
985
+ f.subItems && f.subItems.length > 0 ? q((EA) => EA === p ? -1 : p) : f.link && Q && Q.push(f.link);
986
986
  }, Eg = (f, p) => {
987
- q((EA) => EA === p ? -1 : p), f.link && t && t.push(f.link);
987
+ q((EA) => EA === p ? -1 : p), f.link && Q && Q.push(f.link);
988
988
  }, Pg = (f) => {
989
- f.link && t && (t.push(f.link), $());
989
+ f.link && Q && (Q.push(f.link), $());
990
990
  };
991
991
  return tA(() => {
992
- if (typeof window < "u" && (t != null && t.events)) {
992
+ if (typeof window < "u" && (Q != null && Q.events)) {
993
993
  const f = () => {
994
994
  SA(!0);
995
995
  }, p = () => {
996
996
  SA(!1);
997
997
  };
998
- return t.events.on("routeChangeStart", f), t.events.on("routeChangeComplete", p), t.events.on("routeChangeError", p), () => {
999
- t.events.off("routeChangeStart", f), t.events.off("routeChangeComplete", p), t.events.off("routeChangeError", p);
998
+ return Q.events.on("routeChangeStart", f), Q.events.on("routeChangeComplete", p), Q.events.on("routeChangeError", p), () => {
999
+ Q.events.off("routeChangeStart", f), Q.events.off("routeChangeComplete", p), Q.events.off("routeChangeError", p);
1000
1000
  };
1001
1001
  }
1002
- }, [t]), /* @__PURE__ */ U(
1002
+ }, [Q]), /* @__PURE__ */ U(
1003
1003
  "div",
1004
1004
  {
1005
1005
  ref: n,
@@ -1052,9 +1052,9 @@ const Se = oA(
1052
1052
  `flex items-center justify-start w-full ${u ? "px-4" : ""} ${u ? "py-2" : ""} text-sm cursor-pointer rounded-md transition duration-300 focus:outline-none focus:ring-2 focus:ring-offset-2`,
1053
1053
  j[B],
1054
1054
  wA[B],
1055
- Q === f.link || (EA = f.subItems) != null && EA.some((O) => O.link === Q) ? BA[B] : "",
1056
- Q === f.link ? B === "secondary" || B === "primary" || B === "darkMagenta" || B === "veryDarkViolet" || B === "success" ? "text-custom-red" : "text-custom-blue" : B === "primary" || B === "vividPink" || B === "darkMagenta" || B === "veryDarkViolet" || B === "danger" || B === "warning" || B === "success" ? "text-white" : "text-custom-blue",
1057
- Q === f.link ? "font-semibold" : "font-normal"
1055
+ t === f.link || (EA = f.subItems) != null && EA.some((O) => O.link === t) ? BA[B] : "",
1056
+ t === f.link ? B === "secondary" || B === "primary" || B === "darkMagenta" || B === "veryDarkViolet" || B === "success" ? "text-custom-red" : "text-custom-blue" : B === "primary" || B === "vividPink" || B === "darkMagenta" || B === "veryDarkViolet" || B === "danger" || B === "warning" || B === "success" ? "text-white" : "text-custom-blue",
1057
+ t === f.link ? "font-semibold" : "font-normal"
1058
1058
  ),
1059
1059
  onClick: () => {
1060
1060
  IA(f, p);
@@ -1113,9 +1113,9 @@ const Se = oA(
1113
1113
  className: J(
1114
1114
  `block w-full px-4 py-1 text-sm ${j[B]}
1115
1115
  rounded-md transition duration-300 focus:outline-none focus:ring-2 ${wA[B]} focus:ring-offset-2 text-left`,
1116
- Q === O.link ? BA[B] : "",
1117
- Q === O.link ? B === "secondary" || B === "primary" || B === "darkMagenta" || B === "veryDarkViolet" || B === "success" ? "text-custom-red" : "text-custom-blue" : B === "primary" || B === "vividPink" || B === "darkMagenta" || B === "veryDarkViolet" || B === "danger" || B === "warning" || B === "success" ? "text-white" : "text-custom-blue",
1118
- Q === O.link ? "font-semibold" : "font-normal"
1116
+ t === O.link ? BA[B] : "",
1117
+ t === O.link ? B === "secondary" || B === "primary" || B === "darkMagenta" || B === "veryDarkViolet" || B === "success" ? "text-custom-red" : "text-custom-blue" : B === "primary" || B === "vividPink" || B === "darkMagenta" || B === "veryDarkViolet" || B === "danger" || B === "warning" || B === "success" ? "text-white" : "text-custom-blue",
1118
+ t === O.link ? "font-semibold" : "font-normal"
1119
1119
  ),
1120
1120
  onClick: () => {
1121
1121
  Eg(O, p);
@@ -1135,9 +1135,9 @@ const Se = oA(
1135
1135
  className: J(
1136
1136
  `block px-4 py-2 text-sm cursor-pointer ${QA[B]}e`,
1137
1137
  j[B] && `${j[B]}`,
1138
- Q === O.link ? BA[B] : "",
1139
- Q === O.link ? B === "secondary" || B === "primary" || B === "darkMagenta" || B === "veryDarkViolet" || B === "success" ? "text-custom-red" : "text-custom-blue" : B === "primary" || B === "vividPink" || B === "darkMagenta" || B === "veryDarkViolet" || B === "danger" || B === "warning" || B === "success" ? "text-white" : "text-custom-blue",
1140
- Q === O.link ? "font-semibold" : "font-normal"
1138
+ t === O.link ? BA[B] : "",
1139
+ t === O.link ? B === "secondary" || B === "primary" || B === "darkMagenta" || B === "veryDarkViolet" || B === "success" ? "text-custom-red" : "text-custom-blue" : B === "primary" || B === "vividPink" || B === "darkMagenta" || B === "veryDarkViolet" || B === "danger" || B === "warning" || B === "success" ? "text-white" : "text-custom-blue",
1140
+ t === O.link ? "font-semibold" : "font-normal"
1141
1141
  ),
1142
1142
  onClick: () => {
1143
1143
  Eg(O, p);
@@ -1193,9 +1193,9 @@ const Se = oA(
1193
1193
  className: J(
1194
1194
  "block px-4 py-2 text-sm cursor-pointer",
1195
1195
  j[B] && `${j[B]}`,
1196
- Q === f.link ? BA[B] : "",
1197
- Q === f.link ? B === "secondary" || B === "primary" || B === "darkMagenta" || B === "veryDarkViolet" || B === "success" ? "text-custom-red" : "text-custom-blue" : B === "primary" || B === "vividPink" || B === "darkMagenta" || B === "veryDarkViolet" || B === "danger" || B === "warning" || B === "success" ? "text-white" : "text-custom-blue",
1198
- Q === f.link ? "font-semibold" : "font-normal"
1196
+ t === f.link ? BA[B] : "",
1197
+ t === f.link ? B === "secondary" || B === "primary" || B === "darkMagenta" || B === "veryDarkViolet" || B === "success" ? "text-custom-red" : "text-custom-blue" : B === "primary" || B === "vividPink" || B === "darkMagenta" || B === "veryDarkViolet" || B === "danger" || B === "warning" || B === "success" ? "text-white" : "text-custom-blue",
1198
+ t === f.link ? "font-semibold" : "font-normal"
1199
1199
  ),
1200
1200
  onClick: f.label === "Cerrar sesion" ? a : () => {
1201
1201
  Pg(f);
@@ -1228,36 +1228,36 @@ const Se = oA(
1228
1228
  }
1229
1229
  );
1230
1230
  Se.displayName = "Sidebar";
1231
- const AB = "", aM = ({ children: g, href: A, Viewport: B, colorButton: M }) => {
1232
- const D = eA(null), [e, w] = F(M);
1231
+ const AB = "", aM = ({ children: g, href: A, Viewport: B, colorButton: M, setIsOpen: D }) => {
1232
+ const e = eA(null), [w, t] = F(M);
1233
1233
  return tA(() => {
1234
- const t = () => {
1235
- const C = document.getElementById(A.slice(1));
1236
- if (C) {
1237
- const i = C.getBoundingClientRect(), o = i.top >= 0 && i.bottom <= window.innerHeight;
1238
- w(o ? B : M);
1234
+ const C = () => {
1235
+ const i = document.getElementById(A.slice(1));
1236
+ if (i) {
1237
+ const o = i.getBoundingClientRect(), I = o.top >= 0 && o.bottom <= window.innerHeight;
1238
+ t(I ? B : M);
1239
1239
  }
1240
1240
  };
1241
- return t(), window.addEventListener("scroll", t), () => {
1242
- window.removeEventListener("scroll", t);
1241
+ return C(), window.addEventListener("scroll", C), () => {
1242
+ window.removeEventListener("scroll", C);
1243
1243
  };
1244
1244
  }, [A, B, M]), /* @__PURE__ */ s(
1245
1245
  "button",
1246
1246
  {
1247
1247
  onClick: () => {
1248
- const t = document.getElementById(A.slice(1));
1249
- t && (t.scrollIntoView({ behavior: "smooth" }), setTimeout(() => {
1250
- const C = t.getBoundingClientRect(), i = C.top >= 0 && C.bottom <= window.innerHeight;
1251
- w(i ? B : M);
1248
+ const C = document.getElementById(A.slice(1));
1249
+ C && (C.scrollIntoView({ behavior: "smooth" }), setTimeout(() => {
1250
+ const i = C.getBoundingClientRect(), o = i.top >= 0 && i.bottom <= window.innerHeight;
1251
+ t(o ? B : M), D(!1);
1252
1252
  }, 300));
1253
1253
  },
1254
- ref: D,
1254
+ ref: e,
1255
1255
  style: {
1256
1256
  display: "block",
1257
1257
  padding: "8px 12px",
1258
1258
  borderRadius: "6px",
1259
1259
  fontSize: "14px",
1260
- color: e,
1260
+ color: w,
1261
1261
  background: "transparent",
1262
1262
  opacity: 0.7,
1263
1263
  textDecoration: "none",
@@ -1320,10 +1320,10 @@ function $e(g) {
1320
1320
  timestamp: 0,
1321
1321
  isProcessing: !1
1322
1322
  };
1323
- function Q(C) {
1324
- e.has(C) && (t.schedule(C), g()), C(w);
1323
+ function t(C) {
1324
+ e.has(C) && (Q.schedule(C), g()), C(w);
1325
1325
  }
1326
- const t = {
1326
+ const Q = {
1327
1327
  /**
1328
1328
  * Schedule a process to run on the next frame.
1329
1329
  */
@@ -1345,10 +1345,10 @@ function $e(g) {
1345
1345
  D = !0;
1346
1346
  return;
1347
1347
  }
1348
- M = !0, [A, B] = [B, A], A.forEach(Q), A.clear(), M = !1, D && (D = !1, t.process(C));
1348
+ M = !0, [A, B] = [B, A], A.forEach(t), A.clear(), M = !1, D && (D = !1, Q.process(C));
1349
1349
  }
1350
1350
  };
1351
- return t;
1351
+ return Q;
1352
1352
  }
1353
1353
  const rg = [
1354
1354
  "read",
@@ -1370,9 +1370,9 @@ function xD(g, A) {
1370
1370
  delta: 0,
1371
1371
  timestamp: 0,
1372
1372
  isProcessing: !1
1373
- }, e = () => B = !0, w = rg.reduce((a, l) => (a[l] = $e(e), a), {}), { read: Q, resolveKeyframes: t, update: C, preRender: i, render: o, postRender: I } = w, E = () => {
1373
+ }, e = () => B = !0, w = rg.reduce((a, l) => (a[l] = $e(e), a), {}), { read: t, resolveKeyframes: Q, update: C, preRender: i, render: o, postRender: I } = w, E = () => {
1374
1374
  const a = performance.now();
1375
- B = !1, D.delta = M ? 1e3 / 60 : Math.max(Math.min(a - D.timestamp, _e), 1), D.timestamp = a, D.isProcessing = !0, Q.process(D), t.process(D), C.process(D), i.process(D), o.process(D), I.process(D), D.isProcessing = !1, B && A && (M = !1, g(E));
1375
+ B = !1, D.delta = M ? 1e3 / 60 : Math.max(Math.min(a - D.timestamp, _e), 1), D.timestamp = a, D.isProcessing = !0, t.process(D), Q.process(D), C.process(D), i.process(D), o.process(D), I.process(D), D.isProcessing = !1, B && A && (M = !1, g(E));
1376
1376
  }, r = () => {
1377
1377
  B = !0, M = !0, D.isProcessing || g(E);
1378
1378
  };
@@ -1541,10 +1541,10 @@ function Qt(g, A, B) {
1541
1541
  const OB = (g) => g.replace(/([a-z])([A-Z])/gu, "$1-$2").toLowerCase(), Ct = "framerAppearId", Aw = "data-" + OB(Ct), { schedule: jB, cancel: fs } = xD(queueMicrotask, !1), gw = OA({});
1542
1542
  function it(g, A, B, M, D) {
1543
1543
  var e, w;
1544
- const { visualElement: Q } = X(pg), t = X(WD), C = X(vB), i = X(ND).reducedMotion, o = eA(null);
1545
- M = M || t.renderer, !o.current && M && (o.current = M(g, {
1544
+ const { visualElement: t } = X(pg), Q = X(WD), C = X(vB), i = X(ND).reducedMotion, o = eA(null);
1545
+ M = M || Q.renderer, !o.current && M && (o.current = M(g, {
1546
1546
  visualState: A,
1547
- parent: Q,
1547
+ parent: t,
1548
1548
  props: B,
1549
1549
  presenceContext: C,
1550
1550
  blockInitialAnimation: C ? C.initial === !1 : !1,
@@ -1567,11 +1567,11 @@ function it(g, A, B, M, D) {
1567
1567
  }), I;
1568
1568
  }
1569
1569
  function st(g, A, B, M) {
1570
- const { layoutId: D, layout: e, drag: w, dragConstraints: Q, layoutScroll: t, layoutRoot: C } = A;
1570
+ const { layoutId: D, layout: e, drag: w, dragConstraints: t, layoutScroll: Q, layoutRoot: C } = A;
1571
1571
  g.projection = new B(g.latestValues, A["data-framer-portal-id"] ? void 0 : Bw(g.parent)), g.projection.setOptions({
1572
1572
  layoutId: D,
1573
1573
  layout: e,
1574
- alwaysMeasureLayout: !!w || Q && pA(Q),
1574
+ alwaysMeasureLayout: !!w || t && pA(t),
1575
1575
  visualElement: g,
1576
1576
  /**
1577
1577
  * TODO: Update options in an effect. This could be tricky as it'll be too late
@@ -1582,7 +1582,7 @@ function st(g, A, B, M) {
1582
1582
  */
1583
1583
  animationType: typeof e == "string" ? e : "both",
1584
1584
  initialPromotionConfig: M,
1585
- layoutScroll: t,
1585
+ layoutScroll: Q,
1586
1586
  layoutRoot: C
1587
1587
  });
1588
1588
  }
@@ -1593,7 +1593,7 @@ function Bw(g) {
1593
1593
  function ot({ preloadedFeatures: g, createVisualElement: A, useRender: B, useVisualState: M, Component: D }) {
1594
1594
  var e, w;
1595
1595
  g && At(g);
1596
- function Q(C, i) {
1596
+ function t(C, i) {
1597
1597
  let o;
1598
1598
  const I = {
1599
1599
  ...X(ND),
@@ -1607,9 +1607,9 @@ function ot({ preloadedFeatures: g, createVisualElement: A, useRender: B, useVis
1607
1607
  }
1608
1608
  return U(pg.Provider, { value: r, children: [o && r.visualElement ? s(o, { visualElement: r.visualElement, ...I }) : null, B(D, C, Qt(G, r.visualElement, i), G, E, r.visualElement)] });
1609
1609
  }
1610
- Q.displayName = `motion.${typeof D == "string" ? D : `create(${(w = (e = D.displayName) !== null && e !== void 0 ? e : D.name) !== null && w !== void 0 ? w : ""})`}`;
1611
- const t = oA(Q);
1612
- return t[tt] = D, t;
1610
+ t.displayName = `motion.${typeof D == "string" ? D : `create(${(w = (e = D.displayName) !== null && e !== void 0 ? e : D.name) !== null && w !== void 0 ? w : ""})`}`;
1611
+ const Q = oA(t);
1612
+ return Q[tt] = D, Q;
1613
1613
  }
1614
1614
  function It({ layoutId: g }) {
1615
1615
  const A = X(XD).id;
@@ -1706,7 +1706,7 @@ function at({ scrapeMotionValuesFromProps: g, createRenderState: A, onUpdate: B
1706
1706
  latestValues: ct(M, D, e, g),
1707
1707
  renderState: A()
1708
1708
  };
1709
- return B && (w.onMount = (Q) => B({ props: M, current: Q, ...w }), w.onUpdate = (Q) => B(Q)), w;
1709
+ return B && (w.onMount = (t) => B({ props: M, current: t, ...w }), w.onUpdate = (t) => B(t)), w;
1710
1710
  }
1711
1711
  const Mw = (g) => (A, B) => {
1712
1712
  const M = X(pg), D = X(vB), e = () => at(g, A, M, D);
@@ -1716,12 +1716,12 @@ function ct(g, A, B, M) {
1716
1716
  const D = {}, e = M(g, {});
1717
1717
  for (const I in e)
1718
1718
  D[I] = ag(e[I]);
1719
- let { initial: w, animate: Q } = g;
1720
- const t = Jg(g), C = _D(g);
1721
- A && C && !t && g.inherit !== !1 && (w === void 0 && (w = A.initial), Q === void 0 && (Q = A.animate));
1719
+ let { initial: w, animate: t } = g;
1720
+ const Q = Jg(g), C = _D(g);
1721
+ A && C && !Q && g.inherit !== !1 && (w === void 0 && (w = A.initial), t === void 0 && (t = A.animate));
1722
1722
  let i = B ? B.initial === !1 : !1;
1723
1723
  i = i || w === !1;
1724
- const o = i ? Q : w;
1724
+ const o = i ? t : w;
1725
1725
  if (o && typeof o != "boolean" && !hg(o)) {
1726
1726
  const I = Array.isArray(o) ? o : [o];
1727
1727
  for (let E = 0; E < I.length; E++) {
@@ -1861,13 +1861,13 @@ const HA = [
1861
1861
  function dt(g, A, B) {
1862
1862
  let M = "", D = !0;
1863
1863
  for (let e = 0; e < ft; e++) {
1864
- const w = HA[e], Q = g[w];
1865
- if (Q === void 0)
1864
+ const w = HA[e], t = g[w];
1865
+ if (t === void 0)
1866
1866
  continue;
1867
- let t = !0;
1868
- if (typeof Q == "number" ? t = Q === (w.startsWith("scale") ? 1 : 0) : t = parseFloat(Q) === 0, !t || B) {
1869
- const C = ew(Q, XB[w]);
1870
- if (!t) {
1867
+ let Q = !0;
1868
+ if (typeof t == "number" ? Q = t === (w.startsWith("scale") ? 1 : 0) : Q = parseFloat(t) === 0, !Q || B) {
1869
+ const C = ew(t, XB[w]);
1870
+ if (!Q) {
1871
1871
  D = !1;
1872
1872
  const i = Vt[w] || w;
1873
1873
  M += `${i}(${C}) `;
@@ -1879,23 +1879,23 @@ function dt(g, A, B) {
1879
1879
  }
1880
1880
  function NB(g, A, B) {
1881
1881
  const { style: M, vars: D, transformOrigin: e } = g;
1882
- let w = !1, Q = !1;
1883
- for (const t in A) {
1884
- const C = A[t];
1885
- if (KA.has(t)) {
1882
+ let w = !1, t = !1;
1883
+ for (const Q in A) {
1884
+ const C = A[Q];
1885
+ if (KA.has(Q)) {
1886
1886
  w = !0;
1887
1887
  continue;
1888
- } else if (ww(t)) {
1889
- D[t] = C;
1888
+ } else if (ww(Q)) {
1889
+ D[Q] = C;
1890
1890
  continue;
1891
1891
  } else {
1892
- const i = ew(C, XB[t]);
1893
- t.startsWith("origin") ? (Q = !0, e[t] = i) : M[t] = i;
1892
+ const i = ew(C, XB[Q]);
1893
+ Q.startsWith("origin") ? (t = !0, e[Q] = i) : M[Q] = i;
1894
1894
  }
1895
1895
  }
1896
- if (A.transform || (w || B ? M.transform = dt(A, g.transform, B) : M.transform && (M.transform = "none")), Q) {
1897
- const { originX: t = "50%", originY: C = "50%", originZ: i = 0 } = e;
1898
- M.transformOrigin = `${t} ${C} ${i}`;
1896
+ if (A.transform || (w || B ? M.transform = dt(A, g.transform, B) : M.transform && (M.transform = "none")), t) {
1897
+ const { originX: Q = "50%", originY: C = "50%", originZ: i = 0 } = e;
1898
+ M.transformOrigin = `${Q} ${C} ${i}`;
1899
1899
  }
1900
1900
  }
1901
1901
  const qt = {
@@ -1909,8 +1909,8 @@ function Kt(g, A, B = 1, M = 0, D = !0) {
1909
1909
  g.pathLength = 1;
1910
1910
  const e = D ? qt : kt;
1911
1911
  g[e.offset] = V.transform(-M);
1912
- const w = V.transform(A), Q = V.transform(B);
1913
- g[e.array] = `${w} ${Q}`;
1912
+ const w = V.transform(A), t = V.transform(B);
1913
+ g[e.array] = `${w} ${t}`;
1914
1914
  }
1915
1915
  function ZM(g, A, B) {
1916
1916
  return typeof g == "string" ? g : V.transform(A + B * g);
@@ -1926,8 +1926,8 @@ function xB(g, {
1926
1926
  originX: D,
1927
1927
  originY: e,
1928
1928
  pathLength: w,
1929
- pathSpacing: Q = 1,
1930
- pathOffset: t = 0,
1929
+ pathSpacing: t = 1,
1930
+ pathOffset: Q = 0,
1931
1931
  // This is object creation, which we try to avoid per-frame.
1932
1932
  ...C
1933
1933
  }, i, o) {
@@ -1937,7 +1937,7 @@ function xB(g, {
1937
1937
  }
1938
1938
  g.attrs = g.style, g.style = {};
1939
1939
  const { attrs: I, style: E, dimensions: r } = g;
1940
- I.transform && (r && (E.transform = I.transform), delete I.transform), r && (D !== void 0 || e !== void 0 || E.transform) && (E.transformOrigin = Rt(r, D !== void 0 ? D : 0.5, e !== void 0 ? e : 0.5)), A !== void 0 && (I.x = A), B !== void 0 && (I.y = B), M !== void 0 && (I.scale = M), w !== void 0 && Kt(I, w, Q, t, !1);
1940
+ I.transform && (r && (E.transform = I.transform), delete I.transform), r && (D !== void 0 || e !== void 0 || E.transform) && (E.transformOrigin = Rt(r, D !== void 0 ? D : 0.5, e !== void 0 ? e : 0.5)), A !== void 0 && (I.x = A), B !== void 0 && (I.y = B), M !== void 0 && (I.scale = M), w !== void 0 && Kt(I, w, t, Q, !1);
1941
1941
  }
1942
1942
  const WB = () => ({
1943
1943
  style: {},
@@ -2027,8 +2027,8 @@ const VM = ["x", "y", "width", "height", "cx", "cy", "r"], Jt = {
2027
2027
  return;
2028
2028
  let e = !!g.drag;
2029
2029
  if (!e) {
2030
- for (const Q in D)
2031
- if (KA.has(Q)) {
2030
+ for (const t in D)
2031
+ if (KA.has(t)) {
2032
2032
  e = !0;
2033
2033
  break;
2034
2034
  }
@@ -2037,9 +2037,9 @@ const VM = ["x", "y", "width", "height", "cx", "cy", "r"], Jt = {
2037
2037
  return;
2038
2038
  let w = !A;
2039
2039
  if (A)
2040
- for (let Q = 0; Q < VM.length; Q++) {
2041
- const t = VM[Q];
2042
- g[t] !== A[t] && (w = !0);
2040
+ for (let t = 0; t < VM.length; t++) {
2041
+ const Q = VM[t];
2042
+ g[Q] !== A[Q] && (w = !0);
2043
2043
  }
2044
2044
  w && R.read(() => {
2045
2045
  ht(B, M), R.render(() => {
@@ -2088,7 +2088,7 @@ function Ft(g, A, B, M) {
2088
2088
  }
2089
2089
  function bt(g = !1) {
2090
2090
  return (B, M, D, { latestValues: e }, w) => {
2091
- const t = (HB(B) ? Ft : Lt)(M, e, w, B), C = Mt(M, typeof B == "string", g), i = B !== vD ? { ...C, ...t, ref: D } : {}, { children: o } = M, I = Kg(() => T(o) ? o.get() : o, [o]);
2091
+ const Q = (HB(B) ? Ft : Lt)(M, e, w, B), C = Mt(M, typeof B == "string", g), i = B !== vD ? { ...C, ...Q, ref: D } : {}, { children: o } = M, I = Kg(() => T(o) ? o.get() : o, [o]);
2092
2092
  return Ze(B, {
2093
2093
  ...i,
2094
2094
  children: I
@@ -2288,19 +2288,19 @@ function dM(g) {
2288
2288
  return !(g.pointerType === "touch" || aw());
2289
2289
  }
2290
2290
  function xt(g, A, B = {}) {
2291
- const [M, D, e] = cw(g, B), w = (Q) => {
2292
- if (!dM(Q))
2291
+ const [M, D, e] = cw(g, B), w = (t) => {
2292
+ if (!dM(t))
2293
2293
  return;
2294
- const { target: t } = Q, C = A(t, Q);
2295
- if (typeof C != "function" || !t)
2294
+ const { target: Q } = t, C = A(Q, t);
2295
+ if (typeof C != "function" || !Q)
2296
2296
  return;
2297
2297
  const i = (o) => {
2298
- dM(o) && (C(o), t.removeEventListener("pointerleave", i));
2298
+ dM(o) && (C(o), Q.removeEventListener("pointerleave", i));
2299
2299
  };
2300
- t.addEventListener("pointerleave", i, D);
2300
+ Q.addEventListener("pointerleave", i, D);
2301
2301
  };
2302
- return M.forEach((Q) => {
2303
- Q.addEventListener("pointerenter", w, D);
2302
+ return M.forEach((t) => {
2303
+ t.addEventListener("pointerenter", w, D);
2304
2304
  }), e;
2305
2305
  }
2306
2306
  const Yw = (g, A) => A ? g === A ? !0 : Yw(g, A.parentElement) : !1, MM = (g) => g.pointerType === "mouse" ? typeof g.button != "number" || g.button <= 0 : g.isPrimary !== !1, Wt = /* @__PURE__ */ new Set([
@@ -2341,22 +2341,22 @@ function kM(g) {
2341
2341
  return MM(g) && !aw();
2342
2342
  }
2343
2343
  function AQ(g, A, B = {}) {
2344
- const [M, D, e] = cw(g, B), w = (Q) => {
2345
- const t = Q.currentTarget;
2346
- if (!kM(Q) || $A.has(t))
2344
+ const [M, D, e] = cw(g, B), w = (t) => {
2345
+ const Q = t.currentTarget;
2346
+ if (!kM(t) || $A.has(Q))
2347
2347
  return;
2348
- $A.add(t);
2349
- const C = A(t, Q), i = (E, r) => {
2350
- window.removeEventListener("pointerup", o), window.removeEventListener("pointercancel", I), !(!kM(E) || !$A.has(t)) && ($A.delete(t), typeof C == "function" && C(E, { success: r }));
2348
+ $A.add(Q);
2349
+ const C = A(Q, t), i = (E, r) => {
2350
+ window.removeEventListener("pointerup", o), window.removeEventListener("pointercancel", I), !(!kM(E) || !$A.has(Q)) && ($A.delete(Q), typeof C == "function" && C(E, { success: r }));
2351
2351
  }, o = (E) => {
2352
- i(E, B.useGlobalTarget || Yw(t, E.target));
2352
+ i(E, B.useGlobalTarget || Yw(Q, E.target));
2353
2353
  }, I = (E) => {
2354
2354
  i(E, !1);
2355
2355
  };
2356
2356
  window.addEventListener("pointerup", o, D), window.addEventListener("pointercancel", I, D);
2357
2357
  };
2358
- return M.forEach((Q) => {
2359
- !$t(Q) && Q.getAttribute("tabindex") === null && (Q.tabIndex = 0), (B.useGlobalTarget ? window : Q).addEventListener("pointerdown", w, D), Q.addEventListener("focus", (C) => _t(C, D), D);
2358
+ return M.forEach((t) => {
2359
+ !$t(t) && t.getAttribute("tabindex") === null && (t.tabIndex = 0), (B.useGlobalTarget ? window : t).addEventListener("pointerdown", w, D), t.addEventListener("focus", (C) => _t(C, D), D);
2360
2360
  }), e;
2361
2361
  }
2362
2362
  function gQ(g) {
@@ -2626,8 +2626,8 @@ function eQ(g, A) {
2626
2626
  let { transitionEnd: M = {}, transition: D = {}, ...e } = B || {};
2627
2627
  e = { ...e, ...M };
2628
2628
  for (const w in e) {
2629
- const Q = Gt(e[w]);
2630
- wQ(g, w, Q);
2629
+ const t = Gt(e[w]);
2630
+ wQ(g, w, t);
2631
2631
  }
2632
2632
  }
2633
2633
  function tQ(g) {
@@ -2643,10 +2643,10 @@ function yw(g) {
2643
2643
  }
2644
2644
  const Uw = (g, A, B) => (((1 - 3 * B + 3 * A) * g + (3 * B - 6 * A)) * g + 3 * A) * g, QQ = 1e-7, CQ = 12;
2645
2645
  function iQ(g, A, B, M, D) {
2646
- let e, w, Q = 0;
2646
+ let e, w, t = 0;
2647
2647
  do
2648
2648
  w = A + (B - A) / 2, e = Uw(w, M, D) - g, e > 0 ? B = w : A = w;
2649
- while (Math.abs(e) > QQ && ++Q < CQ);
2649
+ while (Math.abs(e) > QQ && ++t < CQ);
2650
2650
  return w;
2651
2651
  }
2652
2652
  function sg(g, A, B, M) {
@@ -2666,12 +2666,12 @@ function oQ(g) {
2666
2666
  const IQ = /^(?:#[\da-f]{3,8}|(?:rgb|hsl)a?\((?:-?[\d.]+%?[,\s]+){2}-?[\d.]+%?\s*(?:[,/]\s*)?(?:\b\d+(?:\.\d+)?|\.\d+)?%?\))$/iu, iM = (g, A) => (B) => !!(typeof B == "string" && IQ.test(B) && B.startsWith(g) || A && !oQ(B) && Object.prototype.hasOwnProperty.call(B, A)), pw = (g, A, B) => (M) => {
2667
2667
  if (typeof M != "string")
2668
2668
  return M;
2669
- const [D, e, w, Q] = M.match(CM);
2669
+ const [D, e, w, t] = M.match(CM);
2670
2670
  return {
2671
2671
  [g]: parseFloat(D),
2672
2672
  [A]: parseFloat(e),
2673
2673
  [B]: parseFloat(w),
2674
- alpha: Q !== void 0 ? parseFloat(Q) : 1
2674
+ alpha: t !== void 0 ? parseFloat(t) : 1
2675
2675
  };
2676
2676
  }, EQ = (g) => rA(0, 255, g), Og = {
2677
2677
  ...TA,
@@ -2715,8 +2715,8 @@ function Qg(g) {
2715
2715
  var: []
2716
2716
  }, D = [];
2717
2717
  let e = 0;
2718
- const Q = A.replace(cQ, (t) => (H.test(t) ? (M.color.push(e), D.push(Jw), B.push(H.parse(t))) : t.startsWith(aQ) ? (M.var.push(e), D.push(GQ), B.push(t)) : (M.number.push(e), D.push(hw), B.push(parseFloat(t))), ++e, RM)).split(RM);
2719
- return { values: B, split: Q, indexes: M, types: D };
2718
+ const t = A.replace(cQ, (Q) => (H.test(Q) ? (M.color.push(e), D.push(Jw), B.push(H.parse(Q))) : Q.startsWith(aQ) ? (M.var.push(e), D.push(GQ), B.push(Q)) : (M.number.push(e), D.push(hw), B.push(parseFloat(Q))), ++e, RM)).split(RM);
2719
+ return { values: B, split: t, indexes: M, types: D };
2720
2720
  }
2721
2721
  function zw(g) {
2722
2722
  return Qg(g).values;
@@ -2727,8 +2727,8 @@ function vw(g) {
2727
2727
  let e = "";
2728
2728
  for (let w = 0; w < M; w++)
2729
2729
  if (e += A[w], D[w] !== void 0) {
2730
- const Q = B[w];
2731
- Q === hw ? e += gg(D[w]) : Q === Jw ? e += H.transform(D[w]) : e += D[w];
2730
+ const t = B[w];
2731
+ t === hw ? e += gg(D[w]) : t === Jw ? e += H.transform(D[w]) : e += D[w];
2732
2732
  }
2733
2733
  return e;
2734
2734
  };
@@ -2837,8 +2837,8 @@ function Lw() {
2837
2837
  M.render();
2838
2838
  const D = B.get(M);
2839
2839
  D && D.forEach(([e, w]) => {
2840
- var Q;
2841
- (Q = M.getValue(e)) === null || Q === void 0 || Q.set(w);
2840
+ var t;
2841
+ (t = M.getValue(e)) === null || t === void 0 || t.set(w);
2842
2842
  });
2843
2843
  }), g.forEach((M) => M.measureEndState()), g.forEach((M) => {
2844
2844
  M.suspendedScrollY !== void 0 && window.scrollTo(0, M.suspendedScrollY);
@@ -2866,14 +2866,14 @@ class oM {
2866
2866
  for (let e = 0; e < A.length; e++)
2867
2867
  if (A[e] === null)
2868
2868
  if (e === 0) {
2869
- const w = D == null ? void 0 : D.get(), Q = A[A.length - 1];
2869
+ const w = D == null ? void 0 : D.get(), t = A[A.length - 1];
2870
2870
  if (w !== void 0)
2871
2871
  A[0] = w;
2872
2872
  else if (M && B) {
2873
- const t = M.readValue(B, Q);
2874
- t != null && (A[0] = t);
2873
+ const Q = M.readValue(B, t);
2874
+ Q != null && (A[0] = Q);
2875
2875
  }
2876
- A[0] === void 0 && (A[0] = Q), D && w === void 0 && D.set(A[0]);
2876
+ A[0] === void 0 && (A[0] = t), D && w === void 0 && D.set(A[0]);
2877
2877
  } else
2878
2878
  A[e] = A[e - 1];
2879
2879
  }
@@ -2932,21 +2932,21 @@ class Tw extends oM {
2932
2932
  if (!B || !B.current)
2933
2933
  return;
2934
2934
  super.readKeyframes();
2935
- for (let t = 0; t < A.length; t++) {
2936
- let C = A[t];
2935
+ for (let Q = 0; Q < A.length; Q++) {
2936
+ let C = A[Q];
2937
2937
  if (typeof C == "string" && (C = C.trim(), SB(C))) {
2938
2938
  const i = Ow(C, B.current);
2939
- i !== void 0 && (A[t] = i), t === A.length - 1 && (this.finalKeyframe = C);
2939
+ i !== void 0 && (A[Q] = i), Q === A.length - 1 && (this.finalKeyframe = C);
2940
2940
  }
2941
2941
  }
2942
2942
  if (this.resolveNoneKeyframes(), !uw.has(M) || A.length !== 2)
2943
2943
  return;
2944
- const [D, e] = A, w = zM(D), Q = zM(e);
2945
- if (w !== Q)
2946
- if (pM(w) && pM(Q))
2947
- for (let t = 0; t < A.length; t++) {
2948
- const C = A[t];
2949
- typeof C == "string" && (A[t] = parseFloat(C));
2944
+ const [D, e] = A, w = zM(D), t = zM(e);
2945
+ if (w !== t)
2946
+ if (pM(w) && pM(t))
2947
+ for (let Q = 0; Q < A.length; Q++) {
2948
+ const C = A[Q];
2949
+ typeof C == "string" && (A[Q] = parseFloat(C));
2950
2950
  }
2951
2951
  else
2952
2952
  this.needsMeasurement = !0;
@@ -2972,9 +2972,9 @@ class Tw extends oM {
2972
2972
  return;
2973
2973
  const e = B.getValue(M);
2974
2974
  e && e.jump(this.measuredOrigin, !1);
2975
- const w = D.length - 1, Q = D[w];
2976
- D[w] = bA[M](B.measureViewportBox(), window.getComputedStyle(B.current)), Q !== null && this.finalKeyframe === void 0 && (this.finalKeyframe = Q), !((A = this.removedTransforms) === null || A === void 0) && A.length && this.removedTransforms.forEach(([t, C]) => {
2977
- B.getValue(t).set(C);
2975
+ const w = D.length - 1, t = D[w];
2976
+ D[w] = bA[M](B.measureViewportBox(), window.getComputedStyle(B.current)), t !== null && this.finalKeyframe === void 0 && (this.finalKeyframe = t), !((A = this.removedTransforms) === null || A === void 0) && A.length && this.removedTransforms.forEach(([Q, C]) => {
2977
+ B.getValue(Q).set(C);
2978
2978
  }), this.resolveNoneKeyframes();
2979
2979
  }
2980
2980
  }
@@ -2995,8 +2995,8 @@ function vQ(g, A, B, M) {
2995
2995
  return !1;
2996
2996
  if (A === "display" || A === "visibility")
2997
2997
  return !0;
2998
- const e = g[g.length - 1], w = vM(D, A), Q = vM(e, A);
2999
- return jA(w === Q, `You are trying to animate ${A} from "${D}" to "${e}". ${D} is not an animatable value - to enable this animation set ${D} to a value animatable to ${e} via the \`style\` property.`), !w || !Q ? !1 : zQ(g) || (B === "spring" || gM(B)) && M;
2998
+ const e = g[g.length - 1], w = vM(D, A), t = vM(e, A);
2999
+ return jA(w === t, `You are trying to animate ${A} from "${D}" to "${e}". ${D} is not an animatable value - to enable this animation set ${D} to a value animatable to ${e} via the \`style\` property.`), !w || !t ? !1 : zQ(g) || (B === "spring" || gM(B)) && M;
3000
3000
  }
3001
3001
  const PQ = (g) => g !== null;
3002
3002
  function vg(g, { repeat: A, repeatType: B = "loop" }, M) {
@@ -3005,7 +3005,7 @@ function vg(g, { repeat: A, repeatType: B = "loop" }, M) {
3005
3005
  }
3006
3006
  const LQ = 40;
3007
3007
  class Sw {
3008
- constructor({ autoplay: A = !0, delay: B = 0, type: M = "keyframes", repeat: D = 0, repeatDelay: e = 0, repeatType: w = "loop", ...Q }) {
3008
+ constructor({ autoplay: A = !0, delay: B = 0, type: M = "keyframes", repeat: D = 0, repeatDelay: e = 0, repeatType: w = "loop", ...t }) {
3009
3009
  this.isStopped = !1, this.hasAttemptedResolve = !1, this.createdAt = sA.now(), this.options = {
3010
3010
  autoplay: A,
3011
3011
  delay: B,
@@ -3013,7 +3013,7 @@ class Sw {
3013
3013
  repeat: D,
3014
3014
  repeatDelay: e,
3015
3015
  repeatType: w,
3016
- ...Q
3016
+ ...t
3017
3017
  }, this.updateFinishedPromise();
3018
3018
  }
3019
3019
  /**
@@ -3044,12 +3044,12 @@ class Sw {
3044
3044
  */
3045
3045
  onKeyframesResolved(A, B) {
3046
3046
  this.resolvedAt = sA.now(), this.hasAttemptedResolve = !0;
3047
- const { name: M, type: D, velocity: e, delay: w, onComplete: Q, onUpdate: t, isGenerator: C } = this.options;
3047
+ const { name: M, type: D, velocity: e, delay: w, onComplete: t, onUpdate: Q, isGenerator: C } = this.options;
3048
3048
  if (!C && !vQ(A, M, D, e))
3049
3049
  if (w)
3050
3050
  this.options.duration = 0;
3051
3051
  else {
3052
- t && t(vg(A, this.options, B)), Q && Q(), this.resolveFinishedPromise();
3052
+ Q && Q(vg(A, this.options, B)), t && t(), this.resolveFinishedPromise();
3053
3053
  return;
3054
3054
  }
3055
3055
  const i = this.initPlayback(A, B);
@@ -3088,8 +3088,8 @@ function FQ({ hue: g, saturation: A, lightness: B, alpha: M }) {
3088
3088
  if (!A)
3089
3089
  D = e = w = B;
3090
3090
  else {
3091
- const Q = B < 0.5 ? B * (1 + A) : B + A - B * A, t = 2 * B - Q;
3092
- D = jg(t, Q, g + 1 / 3), e = jg(t, Q, g), w = jg(t, Q, g - 1 / 3);
3091
+ const t = B < 0.5 ? B * (1 + A) : B + A - B * A, Q = 2 * B - t;
3092
+ D = jg(Q, t, g + 1 / 3), e = jg(Q, t, g), w = jg(Q, t, g - 1 / 3);
3093
3093
  }
3094
3094
  return {
3095
3095
  red: Math.round(D * 255),
@@ -3150,8 +3150,8 @@ function XQ(g, A) {
3150
3150
  var B;
3151
3151
  const M = [], D = { color: 0, var: 0, number: 0 };
3152
3152
  for (let e = 0; e < A.values.length; e++) {
3153
- const w = A.types[e], Q = g.indexes[w][D[w]], t = (B = g.values[Q]) !== null && B !== void 0 ? B : 0;
3154
- M[e] = t, D[w]++;
3153
+ const w = A.types[e], t = g.indexes[w][D[w]], Q = (B = g.values[t]) !== null && B !== void 0 ? B : 0;
3154
+ M[e] = Q, D[w]++;
3155
3155
  }
3156
3156
  return M;
3157
3157
  }
@@ -3213,15 +3213,15 @@ function WQ({ duration: g = h.duration, bounce: A = h.bounce, velocity: B = h.ve
3213
3213
  const i = Math.exp(-C * g), o = (B - C) * (g * g);
3214
3214
  return i * o;
3215
3215
  });
3216
- const Q = 5 / g, t = _Q(D, e, Q);
3217
- if (g = /* @__PURE__ */ CA(g), isNaN(t))
3216
+ const t = 5 / g, Q = _Q(D, e, t);
3217
+ if (g = /* @__PURE__ */ CA(g), isNaN(Q))
3218
3218
  return {
3219
3219
  stiffness: h.stiffness,
3220
3220
  damping: h.damping,
3221
3221
  duration: g
3222
3222
  };
3223
3223
  {
3224
- const C = Math.pow(t, 2) * M;
3224
+ const C = Math.pow(Q, 2) * M;
3225
3225
  return {
3226
3226
  stiffness: C,
3227
3227
  damping: w * 2 * Math.sqrt(M * C),
@@ -3278,10 +3278,10 @@ function Ww(g = h.visualDuration, A = h.bounce) {
3278
3278
  bounce: A
3279
3279
  } : g;
3280
3280
  let { restSpeed: M, restDelta: D } = B;
3281
- const e = B.keyframes[0], w = B.keyframes[B.keyframes.length - 1], Q = { done: !1, value: e }, { stiffness: t, damping: C, mass: i, duration: o, velocity: I, isResolvedFromDuration: E } = BC({
3281
+ const e = B.keyframes[0], w = B.keyframes[B.keyframes.length - 1], t = { done: !1, value: e }, { stiffness: Q, damping: C, mass: i, duration: o, velocity: I, isResolvedFromDuration: E } = BC({
3282
3282
  ...B,
3283
3283
  velocity: -/* @__PURE__ */ nA(B.velocity || 0)
3284
- }), r = I || 0, G = C / (2 * Math.sqrt(t * i)), c = w - e, a = /* @__PURE__ */ nA(Math.sqrt(t / i)), l = Math.abs(c) < 5;
3284
+ }), r = I || 0, G = C / (2 * Math.sqrt(Q * i)), c = w - e, a = /* @__PURE__ */ nA(Math.sqrt(Q / i)), l = Math.abs(c) < 5;
3285
3285
  M || (M = l ? h.restSpeed.granular : h.restSpeed.default), D || (D = l ? h.restDelta.granular : h.restDelta.default);
3286
3286
  let Y;
3287
3287
  if (G < 1) {
@@ -3304,14 +3304,14 @@ function Ww(g = h.visualDuration, A = h.bounce) {
3304
3304
  next: (n) => {
3305
3305
  const u = Y(n);
3306
3306
  if (E)
3307
- Q.done = n >= o;
3307
+ t.done = n >= o;
3308
3308
  else {
3309
3309
  let d = 0;
3310
3310
  G < 1 && (d = n === 0 ? /* @__PURE__ */ CA(r) : xw(Y, n, u));
3311
3311
  const y = Math.abs(d) <= M, q = Math.abs(w - u) <= D;
3312
- Q.done = y && q;
3312
+ t.done = y && q;
3313
3313
  }
3314
- return Q.value = Q.done ? w : u, Q;
3314
+ return t.value = t.done ? w : u, t;
3315
3315
  },
3316
3316
  toString: () => {
3317
3317
  const n = Math.min(nw(Z), BB), u = rw((d) => Z.next(n * d).value, n, 30);
@@ -3320,11 +3320,11 @@ function Ww(g = h.visualDuration, A = h.bounce) {
3320
3320
  };
3321
3321
  return Z;
3322
3322
  }
3323
- function OM({ keyframes: g, velocity: A = 0, power: B = 0.8, timeConstant: M = 325, bounceDamping: D = 10, bounceStiffness: e = 500, modifyTarget: w, min: Q, max: t, restDelta: C = 0.5, restSpeed: i }) {
3323
+ function OM({ keyframes: g, velocity: A = 0, power: B = 0.8, timeConstant: M = 325, bounceDamping: D = 10, bounceStiffness: e = 500, modifyTarget: w, min: t, max: Q, restDelta: C = 0.5, restSpeed: i }) {
3324
3324
  const o = g[0], I = {
3325
3325
  done: !1,
3326
3326
  value: o
3327
- }, E = (y) => Q !== void 0 && y < Q || t !== void 0 && y > t, r = (y) => Q === void 0 ? t : t === void 0 || Math.abs(Q - y) < Math.abs(t - y) ? Q : t;
3327
+ }, E = (y) => t !== void 0 && y < t || Q !== void 0 && y > Q, r = (y) => t === void 0 ? Q : Q === void 0 || Math.abs(t - y) < Math.abs(Q - y) ? t : Q;
3328
3328
  let G = B * A;
3329
3329
  const c = o + G, a = w === void 0 ? c : w(c);
3330
3330
  a !== c && (G = a - o);
@@ -3376,12 +3376,12 @@ const MC = /* @__PURE__ */ sg(0.42, 0, 1, 1), DC = /* @__PURE__ */ sg(0, 0, 0.58
3376
3376
  function eC(g, A, B) {
3377
3377
  const M = [], D = B || Nw, e = g.length - 1;
3378
3378
  for (let w = 0; w < e; w++) {
3379
- let Q = D(g[w], g[w + 1]);
3379
+ let t = D(g[w], g[w + 1]);
3380
3380
  if (A) {
3381
- const t = Array.isArray(A) ? A[w] || x : A;
3382
- Q = og(t, Q);
3381
+ const Q = Array.isArray(A) ? A[w] || x : A;
3382
+ t = og(Q, t);
3383
3383
  }
3384
- M.push(Q);
3384
+ M.push(t);
3385
3385
  }
3386
3386
  return M;
3387
3387
  }
@@ -3393,15 +3393,15 @@ function tC(g, A, { clamp: B = !0, ease: M, mixer: D } = {}) {
3393
3393
  return () => A[1];
3394
3394
  const w = g[0] === g[1];
3395
3395
  g[0] > g[e - 1] && (g = [...g].reverse(), A = [...A].reverse());
3396
- const Q = eC(A, M, D), t = Q.length, C = (i) => {
3396
+ const t = eC(A, M, D), Q = t.length, C = (i) => {
3397
3397
  if (w && i < g[0])
3398
3398
  return A[0];
3399
3399
  let o = 0;
3400
- if (t > 1)
3400
+ if (Q > 1)
3401
3401
  for (; o < g.length - 2 && !(i < g[o + 1]); o++)
3402
3402
  ;
3403
3403
  const I = /* @__PURE__ */ LA(g[o], g[o + 1], i);
3404
- return Q[o](I);
3404
+ return t[o](I);
3405
3405
  };
3406
3406
  return B ? (i) => C(rA(g[0], g[e - 1], i)) : C;
3407
3407
  }
@@ -3431,12 +3431,12 @@ function dg({ duration: g = 300, keyframes: A, times: B, ease: M = "easeInOut" }
3431
3431
  // TODO Maybe we should warn here if there's a length mismatch
3432
3432
  B && B.length === A.length ? B : CC(A),
3433
3433
  g
3434
- ), Q = tC(w, A, {
3434
+ ), t = tC(w, A, {
3435
3435
  ease: Array.isArray(D) ? D : sC(A, D)
3436
3436
  });
3437
3437
  return {
3438
3438
  calculatedDuration: g,
3439
- next: (t) => (e.value = Q(t), e.done = t >= g, e)
3439
+ next: (Q) => (e.value = t(Q), e.done = Q >= g, e)
3440
3440
  };
3441
3441
  }
3442
3442
  const oC = (g) => {
@@ -3463,21 +3463,21 @@ class EM extends Sw {
3463
3463
  if (this.resolver.cancel(), this.isStopped = !0, this.state === "idle")
3464
3464
  return;
3465
3465
  this.teardown();
3466
- const { onStop: t } = this.options;
3467
- t && t();
3466
+ const { onStop: Q } = this.options;
3467
+ Q && Q();
3468
3468
  };
3469
- const { name: B, motionValue: M, element: D, keyframes: e } = this.options, w = (D == null ? void 0 : D.KeyframeResolver) || oM, Q = (t, C) => this.onKeyframesResolved(t, C);
3470
- this.resolver = new w(e, Q, B, M, D), this.resolver.scheduleResolve();
3469
+ const { name: B, motionValue: M, element: D, keyframes: e } = this.options, w = (D == null ? void 0 : D.KeyframeResolver) || oM, t = (Q, C) => this.onKeyframesResolved(Q, C);
3470
+ this.resolver = new w(e, t, B, M, D), this.resolver.scheduleResolve();
3471
3471
  }
3472
3472
  flatten() {
3473
3473
  super.flatten(), this._resolved && Object.assign(this._resolved, this.initPlayback(this._resolved.keyframes));
3474
3474
  }
3475
3475
  initPlayback(A) {
3476
- const { type: B = "keyframes", repeat: M = 0, repeatDelay: D = 0, repeatType: e, velocity: w = 0 } = this.options, Q = gM(B) ? B : IC[B] || dg;
3477
- let t, C;
3478
- Q !== dg && typeof A[0] != "number" && (process.env.NODE_ENV !== "production" && cA(A.length === 2, `Only two keyframes currently supported with spring and inertia animations. Trying to animate ${A}`), t = og(EC, Nw(A[0], A[1])), A = [0, 100]);
3479
- const i = Q({ ...this.options, keyframes: A });
3480
- e === "mirror" && (C = Q({
3476
+ const { type: B = "keyframes", repeat: M = 0, repeatDelay: D = 0, repeatType: e, velocity: w = 0 } = this.options, t = gM(B) ? B : IC[B] || dg;
3477
+ let Q, C;
3478
+ t !== dg && typeof A[0] != "number" && (process.env.NODE_ENV !== "production" && cA(A.length === 2, `Only two keyframes currently supported with spring and inertia animations. Trying to animate ${A}`), Q = og(EC, Nw(A[0], A[1])), A = [0, 100]);
3479
+ const i = t({ ...this.options, keyframes: A });
3480
+ e === "mirror" && (C = t({
3481
3481
  ...this.options,
3482
3482
  keyframes: [...A].reverse(),
3483
3483
  velocity: -w
@@ -3486,7 +3486,7 @@ class EM extends Sw {
3486
3486
  return {
3487
3487
  generator: i,
3488
3488
  mirroredGenerator: C,
3489
- mapPercentToKeyframes: t,
3489
+ mapPercentToKeyframes: Q,
3490
3490
  calculatedDuration: o,
3491
3491
  resolvedDuration: I,
3492
3492
  totalDuration: E
@@ -3502,7 +3502,7 @@ class EM extends Sw {
3502
3502
  const { keyframes: y } = this.options;
3503
3503
  return { done: !0, value: y[y.length - 1] };
3504
3504
  }
3505
- const { finalKeyframe: D, generator: e, mirroredGenerator: w, mapPercentToKeyframes: Q, keyframes: t, calculatedDuration: C, totalDuration: i, resolvedDuration: o } = M;
3505
+ const { finalKeyframe: D, generator: e, mirroredGenerator: w, mapPercentToKeyframes: t, keyframes: Q, calculatedDuration: C, totalDuration: i, resolvedDuration: o } = M;
3506
3506
  if (this.startTime === null)
3507
3507
  return e.next(0);
3508
3508
  const { delay: I, repeat: E, repeatType: r, repeatDelay: G, onUpdate: c } = this.options;
@@ -3515,12 +3515,12 @@ class EM extends Sw {
3515
3515
  let q = Math.floor(y), v = y % 1;
3516
3516
  !v && y >= 1 && (v = 1), v === 1 && q--, q = Math.min(q, E + 1), !!(q % 2) && (r === "reverse" ? (v = 1 - v, G && (v -= G / o)) : r === "mirror" && (Z = w)), Y = rA(0, 1, v) * o;
3517
3517
  }
3518
- const n = l ? { done: !1, value: t[0] } : Z.next(Y);
3519
- Q && (n.value = Q(n.value));
3518
+ const n = l ? { done: !1, value: Q[0] } : Z.next(Y);
3519
+ t && (n.value = t(n.value));
3520
3520
  let { done: u } = n;
3521
3521
  !l && C !== null && (u = this.speed >= 0 ? this.currentTime >= i : this.currentTime <= 0);
3522
3522
  const d = this.holdTime === null && (this.state === "finished" || this.state === "running" && u);
3523
- return d && D !== void 0 && (n.value = vg(t, this.options, D)), c && c(n.value), d && this.finish(), n;
3523
+ return d && D !== void 0 && (n.value = vg(Q, this.options, D)), c && c(n.value), d && this.finish(), n;
3524
3524
  }
3525
3525
  get duration() {
3526
3526
  const { resolved: A } = this;
@@ -3589,10 +3589,10 @@ const nC = /* @__PURE__ */ new Set([
3589
3589
  // or until we implement support for linear() easing.
3590
3590
  // "background-color"
3591
3591
  ]);
3592
- function rC(g, A, B, { delay: M = 0, duration: D = 300, repeat: e = 0, repeatType: w = "loop", ease: Q = "easeInOut", times: t } = {}) {
3592
+ function rC(g, A, B, { delay: M = 0, duration: D = 300, repeat: e = 0, repeatType: w = "loop", ease: t = "easeInOut", times: Q } = {}) {
3593
3593
  const C = { [A]: B };
3594
- t && (C.offset = t);
3595
- const i = Gw(Q, D);
3594
+ Q && (C.offset = Q);
3595
+ const i = Gw(t, D);
3596
3596
  return Array.isArray(i) && (C.easing = i), g.animate(C, {
3597
3597
  delay: M,
3598
3598
  duration: D,
@@ -3638,20 +3638,20 @@ class TM extends Sw {
3638
3638
  constructor(A) {
3639
3639
  super(A);
3640
3640
  const { name: B, motionValue: M, element: D, keyframes: e } = this.options;
3641
- this.resolver = new Tw(e, (w, Q) => this.onKeyframesResolved(w, Q), B, M, D), this.resolver.scheduleResolve();
3641
+ this.resolver = new Tw(e, (w, t) => this.onKeyframesResolved(w, t), B, M, D), this.resolver.scheduleResolve();
3642
3642
  }
3643
3643
  initPlayback(A, B) {
3644
- let { duration: M = 300, times: D, ease: e, type: w, motionValue: Q, name: t, startTime: C } = this.options;
3645
- if (!Q.owner || !Q.owner.current)
3644
+ let { duration: M = 300, times: D, ease: e, type: w, motionValue: t, name: Q, startTime: C } = this.options;
3645
+ if (!t.owner || !t.owner.current)
3646
3646
  return !1;
3647
3647
  if (typeof e == "string" && Vg() && YC(e) && (e = _w[e]), aC(this.options)) {
3648
3648
  const { onComplete: o, onUpdate: I, motionValue: E, element: r, ...G } = this.options, c = cC(A, G);
3649
3649
  A = c.keyframes, A.length === 1 && (A[1] = A[0]), M = c.duration, D = c.times, e = c.ease, w = "keyframes";
3650
3650
  }
3651
- const i = rC(Q.owner.current, t, A, { ...this.options, duration: M, times: D, ease: e });
3651
+ const i = rC(t.owner.current, Q, A, { ...this.options, duration: M, times: D, ease: e });
3652
3652
  return i.startTime = C ?? this.calcStartTime(), this.pendingTimeline ? (fM(i, this.pendingTimeline), this.pendingTimeline = void 0) : i.onfinish = () => {
3653
3653
  const { onComplete: o } = this.options;
3654
- Q.set(vg(A, this.options, B)), o && o(), this.cancel(), this.resolveFinishedPromise();
3654
+ t.set(vg(A, this.options, B)), o && o(), this.cancel(), this.resolveFinishedPromise();
3655
3655
  }, {
3656
3656
  animation: i,
3657
3657
  duration: M,
@@ -3749,7 +3749,7 @@ class TM extends Sw {
3749
3749
  const { resolved: A } = this;
3750
3750
  if (!A)
3751
3751
  return;
3752
- const { animation: B, keyframes: M, duration: D, type: e, ease: w, times: Q } = A;
3752
+ const { animation: B, keyframes: M, duration: D, type: e, ease: w, times: t } = A;
3753
3753
  if (B.playState === "idle" || B.playState === "finished")
3754
3754
  return;
3755
3755
  if (this.time) {
@@ -3759,13 +3759,13 @@ class TM extends Sw {
3759
3759
  duration: D,
3760
3760
  type: e,
3761
3761
  ease: w,
3762
- times: Q,
3762
+ times: t,
3763
3763
  isGenerator: !0
3764
3764
  }), G = /* @__PURE__ */ CA(this.time);
3765
3765
  C.setWithVelocity(r.sample(G - qg).value, r.sample(G).value, qg);
3766
3766
  }
3767
- const { onStop: t } = this.options;
3768
- t && t(), this.cancel();
3767
+ const { onStop: Q } = this.options;
3768
+ Q && Q(), this.cancel();
3769
3769
  }
3770
3770
  complete() {
3771
3771
  const { resolved: A } = this;
@@ -3776,15 +3776,15 @@ class TM extends Sw {
3776
3776
  A && A.animation.cancel();
3777
3777
  }
3778
3778
  static supports(A) {
3779
- const { motionValue: B, name: M, repeatDelay: D, repeatType: e, damping: w, type: Q } = A;
3779
+ const { motionValue: B, name: M, repeatDelay: D, repeatType: e, damping: w, type: t } = A;
3780
3780
  if (!B || !B.owner || !(B.owner.current instanceof HTMLElement))
3781
3781
  return !1;
3782
- const { onUpdate: t, transformTemplate: C } = B.owner.getProps();
3782
+ const { onUpdate: Q, transformTemplate: C } = B.owner.getProps();
3783
3783
  return lC() && M && nC.has(M) && /**
3784
3784
  * If we're outputting values to onUpdate then we can't use WAAPI as there's
3785
3785
  * no way to read the value from WAAPI every frame.
3786
3786
  */
3787
- !t && !C && !D && e !== "mirror" && w !== 0 && Q !== "inertia";
3787
+ !Q && !C && !D && e !== "mirror" && w !== 0 && t !== "inertia";
3788
3788
  }
3789
3789
  }
3790
3790
  const uC = {
@@ -3805,36 +3805,36 @@ const uC = {
3805
3805
  ease: [0.25, 0.1, 0.35, 1],
3806
3806
  duration: 0.3
3807
3807
  }, ZC = (g, { keyframes: A }) => A.length > 2 ? yC : KA.has(g) ? g.startsWith("scale") ? mC(A[1]) : uC : UC;
3808
- function VC({ when: g, delay: A, delayChildren: B, staggerChildren: M, staggerDirection: D, repeat: e, repeatType: w, repeatDelay: Q, from: t, elapsed: C, ...i }) {
3808
+ function VC({ when: g, delay: A, delayChildren: B, staggerChildren: M, staggerDirection: D, repeat: e, repeatType: w, repeatDelay: t, from: Q, elapsed: C, ...i }) {
3809
3809
  return !!Object.keys(i).length;
3810
3810
  }
3811
3811
  const nM = (g, A, B, M = {}, D, e) => (w) => {
3812
- const Q = AM(M, g) || {}, t = Q.delay || M.delay || 0;
3812
+ const t = AM(M, g) || {}, Q = t.delay || M.delay || 0;
3813
3813
  let { elapsed: C = 0 } = M;
3814
- C = C - /* @__PURE__ */ CA(t);
3814
+ C = C - /* @__PURE__ */ CA(Q);
3815
3815
  let i = {
3816
3816
  keyframes: Array.isArray(B) ? B : [null, B],
3817
3817
  ease: "easeOut",
3818
3818
  velocity: A.getVelocity(),
3819
- ...Q,
3819
+ ...t,
3820
3820
  delay: -C,
3821
3821
  onUpdate: (I) => {
3822
- A.set(I), Q.onUpdate && Q.onUpdate(I);
3822
+ A.set(I), t.onUpdate && t.onUpdate(I);
3823
3823
  },
3824
3824
  onComplete: () => {
3825
- w(), Q.onComplete && Q.onComplete();
3825
+ w(), t.onComplete && t.onComplete();
3826
3826
  },
3827
3827
  name: g,
3828
3828
  motionValue: A,
3829
3829
  element: e ? void 0 : D
3830
3830
  };
3831
- VC(Q) || (i = {
3831
+ VC(t) || (i = {
3832
3832
  ...i,
3833
3833
  ...ZC(g, i)
3834
3834
  }), i.duration && (i.duration = /* @__PURE__ */ CA(i.duration)), i.repeatDelay && (i.repeatDelay = /* @__PURE__ */ CA(i.repeatDelay)), i.from !== void 0 && (i.keyframes[0] = i.from);
3835
3835
  let o = !1;
3836
3836
  if ((i.type === !1 || i.duration === 0 && !i.repeatDelay) && (i.duration = 0, i.delay === 0 && (o = !0)), o && !e && A.get() !== void 0) {
3837
- const I = vg(i.keyframes, Q);
3837
+ const I = vg(i.keyframes, t);
3838
3838
  if (I !== void 0)
3839
3839
  return R.update(() => {
3840
3840
  i.onUpdate(I), i.onComplete();
@@ -3848,11 +3848,11 @@ function fC({ protectedKeys: g, needsAnimating: A }, B) {
3848
3848
  }
3849
3849
  function Ae(g, A, { delay: B = 0, transitionOverride: M, type: D } = {}) {
3850
3850
  var e;
3851
- let { transition: w = g.getDefaultTransition(), transitionEnd: Q, ...t } = A;
3851
+ let { transition: w = g.getDefaultTransition(), transitionEnd: t, ...Q } = A;
3852
3852
  M && (w = M);
3853
3853
  const C = [], i = D && g.animationState && g.animationState.getState()[D];
3854
- for (const o in t) {
3855
- const I = g.getValue(o, (e = g.latestValues[o]) !== null && e !== void 0 ? e : null), E = t[o];
3854
+ for (const o in Q) {
3855
+ const I = g.getValue(o, (e = g.latestValues[o]) !== null && e !== void 0 ? e : null), E = Q[o];
3856
3856
  if (E === void 0 || i && fC(i, o))
3857
3857
  continue;
3858
3858
  const r = {
@@ -3871,9 +3871,9 @@ function Ae(g, A, { delay: B = 0, transitionOverride: M, type: D } = {}) {
3871
3871
  const c = I.animation;
3872
3872
  c && C.push(c);
3873
3873
  }
3874
- return Q && Promise.all(C).then(() => {
3874
+ return t && Promise.all(C).then(() => {
3875
3875
  R.update(() => {
3876
- Q && eQ(g, Q);
3876
+ t && eQ(g, t);
3877
3877
  });
3878
3878
  }), C;
3879
3879
  }
@@ -3882,22 +3882,22 @@ function sB(g, A, B = {}) {
3882
3882
  const D = zg(g, A, B.type === "exit" ? (M = g.presenceContext) === null || M === void 0 ? void 0 : M.custom : void 0);
3883
3883
  let { transition: e = g.getDefaultTransition() || {} } = D || {};
3884
3884
  B.transitionOverride && (e = B.transitionOverride);
3885
- const w = D ? () => Promise.all(Ae(g, D, B)) : () => Promise.resolve(), Q = g.variantChildren && g.variantChildren.size ? (C = 0) => {
3885
+ const w = D ? () => Promise.all(Ae(g, D, B)) : () => Promise.resolve(), t = g.variantChildren && g.variantChildren.size ? (C = 0) => {
3886
3886
  const { delayChildren: i = 0, staggerChildren: o, staggerDirection: I } = e;
3887
3887
  return dC(g, A, i + C, o, I, B);
3888
- } : () => Promise.resolve(), { when: t } = e;
3889
- if (t) {
3890
- const [C, i] = t === "beforeChildren" ? [w, Q] : [Q, w];
3888
+ } : () => Promise.resolve(), { when: Q } = e;
3889
+ if (Q) {
3890
+ const [C, i] = Q === "beforeChildren" ? [w, t] : [t, w];
3891
3891
  return C().then(() => i());
3892
3892
  } else
3893
- return Promise.all([w(), Q(B.delay)]);
3893
+ return Promise.all([w(), t(B.delay)]);
3894
3894
  }
3895
3895
  function dC(g, A, B = 0, M = 0, D = 1, e) {
3896
- const w = [], Q = (g.variantChildren.size - 1) * M, t = D === 1 ? (C = 0) => C * M : (C = 0) => Q - C * M;
3896
+ const w = [], t = (g.variantChildren.size - 1) * M, Q = D === 1 ? (C = 0) => C * M : (C = 0) => t - C * M;
3897
3897
  return Array.from(g.variantChildren).sort(qC).forEach((C, i) => {
3898
3898
  C.notify("AnimationStart", A), w.push(sB(C, A, {
3899
3899
  ...e,
3900
- delay: B + t(i)
3900
+ delay: B + Q(i)
3901
3901
  }).then(() => C.notify("AnimationComplete", A)));
3902
3902
  }), Promise.all(w);
3903
3903
  }
@@ -3941,23 +3941,23 @@ function hC(g) {
3941
3941
  }
3942
3942
  function JC(g) {
3943
3943
  let A = hC(g), B = SM(), M = !0;
3944
- const D = (t) => (C, i) => {
3944
+ const D = (Q) => (C, i) => {
3945
3945
  var o;
3946
- const I = zg(g, i, t === "exit" ? (o = g.presenceContext) === null || o === void 0 ? void 0 : o.custom : void 0);
3946
+ const I = zg(g, i, Q === "exit" ? (o = g.presenceContext) === null || o === void 0 ? void 0 : o.custom : void 0);
3947
3947
  if (I) {
3948
3948
  const { transition: E, transitionEnd: r, ...G } = I;
3949
3949
  C = { ...C, ...G, ...r };
3950
3950
  }
3951
3951
  return C;
3952
3952
  };
3953
- function e(t) {
3954
- A = t(g);
3953
+ function e(Q) {
3954
+ A = Q(g);
3955
3955
  }
3956
- function w(t) {
3956
+ function w(Q) {
3957
3957
  const { props: C } = g, i = ge(g.parent) || {}, o = [], I = /* @__PURE__ */ new Set();
3958
3958
  let E = {}, r = 1 / 0;
3959
3959
  for (let c = 0; c < pC; c++) {
3960
- const a = RC[c], l = B[a], Y = C[a] !== void 0 ? C[a] : i[a], Z = wg(Y), n = a === t ? l.isActive : null;
3960
+ const a = RC[c], l = B[a], Y = C[a] !== void 0 ? C[a] : i[a], Z = wg(Y), n = a === Q ? l.isActive : null;
3961
3961
  n === !1 && (r = c);
3962
3962
  let u = Y === i[a] && Y !== C[a] && Z;
3963
3963
  if (u && M && g.manuallyAnimateOnMount && (u = !1), l.protectedKeys = { ...E }, // If it isn't active and hasn't *just* been set as inactive
@@ -3967,7 +3967,7 @@ function JC(g) {
3967
3967
  continue;
3968
3968
  const d = zC(l.prevProp, Y);
3969
3969
  let y = d || // If we're making this variant active, we want to always make it active
3970
- a === t && l.isActive && !u && Z || // If we removed a higher-priority variant (i is in reverse order)
3970
+ a === Q && l.isActive && !u && Z || // If we removed a higher-priority variant (i is in reverse order)
3971
3971
  c > r && Z, q = !1;
3972
3972
  const v = Array.isArray(Y) ? Y : [Y];
3973
3973
  let W = v.reduce(D(a), {});
@@ -4002,22 +4002,22 @@ function JC(g) {
4002
4002
  let G = !!o.length;
4003
4003
  return M && (C.initial === !1 || C.initial === C.animate) && !g.manuallyAnimateOnMount && (G = !1), M = !1, G ? A(o) : Promise.resolve();
4004
4004
  }
4005
- function Q(t, C) {
4005
+ function t(Q, C) {
4006
4006
  var i;
4007
- if (B[t].isActive === C)
4007
+ if (B[Q].isActive === C)
4008
4008
  return Promise.resolve();
4009
4009
  (i = g.variantChildren) === null || i === void 0 || i.forEach((I) => {
4010
4010
  var E;
4011
- return (E = I.animationState) === null || E === void 0 ? void 0 : E.setActive(t, C);
4012
- }), B[t].isActive = C;
4013
- const o = w(t);
4011
+ return (E = I.animationState) === null || E === void 0 ? void 0 : E.setActive(Q, C);
4012
+ }), B[Q].isActive = C;
4013
+ const o = w(Q);
4014
4014
  for (const I in B)
4015
4015
  B[I].protectedKeys = {};
4016
4016
  return o;
4017
4017
  }
4018
4018
  return {
4019
4019
  animateChanges: w,
4020
- setActive: Q,
4020
+ setActive: t,
4021
4021
  setAnimateFunction: e,
4022
4022
  getState: () => B,
4023
4023
  reset: () => {
@@ -4155,10 +4155,10 @@ class Be {
4155
4155
  }, !MM(A))
4156
4156
  return;
4157
4157
  this.dragSnapToOrigin = e, this.handlers = B, this.transformPagePoint = M, this.contextWindow = D || window;
4158
- const w = Ig(A), Q = Tg(w, this.transformPagePoint), { point: t } = Q, { timestamp: C } = b;
4159
- this.history = [{ ...t, timestamp: C }];
4158
+ const w = Ig(A), t = Tg(w, this.transformPagePoint), { point: Q } = t, { timestamp: C } = b;
4159
+ this.history = [{ ...Q, timestamp: C }];
4160
4160
  const { onSessionStart: i } = B;
4161
- i && i(A, Sg(Q, this.history)), this.removeListeners = og(Bg(this.contextWindow, "pointermove", this.handlePointerMove), Bg(this.contextWindow, "pointerup", this.handlePointerUp), Bg(this.contextWindow, "pointercancel", this.handlePointerUp));
4161
+ i && i(A, Sg(t, this.history)), this.removeListeners = og(Bg(this.contextWindow, "pointermove", this.handlePointerMove), Bg(this.contextWindow, "pointerup", this.handlePointerUp), Bg(this.contextWindow, "pointercancel", this.handlePointerUp));
4162
4162
  }
4163
4163
  updateHandlers(A) {
4164
4164
  this.handlers = A;
@@ -4350,10 +4350,10 @@ function ei(g, A, B, M = !1) {
4350
4350
  return;
4351
4351
  A.x = A.y = 1;
4352
4352
  let e, w;
4353
- for (let Q = 0; Q < D; Q++) {
4354
- e = B[Q], w = e.projectionDelta;
4355
- const { visualElement: t } = e.options;
4356
- t && t.props.style && t.props.style.display === "contents" || (M && e.options.layoutScroll && e.scroll && e !== e.root && vA(g, {
4353
+ for (let t = 0; t < D; t++) {
4354
+ e = B[t], w = e.projectionDelta;
4355
+ const { visualElement: Q } = e.options;
4356
+ Q && Q.props.style && Q.props.style.display === "contents" || (M && e.options.layoutScroll && e.scroll && e !== e.root && vA(g, {
4357
4357
  x: -e.scroll.offset.x,
4358
4358
  y: -e.scroll.offset.y
4359
4359
  }), w && (A.x *= w.x.scale, A.y *= w.y.scale, Qe(g, w)), M && VA(e.latestValues) && vA(g, e.latestValues));
@@ -4416,7 +4416,7 @@ class Ci {
4416
4416
  return;
4417
4417
  }
4418
4418
  this.updateAxis("x", o.point, c), this.updateAxis("y", o.point, c), this.visualElement.render(), G && G(i, o);
4419
- }, Q = (i, o) => this.stop(i, o), t = () => gA((i) => {
4419
+ }, t = (i, o) => this.stop(i, o), Q = () => gA((i) => {
4420
4420
  var o;
4421
4421
  return this.getAnimationState(i) === "paused" && ((o = this.getAxisMotionValue(i).animation) === null || o === void 0 ? void 0 : o.play());
4422
4422
  }), { dragSnapToOrigin: C } = this.getProps();
@@ -4424,8 +4424,8 @@ class Ci {
4424
4424
  onSessionStart: D,
4425
4425
  onStart: e,
4426
4426
  onMove: w,
4427
- onSessionEnd: Q,
4428
- resumeAnimation: t
4427
+ onSessionEnd: t,
4428
+ resumeAnimation: Q
4429
4429
  }, {
4430
4430
  transformPagePoint: this.visualElement.getTransformPagePoint(),
4431
4431
  dragSnapToOrigin: C,
@@ -4475,16 +4475,16 @@ class Ci {
4475
4475
  const e = ti(M, D.root, this.visualElement.getTransformPagePoint());
4476
4476
  let w = Ai(D.layout.layoutBox, e);
4477
4477
  if (B) {
4478
- const Q = B(Di(w));
4479
- this.hasMutatedConstraints = !!Q, Q && (w = ee(Q));
4478
+ const t = B(Di(w));
4479
+ this.hasMutatedConstraints = !!t, t && (w = ee(t));
4480
4480
  }
4481
4481
  return w;
4482
4482
  }
4483
4483
  startAnimation(A) {
4484
- const { drag: B, dragMomentum: M, dragElastic: D, dragTransition: e, dragSnapToOrigin: w, onDragTransitionEnd: Q } = this.getProps(), t = this.constraints || {}, C = gA((i) => {
4484
+ const { drag: B, dragMomentum: M, dragElastic: D, dragTransition: e, dragSnapToOrigin: w, onDragTransitionEnd: t } = this.getProps(), Q = this.constraints || {}, C = gA((i) => {
4485
4485
  if (!Gg(i, B, this.currentDirection))
4486
4486
  return;
4487
- let o = t[i] || {};
4487
+ let o = Q[i] || {};
4488
4488
  w && (o = { min: 0, max: 0 });
4489
4489
  const I = D ? 200 : 1e6, E = D ? 40 : 1e7, r = {
4490
4490
  type: "inertia",
@@ -4499,7 +4499,7 @@ class Ci {
4499
4499
  };
4500
4500
  return this.startAxisValueAnimation(i, r);
4501
4501
  });
4502
- return Promise.all(C).then(Q);
4502
+ return Promise.all(C).then(t);
4503
4503
  }
4504
4504
  startAxisValueAnimation(A, B) {
4505
4505
  const M = this.getAxisMotionValue(A);
@@ -4535,8 +4535,8 @@ class Ci {
4535
4535
  return;
4536
4536
  const { projection: D } = this.visualElement, e = this.getAxisMotionValue(B);
4537
4537
  if (D && D.layout) {
4538
- const { min: w, max: Q } = D.layout.layoutBox[B];
4539
- e.set(A[B] - z(w, Q, 0.5));
4538
+ const { min: w, max: t } = D.layout.layoutBox[B];
4539
+ e.set(A[B] - z(w, t, 0.5));
4540
4540
  }
4541
4541
  });
4542
4542
  }
@@ -4554,44 +4554,44 @@ class Ci {
4554
4554
  this.stopAnimation();
4555
4555
  const D = { x: 0, y: 0 };
4556
4556
  gA((w) => {
4557
- const Q = this.getAxisMotionValue(w);
4558
- if (Q && this.constraints !== !1) {
4559
- const t = Q.get();
4560
- D[w] = gi({ min: t, max: t }, this.constraints[w]);
4557
+ const t = this.getAxisMotionValue(w);
4558
+ if (t && this.constraints !== !1) {
4559
+ const Q = t.get();
4560
+ D[w] = gi({ min: Q, max: Q }, this.constraints[w]);
4561
4561
  }
4562
4562
  });
4563
4563
  const { transformTemplate: e } = this.visualElement.getProps();
4564
4564
  this.visualElement.current.style.transform = e ? e({}, "") : "none", M.root && M.root.updateScroll(), M.updateLayout(), this.resolveConstraints(), gA((w) => {
4565
4565
  if (!Gg(w, A, null))
4566
4566
  return;
4567
- const Q = this.getAxisMotionValue(w), { min: t, max: C } = this.constraints[w];
4568
- Q.set(z(t, C, D[w]));
4567
+ const t = this.getAxisMotionValue(w), { min: Q, max: C } = this.constraints[w];
4568
+ t.set(z(Q, C, D[w]));
4569
4569
  });
4570
4570
  }
4571
4571
  addListeners() {
4572
4572
  if (!this.visualElement.current)
4573
4573
  return;
4574
4574
  Qi.set(this.visualElement, this);
4575
- const A = this.visualElement.current, B = Bg(A, "pointerdown", (t) => {
4575
+ const A = this.visualElement.current, B = Bg(A, "pointerdown", (Q) => {
4576
4576
  const { drag: C, dragListener: i = !0 } = this.getProps();
4577
- C && i && this.start(t);
4577
+ C && i && this.start(Q);
4578
4578
  }), M = () => {
4579
- const { dragConstraints: t } = this.getProps();
4580
- pA(t) && t.current && (this.constraints = this.resolveRefConstraints());
4579
+ const { dragConstraints: Q } = this.getProps();
4580
+ pA(Q) && Q.current && (this.constraints = this.resolveRefConstraints());
4581
4581
  }, { projection: D } = this.visualElement, e = D.addEventListener("measure", M);
4582
4582
  D && !D.layout && (D.root && D.root.updateScroll(), D.updateLayout()), R.read(M);
4583
- const w = Cg(window, "resize", () => this.scalePositionWithinConstraints()), Q = D.addEventListener("didUpdate", ({ delta: t, hasLayoutChanged: C }) => {
4583
+ const w = Cg(window, "resize", () => this.scalePositionWithinConstraints()), t = D.addEventListener("didUpdate", ({ delta: Q, hasLayoutChanged: C }) => {
4584
4584
  this.isDragging && C && (gA((i) => {
4585
4585
  const o = this.getAxisMotionValue(i);
4586
- o && (this.originPoint[i] += t[i].translate, o.set(o.get() + t[i].translate));
4586
+ o && (this.originPoint[i] += Q[i].translate, o.set(o.get() + Q[i].translate));
4587
4587
  }), this.visualElement.render());
4588
4588
  });
4589
4589
  return () => {
4590
- w(), B(), e(), Q && Q();
4590
+ w(), B(), e(), t && t();
4591
4591
  };
4592
4592
  }
4593
4593
  getProps() {
4594
- const A = this.visualElement.getProps(), { drag: B = !1, dragDirectionLock: M = !1, dragPropagation: D = !1, dragConstraints: e = !1, dragElastic: w = oB, dragMomentum: Q = !0 } = A;
4594
+ const A = this.visualElement.getProps(), { drag: B = !1, dragDirectionLock: M = !1, dragPropagation: D = !1, dragConstraints: e = !1, dragElastic: w = oB, dragMomentum: t = !0 } = A;
4595
4595
  return {
4596
4596
  ...A,
4597
4597
  drag: B,
@@ -4599,7 +4599,7 @@ class Ci {
4599
4599
  dragPropagation: D,
4600
4600
  dragConstraints: e,
4601
4601
  dragElastic: w,
4602
- dragMomentum: Q
4602
+ dragMomentum: t
4603
4603
  };
4604
4604
  }
4605
4605
  }
@@ -4688,9 +4688,9 @@ const xA = {
4688
4688
  const M = g, D = uA.parse(g);
4689
4689
  if (D.length > 5)
4690
4690
  return M;
4691
- const e = uA.createTransformer(g), w = typeof D[0] != "number" ? 1 : 0, Q = B.x.scale * A.x, t = B.y.scale * A.y;
4692
- D[0 + w] /= Q, D[1 + w] /= t;
4693
- const C = z(Q, t, 0.5);
4691
+ const e = uA.createTransformer(g), w = typeof D[0] != "number" ? 1 : 0, t = B.x.scale * A.x, Q = B.y.scale * A.y;
4692
+ D[0 + w] /= t, D[1 + w] /= Q;
4693
+ const C = z(t, Q, 0.5);
4694
4694
  return typeof D[2 + w] == "number" && (D[2 + w] /= C), typeof D[3 + w] == "number" && (D[3 + w] /= C), e(D);
4695
4695
  }
4696
4696
  };
@@ -4712,8 +4712,8 @@ class Ei extends Ve {
4712
4712
  getSnapshotBeforeUpdate(A) {
4713
4713
  const { layoutDependency: B, visualElement: M, drag: D, isPresent: e } = this.props, w = M.projection;
4714
4714
  return w && (w.isPresent = e, D || A.layoutDependency !== B || B === void 0 ? w.willUpdate() : this.safeToRemove(), A.isPresent !== e && (e ? w.promote() : w.relegate() || R.postRender(() => {
4715
- const Q = w.getStack();
4716
- (!Q || !Q.members.length) && this.safeToRemove();
4715
+ const t = w.getStack();
4716
+ (!t || !t.members.length) && this.safeToRemove();
4717
4717
  }))), null;
4718
4718
  }
4719
4719
  componentDidUpdate() {
@@ -4792,11 +4792,11 @@ function ui(g, A, B, M, D, e) {
4792
4792
  mi(M)
4793
4793
  ), g.opacityExit = z(A.opacity !== void 0 ? A.opacity : 1, 0, yi(M))) : e && (g.opacity = z(A.opacity !== void 0 ? A.opacity : 1, B.opacity !== void 0 ? B.opacity : 1, M));
4794
4794
  for (let w = 0; w < Yi; w++) {
4795
- const Q = `border${oe[w]}Radius`;
4796
- let t = ED(A, Q), C = ED(B, Q);
4797
- if (t === void 0 && C === void 0)
4795
+ const t = `border${oe[w]}Radius`;
4796
+ let Q = ED(A, t), C = ED(B, t);
4797
+ if (Q === void 0 && C === void 0)
4798
4798
  continue;
4799
- t || (t = 0), C || (C = 0), t === 0 || C === 0 || ID(t) === ID(C) ? (g[Q] = Math.max(z(oD(t), oD(C), M), 0), (iA.test(C) || iA.test(t)) && (g[Q] += "%")) : g[Q] = C;
4799
+ Q || (Q = 0), C || (C = 0), Q === 0 || C === 0 || ID(Q) === ID(C) ? (g[t] = Math.max(z(oD(Q), oD(C), M), 0), (iA.test(C) || iA.test(Q)) && (g[t] += "%")) : g[t] = C;
4800
4800
  }
4801
4801
  (A.rotate || B.rotate) && (g.rotate = z(A.rotate || 0, B.rotate || 0, M));
4802
4802
  }
@@ -4822,8 +4822,8 @@ function lD(g, A, B, M, D) {
4822
4822
  function Ui(g, A = 0, B = 1, M = 0.5, D, e = g, w = g) {
4823
4823
  if (iA.test(A) && (A = parseFloat(A), A = z(w.min, w.max, A / 100) - w.min), typeof A != "number")
4824
4824
  return;
4825
- let Q = z(e.min, e.max, M);
4826
- g === e && (Q -= A), g.min = lD(g.min, A, B, Q, D), g.max = lD(g.max, A, B, Q, D);
4825
+ let t = z(e.min, e.max, M);
4826
+ g === e && (t -= A), g.min = lD(g.min, A, B, t, D), g.max = lD(g.max, A, B, t, D);
4827
4827
  }
4828
4828
  function GD(g, A, [B, M, D], e, w) {
4829
4829
  Ui(g, A[B], A[M], A[D], A.scale, e, w);
@@ -4917,8 +4917,8 @@ function qi(g, A, B) {
4917
4917
  const { transformPerspective: C, rotate: i, rotateX: o, rotateY: I, skewX: E, skewY: r } = B;
4918
4918
  C && (M = `perspective(${C}px) ${M}`), i && (M += `rotate(${i}deg) `), o && (M += `rotateX(${o}deg) `), I && (M += `rotateY(${I}deg) `), E && (M += `skewX(${E}deg) `), r && (M += `skewY(${r}deg) `);
4919
4919
  }
4920
- const Q = g.x.scale * A.x, t = g.y.scale * A.y;
4921
- return (Q !== 1 || t !== 1) && (M += `scale(${Q}, ${t})`), M || "none";
4920
+ const t = g.x.scale * A.x, Q = g.y.scale * A.y;
4921
+ return (t !== 1 || Q !== 1) && (M += `scale(${t}, ${Q})`), M || "none";
4922
4922
  }
4923
4923
  const fA = {
4924
4924
  type: "projectionFrame",
@@ -4947,22 +4947,22 @@ function re(g) {
4947
4947
  }
4948
4948
  function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, checkIsScrollRoot: M, resetTransform: D }) {
4949
4949
  return class {
4950
- constructor(w = {}, Q = A == null ? void 0 : A()) {
4950
+ constructor(w = {}, t = A == null ? void 0 : A()) {
4951
4951
  this.id = Ki++, this.animationId = 0, this.children = /* @__PURE__ */ new Set(), this.options = {}, this.isTreeAnimating = !1, this.isAnimationBlocked = !1, this.isLayoutDirty = !1, this.isProjectionDirty = !1, this.isSharedProjectionDirty = !1, this.isTransformDirty = !1, this.updateManuallyBlocked = !1, this.updateBlockedByResize = !1, this.isUpdating = !1, this.isSVG = !1, this.needsReset = !1, this.shouldResetTransform = !1, this.hasCheckedOptimisedAppear = !1, this.treeScale = { x: 1, y: 1 }, this.eventHandlers = /* @__PURE__ */ new Map(), this.hasTreeAnimated = !1, this.updateScheduled = !1, this.scheduleUpdate = () => this.update(), this.projectionUpdateScheduled = !1, this.checkUpdateFailed = () => {
4952
4952
  this.isUpdating && (this.isUpdating = !1, this.clearAllSnapshots());
4953
4953
  }, this.updateProjection = () => {
4954
4954
  this.projectionUpdateScheduled = !1, _A && (fA.totalNodes = fA.resolvedTargetDeltas = fA.recalculatedProjection = 0), this.nodes.forEach(hi), this.nodes.forEach(Li), this.nodes.forEach(Fi), this.nodes.forEach(Ji), _A && window.MotionDebug.record(fA);
4955
- }, this.resolvedRelativeTargetAt = 0, this.hasProjected = !1, this.isVisible = !0, this.animationProgress = 0, this.sharedNodes = /* @__PURE__ */ new Map(), this.latestValues = w, this.root = Q ? Q.root || Q : this, this.path = Q ? [...Q.path, Q] : [], this.parent = Q, this.depth = Q ? Q.depth + 1 : 0;
4956
- for (let t = 0; t < this.path.length; t++)
4957
- this.path[t].shouldResetTransform = !0;
4955
+ }, this.resolvedRelativeTargetAt = 0, this.hasProjected = !1, this.isVisible = !0, this.animationProgress = 0, this.sharedNodes = /* @__PURE__ */ new Map(), this.latestValues = w, this.root = t ? t.root || t : this, this.path = t ? [...t.path, t] : [], this.parent = t, this.depth = t ? t.depth + 1 : 0;
4956
+ for (let Q = 0; Q < this.path.length; Q++)
4957
+ this.path[Q].shouldResetTransform = !0;
4958
4958
  this.root === this && (this.nodes = new ai());
4959
4959
  }
4960
- addEventListener(w, Q) {
4961
- return this.eventHandlers.has(w) || this.eventHandlers.set(w, new eM()), this.eventHandlers.get(w).add(Q);
4960
+ addEventListener(w, t) {
4961
+ return this.eventHandlers.has(w) || this.eventHandlers.set(w, new eM()), this.eventHandlers.get(w).add(t);
4962
4962
  }
4963
- notifyListeners(w, ...Q) {
4964
- const t = this.eventHandlers.get(w);
4965
- t && t.notify(...Q);
4963
+ notifyListeners(w, ...t) {
4964
+ const Q = this.eventHandlers.get(w);
4965
+ Q && Q.notify(...t);
4966
4966
  }
4967
4967
  hasListeners(w) {
4968
4968
  return this.eventHandlers.has(w);
@@ -4970,19 +4970,19 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
4970
4970
  /**
4971
4971
  * Lifecycles
4972
4972
  */
4973
- mount(w, Q = this.root.hasTreeAnimated) {
4973
+ mount(w, t = this.root.hasTreeAnimated) {
4974
4974
  if (this.instance)
4975
4975
  return;
4976
4976
  this.isSVG = li(w), this.instance = w;
4977
- const { layoutId: t, layout: C, visualElement: i } = this.options;
4978
- if (i && !i.current && i.mount(w), this.root.nodes.add(this), this.parent && this.parent.children.add(this), Q && (C || t) && (this.isLayoutDirty = !0), g) {
4977
+ const { layoutId: Q, layout: C, visualElement: i } = this.options;
4978
+ if (i && !i.current && i.mount(w), this.root.nodes.add(this), this.parent && this.parent.children.add(this), t && (C || Q) && (this.isLayoutDirty = !0), g) {
4979
4979
  let o;
4980
4980
  const I = () => this.root.updateBlockedByResize = !1;
4981
4981
  g(w, () => {
4982
4982
  this.root.updateBlockedByResize = !0, o && o(), o = ci(I, 250), Yg.hasAnimatedSinceResize && (Yg.hasAnimatedSinceResize = !1, this.nodes.forEach(VD));
4983
4983
  });
4984
4984
  }
4985
- t && this.root.registerSharedNode(t, this), this.options.animate !== !1 && i && (t || C) && this.addEventListener("didUpdate", ({ delta: o, hasLayoutChanged: I, hasRelativeLayoutChanged: E, layout: r }) => {
4985
+ Q && this.root.registerSharedNode(Q, this), this.options.animate !== !1 && i && (Q || C) && this.addEventListener("didUpdate", ({ delta: o, hasLayoutChanged: I, hasRelativeLayoutChanged: E, layout: r }) => {
4986
4986
  if (this.isTreeAnimationBlocked()) {
4987
4987
  this.target = void 0, this.relativeTarget = void 0;
4988
4988
  return;
@@ -5039,8 +5039,8 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
5039
5039
  const o = this.path[i];
5040
5040
  o.shouldResetTransform = !0, o.updateScroll("snapshot"), o.options.layoutRoot && o.willUpdate(!1);
5041
5041
  }
5042
- const { layoutId: Q, layout: t } = this.options;
5043
- if (Q === void 0 && !t)
5042
+ const { layoutId: t, layout: Q } = this.options;
5043
+ if (t === void 0 && !Q)
5044
5044
  return;
5045
5045
  const C = this.getTransformTemplate();
5046
5046
  this.prevTransformTemplateValue = C ? C(this.latestValues, "") : void 0, this.updateSnapshot(), w && this.notifyListeners("willUpdate");
@@ -5051,8 +5051,8 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
5051
5051
  return;
5052
5052
  }
5053
5053
  this.isUpdating || this.nodes.forEach(vi), this.isUpdating = !1, this.nodes.forEach(Pi), this.nodes.forEach(Ri), this.nodes.forEach(pi), this.clearAllSnapshots();
5054
- const Q = sA.now();
5055
- b.delta = rA(0, 1e3 / 60, Q - b.timestamp), b.timestamp = Q, b.isProcessing = !0, Fg.update.process(b), Fg.preRender.process(b), Fg.render.process(b), b.isProcessing = !1;
5054
+ const t = sA.now();
5055
+ b.delta = rA(0, 1e3 / 60, t - b.timestamp), b.timestamp = t, b.isProcessing = !0, Fg.update.process(b), Fg.preRender.process(b), Fg.render.process(b), b.isProcessing = !1;
5056
5056
  }
5057
5057
  didUpdate() {
5058
5058
  this.updateScheduled || (this.updateScheduled = !0, jB.read(this.scheduleUpdate));
@@ -5078,90 +5078,90 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
5078
5078
  if (!this.instance || (this.updateScroll(), !(this.options.alwaysMeasureLayout && this.isLead()) && !this.isLayoutDirty))
5079
5079
  return;
5080
5080
  if (this.resumeFrom && !this.resumeFrom.instance)
5081
- for (let t = 0; t < this.path.length; t++)
5082
- this.path[t].updateScroll();
5081
+ for (let Q = 0; Q < this.path.length; Q++)
5082
+ this.path[Q].updateScroll();
5083
5083
  const w = this.layout;
5084
5084
  this.layout = this.measure(!1), this.layoutCorrected = L(), this.isLayoutDirty = !1, this.projectionDelta = void 0, this.notifyListeners("measure", this.layout.layoutBox);
5085
- const { visualElement: Q } = this.options;
5086
- Q && Q.notify("LayoutMeasure", this.layout.layoutBox, w ? w.layoutBox : void 0);
5085
+ const { visualElement: t } = this.options;
5086
+ t && t.notify("LayoutMeasure", this.layout.layoutBox, w ? w.layoutBox : void 0);
5087
5087
  }
5088
5088
  updateScroll(w = "measure") {
5089
- let Q = !!(this.options.layoutScroll && this.instance);
5090
- if (this.scroll && this.scroll.animationId === this.root.animationId && this.scroll.phase === w && (Q = !1), Q) {
5091
- const t = M(this.instance);
5089
+ let t = !!(this.options.layoutScroll && this.instance);
5090
+ if (this.scroll && this.scroll.animationId === this.root.animationId && this.scroll.phase === w && (t = !1), t) {
5091
+ const Q = M(this.instance);
5092
5092
  this.scroll = {
5093
5093
  animationId: this.root.animationId,
5094
5094
  phase: w,
5095
- isRoot: t,
5095
+ isRoot: Q,
5096
5096
  offset: B(this.instance),
5097
- wasRoot: this.scroll ? this.scroll.isRoot : t
5097
+ wasRoot: this.scroll ? this.scroll.isRoot : Q
5098
5098
  };
5099
5099
  }
5100
5100
  }
5101
5101
  resetTransform() {
5102
5102
  if (!D)
5103
5103
  return;
5104
- const w = this.isLayoutDirty || this.shouldResetTransform || this.options.alwaysMeasureLayout, Q = this.projectionDelta && !Ee(this.projectionDelta), t = this.getTransformTemplate(), C = t ? t(this.latestValues, "") : void 0, i = C !== this.prevTransformTemplateValue;
5105
- w && (Q || VA(this.latestValues) || i) && (D(this.instance, C), this.shouldResetTransform = !1, this.scheduleRender());
5104
+ const w = this.isLayoutDirty || this.shouldResetTransform || this.options.alwaysMeasureLayout, t = this.projectionDelta && !Ee(this.projectionDelta), Q = this.getTransformTemplate(), C = Q ? Q(this.latestValues, "") : void 0, i = C !== this.prevTransformTemplateValue;
5105
+ w && (t || VA(this.latestValues) || i) && (D(this.instance, C), this.shouldResetTransform = !1, this.scheduleRender());
5106
5106
  }
5107
5107
  measure(w = !0) {
5108
- const Q = this.measurePageBox();
5109
- let t = this.removeElementScroll(Q);
5110
- return w && (t = this.removeTransform(t)), Si(t), {
5108
+ const t = this.measurePageBox();
5109
+ let Q = this.removeElementScroll(t);
5110
+ return w && (Q = this.removeTransform(Q)), Si(Q), {
5111
5111
  animationId: this.root.animationId,
5112
- measuredBox: Q,
5113
- layoutBox: t,
5112
+ measuredBox: t,
5113
+ layoutBox: Q,
5114
5114
  latestValues: {},
5115
5115
  source: this.id
5116
5116
  };
5117
5117
  }
5118
5118
  measurePageBox() {
5119
5119
  var w;
5120
- const { visualElement: Q } = this.options;
5121
- if (!Q)
5120
+ const { visualElement: t } = this.options;
5121
+ if (!t)
5122
5122
  return L();
5123
- const t = Q.measureViewportBox();
5123
+ const Q = t.measureViewportBox();
5124
5124
  if (!(((w = this.scroll) === null || w === void 0 ? void 0 : w.wasRoot) || this.path.some(Xi))) {
5125
5125
  const { scroll: i } = this.root;
5126
- i && (zA(t.x, i.offset.x), zA(t.y, i.offset.y));
5126
+ i && (zA(Q.x, i.offset.x), zA(Q.y, i.offset.y));
5127
5127
  }
5128
- return t;
5128
+ return Q;
5129
5129
  }
5130
5130
  removeElementScroll(w) {
5131
- var Q;
5132
- const t = L();
5133
- if (AA(t, w), !((Q = this.scroll) === null || Q === void 0) && Q.wasRoot)
5134
- return t;
5131
+ var t;
5132
+ const Q = L();
5133
+ if (AA(Q, w), !((t = this.scroll) === null || t === void 0) && t.wasRoot)
5134
+ return Q;
5135
5135
  for (let C = 0; C < this.path.length; C++) {
5136
5136
  const i = this.path[C], { scroll: o, options: I } = i;
5137
- i !== this.root && o && I.layoutScroll && (o.wasRoot && AA(t, w), zA(t.x, o.offset.x), zA(t.y, o.offset.y));
5137
+ i !== this.root && o && I.layoutScroll && (o.wasRoot && AA(Q, w), zA(Q.x, o.offset.x), zA(Q.y, o.offset.y));
5138
5138
  }
5139
- return t;
5139
+ return Q;
5140
5140
  }
5141
- applyTransform(w, Q = !1) {
5142
- const t = L();
5143
- AA(t, w);
5141
+ applyTransform(w, t = !1) {
5142
+ const Q = L();
5143
+ AA(Q, w);
5144
5144
  for (let C = 0; C < this.path.length; C++) {
5145
5145
  const i = this.path[C];
5146
- !Q && i.options.layoutScroll && i.scroll && i !== i.root && vA(t, {
5146
+ !t && i.options.layoutScroll && i.scroll && i !== i.root && vA(Q, {
5147
5147
  x: -i.scroll.offset.x,
5148
5148
  y: -i.scroll.offset.y
5149
- }), VA(i.latestValues) && vA(t, i.latestValues);
5149
+ }), VA(i.latestValues) && vA(Q, i.latestValues);
5150
5150
  }
5151
- return VA(this.latestValues) && vA(t, this.latestValues), t;
5151
+ return VA(this.latestValues) && vA(Q, this.latestValues), Q;
5152
5152
  }
5153
5153
  removeTransform(w) {
5154
- const Q = L();
5155
- AA(Q, w);
5156
- for (let t = 0; t < this.path.length; t++) {
5157
- const C = this.path[t];
5154
+ const t = L();
5155
+ AA(t, w);
5156
+ for (let Q = 0; Q < this.path.length; Q++) {
5157
+ const C = this.path[Q];
5158
5158
  if (!C.instance || !VA(C.latestValues))
5159
5159
  continue;
5160
5160
  IB(C.latestValues) && C.updateSnapshot();
5161
5161
  const i = L(), o = C.measurePageBox();
5162
- AA(i, o), aD(Q, C.latestValues, C.snapshot ? C.snapshot.layoutBox : void 0, i);
5162
+ AA(i, o), aD(t, C.latestValues, C.snapshot ? C.snapshot.layoutBox : void 0, i);
5163
5163
  }
5164
- return VA(this.latestValues) && aD(Q, this.latestValues), Q;
5164
+ return VA(this.latestValues) && aD(t, this.latestValues), t;
5165
5165
  }
5166
5166
  setTargetDelta(w) {
5167
5167
  this.targetDelta = w, this.root.scheduleUpdateProjection(), this.isProjectionDirty = !0;
@@ -5180,11 +5180,11 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
5180
5180
  this.relativeParent && this.relativeParent.resolvedRelativeTargetAt !== b.timestamp && this.relativeParent.resolveTargetDelta(!0);
5181
5181
  }
5182
5182
  resolveTargetDelta(w = !1) {
5183
- var Q;
5184
- const t = this.getLead();
5185
- this.isProjectionDirty || (this.isProjectionDirty = t.isProjectionDirty), this.isTransformDirty || (this.isTransformDirty = t.isTransformDirty), this.isSharedProjectionDirty || (this.isSharedProjectionDirty = t.isSharedProjectionDirty);
5186
- const C = !!this.resumingFrom || this !== t;
5187
- if (!(w || C && this.isSharedProjectionDirty || this.isProjectionDirty || !((Q = this.parent) === null || Q === void 0) && Q.isProjectionDirty || this.attemptToResolveRelativeTarget || this.root.updateBlockedByResize))
5183
+ var t;
5184
+ const Q = this.getLead();
5185
+ this.isProjectionDirty || (this.isProjectionDirty = Q.isProjectionDirty), this.isTransformDirty || (this.isTransformDirty = Q.isTransformDirty), this.isSharedProjectionDirty || (this.isSharedProjectionDirty = Q.isSharedProjectionDirty);
5186
+ const C = !!this.resumingFrom || this !== Q;
5187
+ if (!(w || C && this.isSharedProjectionDirty || this.isProjectionDirty || !((t = this.parent) === null || t === void 0) && t.isProjectionDirty || this.attemptToResolveRelativeTarget || this.root.updateBlockedByResize))
5188
5188
  return;
5189
5189
  const { layout: o, layoutId: I } = this.options;
5190
5190
  if (!(!this.layout || !(o || I))) {
@@ -5211,17 +5211,17 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
5211
5211
  }
5212
5212
  calcProjection() {
5213
5213
  var w;
5214
- const Q = this.getLead(), t = !!this.resumingFrom || this !== Q;
5214
+ const t = this.getLead(), Q = !!this.resumingFrom || this !== t;
5215
5215
  let C = !0;
5216
- if ((this.isProjectionDirty || !((w = this.parent) === null || w === void 0) && w.isProjectionDirty) && (C = !1), t && (this.isSharedProjectionDirty || this.isTransformDirty) && (C = !1), this.resolvedRelativeTargetAt === b.timestamp && (C = !1), C)
5216
+ if ((this.isProjectionDirty || !((w = this.parent) === null || w === void 0) && w.isProjectionDirty) && (C = !1), Q && (this.isSharedProjectionDirty || this.isTransformDirty) && (C = !1), this.resolvedRelativeTargetAt === b.timestamp && (C = !1), C)
5217
5217
  return;
5218
5218
  const { layout: i, layoutId: o } = this.options;
5219
5219
  if (this.isTreeAnimating = !!(this.parent && this.parent.isTreeAnimating || this.currentAnimation || this.pendingAnimation), this.isTreeAnimating || (this.targetDelta = this.relativeTarget = void 0), !this.layout || !(i || o))
5220
5220
  return;
5221
5221
  AA(this.layoutCorrected, this.layout.layoutBox);
5222
5222
  const I = this.treeScale.x, E = this.treeScale.y;
5223
- ei(this.layoutCorrected, this.treeScale, this.path, t), Q.layout && !Q.target && (this.treeScale.x !== 1 || this.treeScale.y !== 1) && (Q.target = Q.layout.layoutBox, Q.targetWithTransforms = L());
5224
- const { target: r } = Q;
5223
+ ei(this.layoutCorrected, this.treeScale, this.path, Q), t.layout && !t.target && (this.treeScale.x !== 1 || this.treeScale.y !== 1) && (t.target = t.layout.layoutBox, t.targetWithTransforms = L());
5224
+ const { target: r } = t;
5225
5225
  if (!r) {
5226
5226
  this.prevProjectionDelta && (this.createProjectionDeltas(), this.scheduleRender());
5227
5227
  return;
@@ -5235,20 +5235,20 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
5235
5235
  this.isVisible = !0;
5236
5236
  }
5237
5237
  scheduleRender(w = !0) {
5238
- var Q;
5239
- if ((Q = this.options.visualElement) === null || Q === void 0 || Q.scheduleRender(), w) {
5240
- const t = this.getStack();
5241
- t && t.scheduleRender();
5238
+ var t;
5239
+ if ((t = this.options.visualElement) === null || t === void 0 || t.scheduleRender(), w) {
5240
+ const Q = this.getStack();
5241
+ Q && Q.scheduleRender();
5242
5242
  }
5243
5243
  this.resumingFrom && !this.resumingFrom.instance && (this.resumingFrom = void 0);
5244
5244
  }
5245
5245
  createProjectionDeltas() {
5246
5246
  this.prevProjectionDelta = JA(), this.projectionDelta = JA(), this.projectionDeltaWithTransform = JA();
5247
5247
  }
5248
- setAnimationOrigin(w, Q = !1) {
5249
- const t = this.snapshot, C = t ? t.latestValues : {}, i = { ...this.latestValues }, o = JA();
5250
- (!this.relativeParent || !this.relativeParent.options.layoutRoot) && (this.relativeTarget = this.relativeTargetOrigin = void 0), this.attemptToResolveRelativeTarget = !Q;
5251
- const I = L(), E = t ? t.source : void 0, r = this.layout ? this.layout.source : void 0, G = E !== r, c = this.getStack(), a = !c || c.members.length <= 1, l = !!(G && !a && this.options.crossfade === !0 && !this.path.some(Hi));
5248
+ setAnimationOrigin(w, t = !1) {
5249
+ const Q = this.snapshot, C = Q ? Q.latestValues : {}, i = { ...this.latestValues }, o = JA();
5250
+ (!this.relativeParent || !this.relativeParent.options.layoutRoot) && (this.relativeTarget = this.relativeTargetOrigin = void 0), this.attemptToResolveRelativeTarget = !t;
5251
+ const I = L(), E = Q ? Q.source : void 0, r = this.layout ? this.layout.source : void 0, G = E !== r, c = this.getStack(), a = !c || c.members.length <= 1, l = !!(G && !a && this.options.crossfade === !0 && !this.path.some(Hi));
5252
5252
  this.animationProgress = 0;
5253
5253
  let Y;
5254
5254
  this.mixTargetDelta = (Z) => {
@@ -5260,8 +5260,8 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
5260
5260
  this.notifyListeners("animationStart"), this.currentAnimation && this.currentAnimation.stop(), this.resumingFrom && this.resumingFrom.currentAnimation && this.resumingFrom.currentAnimation.stop(), this.pendingAnimation && (YA(this.pendingAnimation), this.pendingAnimation = void 0), this.pendingAnimation = R.update(() => {
5261
5261
  Yg.hasAnimatedSinceResize = !0, this.currentAnimation = ri(0, UD, {
5262
5262
  ...w,
5263
- onUpdate: (Q) => {
5264
- this.mixTargetDelta(Q), w.onUpdate && w.onUpdate(Q);
5263
+ onUpdate: (t) => {
5264
+ this.mixTargetDelta(t), w.onUpdate && w.onUpdate(t);
5265
5265
  },
5266
5266
  onComplete: () => {
5267
5267
  w.onComplete && w.onComplete(), this.completeAnimation();
@@ -5279,24 +5279,24 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
5279
5279
  }
5280
5280
  applyTransformsToTarget() {
5281
5281
  const w = this.getLead();
5282
- let { targetWithTransforms: Q, target: t, layout: C, latestValues: i } = w;
5283
- if (!(!Q || !t || !C)) {
5282
+ let { targetWithTransforms: t, target: Q, layout: C, latestValues: i } = w;
5283
+ if (!(!t || !Q || !C)) {
5284
5284
  if (this !== w && this.layout && C && Ge(this.options.animationType, this.layout.layoutBox, C.layoutBox)) {
5285
- t = this.target || L();
5285
+ Q = this.target || L();
5286
5286
  const o = _(this.layout.layoutBox.x);
5287
- t.x.min = w.target.x.min, t.x.max = t.x.min + o;
5287
+ Q.x.min = w.target.x.min, Q.x.max = Q.x.min + o;
5288
5288
  const I = _(this.layout.layoutBox.y);
5289
- t.y.min = w.target.y.min, t.y.max = t.y.min + I;
5289
+ Q.y.min = w.target.y.min, Q.y.max = Q.y.min + I;
5290
5290
  }
5291
- AA(Q, t), vA(Q, i), Mg(this.projectionDeltaWithTransform, this.layoutCorrected, Q, i);
5291
+ AA(t, Q), vA(t, i), Mg(this.projectionDeltaWithTransform, this.layoutCorrected, t, i);
5292
5292
  }
5293
5293
  }
5294
- registerSharedNode(w, Q) {
5295
- this.sharedNodes.has(w) || this.sharedNodes.set(w, new di()), this.sharedNodes.get(w).add(Q);
5296
- const C = Q.options.initialPromotionConfig;
5297
- Q.promote({
5294
+ registerSharedNode(w, t) {
5295
+ this.sharedNodes.has(w) || this.sharedNodes.set(w, new di()), this.sharedNodes.get(w).add(t);
5296
+ const C = t.options.initialPromotionConfig;
5297
+ t.promote({
5298
5298
  transition: C ? C.transition : void 0,
5299
- preserveFollowOpacity: C && C.shouldPreserveFollowOpacity ? C.shouldPreserveFollowOpacity(Q) : void 0
5299
+ preserveFollowOpacity: C && C.shouldPreserveFollowOpacity ? C.shouldPreserveFollowOpacity(t) : void 0
5300
5300
  });
5301
5301
  }
5302
5302
  isLead() {
@@ -5305,22 +5305,22 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
5305
5305
  }
5306
5306
  getLead() {
5307
5307
  var w;
5308
- const { layoutId: Q } = this.options;
5309
- return Q ? ((w = this.getStack()) === null || w === void 0 ? void 0 : w.lead) || this : this;
5308
+ const { layoutId: t } = this.options;
5309
+ return t ? ((w = this.getStack()) === null || w === void 0 ? void 0 : w.lead) || this : this;
5310
5310
  }
5311
5311
  getPrevLead() {
5312
5312
  var w;
5313
- const { layoutId: Q } = this.options;
5314
- return Q ? (w = this.getStack()) === null || w === void 0 ? void 0 : w.prevLead : void 0;
5313
+ const { layoutId: t } = this.options;
5314
+ return t ? (w = this.getStack()) === null || w === void 0 ? void 0 : w.prevLead : void 0;
5315
5315
  }
5316
5316
  getStack() {
5317
5317
  const { layoutId: w } = this.options;
5318
5318
  if (w)
5319
5319
  return this.root.sharedNodes.get(w);
5320
5320
  }
5321
- promote({ needsReset: w, transition: Q, preserveFollowOpacity: t } = {}) {
5321
+ promote({ needsReset: w, transition: t, preserveFollowOpacity: Q } = {}) {
5322
5322
  const C = this.getStack();
5323
- C && C.promote(this, t), w && (this.projectionDelta = void 0, this.needsReset = !0), Q && this.setOptions({ transition: Q });
5323
+ C && C.promote(this, Q), w && (this.projectionDelta = void 0, this.needsReset = !0), t && this.setOptions({ transition: t });
5324
5324
  }
5325
5325
  relegate() {
5326
5326
  const w = this.getStack();
@@ -5330,12 +5330,12 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
5330
5330
  const { visualElement: w } = this.options;
5331
5331
  if (!w)
5332
5332
  return;
5333
- let Q = !1;
5334
- const { latestValues: t } = w;
5335
- if ((t.z || t.rotate || t.rotateX || t.rotateY || t.rotateZ || t.skewX || t.skewY) && (Q = !0), !Q)
5333
+ let t = !1;
5334
+ const { latestValues: Q } = w;
5335
+ if ((Q.z || Q.rotate || Q.rotateX || Q.rotateY || Q.rotateZ || Q.skewX || Q.skewY) && (t = !0), !t)
5336
5336
  return;
5337
5337
  const C = {};
5338
- t.z && xg("z", w, C, this.animationValues);
5338
+ Q.z && xg("z", w, C, this.animationValues);
5339
5339
  for (let i = 0; i < Ng.length; i++)
5340
5340
  xg(`rotate${Ng[i]}`, w, C, this.animationValues), xg(`skew${Ng[i]}`, w, C, this.animationValues);
5341
5341
  w.render();
@@ -5344,7 +5344,7 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
5344
5344
  w.scheduleRender();
5345
5345
  }
5346
5346
  getProjectionStyles(w) {
5347
- var Q, t;
5347
+ var t, Q;
5348
5348
  if (!this.instance || this.isSVG)
5349
5349
  return;
5350
5350
  if (!this.isVisible)
@@ -5362,7 +5362,7 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
5362
5362
  const I = o.animationValues || o.latestValues;
5363
5363
  this.applyTransformsToTarget(), C.transform = qi(this.projectionDeltaWithTransform, this.treeScale, I), i && (C.transform = i(I, C.transform));
5364
5364
  const { x: E, y: r } = this.projectionDelta;
5365
- C.transformOrigin = `${E.origin * 100}% ${r.origin * 100}% 0`, o.animationValues ? C.opacity = o === this ? (t = (Q = I.opacity) !== null && Q !== void 0 ? Q : this.latestValues.opacity) !== null && t !== void 0 ? t : 1 : this.preserveOpacity ? this.latestValues.opacity : I.opacityExit : C.opacity = o === this ? I.opacity !== void 0 ? I.opacity : "" : I.opacityExit !== void 0 ? I.opacityExit : 0;
5365
+ C.transformOrigin = `${E.origin * 100}% ${r.origin * 100}% 0`, o.animationValues ? C.opacity = o === this ? (Q = (t = I.opacity) !== null && t !== void 0 ? t : this.latestValues.opacity) !== null && Q !== void 0 ? Q : 1 : this.preserveOpacity ? this.latestValues.opacity : I.opacityExit : C.opacity = o === this ? I.opacity !== void 0 ? I.opacity : "" : I.opacityExit !== void 0 ? I.opacityExit : 0;
5366
5366
  for (const G in Zg) {
5367
5367
  if (I[G] === void 0)
5368
5368
  continue;
@@ -5382,8 +5382,8 @@ function le({ attachResizeListener: g, defaultParent: A, measureScroll: B, check
5382
5382
  // Only run on root
5383
5383
  resetTree() {
5384
5384
  this.root.nodes.forEach((w) => {
5385
- var Q;
5386
- return (Q = w.currentAnimation) === null || Q === void 0 ? void 0 : Q.stop();
5385
+ var t;
5386
+ return (t = w.currentAnimation) === null || t === void 0 ? void 0 : t.stop();
5387
5387
  }), this.root.nodes.forEach(ZD), this.root.sharedNodes.clear();
5388
5388
  }
5389
5389
  };
@@ -5403,11 +5403,11 @@ function pi(g) {
5403
5403
  const I = w ? B.measuredBox[o] : B.layoutBox[o], E = _(M[o]);
5404
5404
  I.max = I.min + E, g.relativeTarget && !g.currentAnimation && (g.isProjectionDirty = !0, g.relativeTarget[o].max = g.relativeTarget[o].min + E);
5405
5405
  });
5406
- const Q = JA();
5407
- Mg(Q, M, B.layoutBox);
5408
5406
  const t = JA();
5409
- w ? Mg(t, g.applyTransform(D, !0), B.measuredBox) : Mg(t, M, B.layoutBox);
5410
- const C = !Ee(Q);
5407
+ Mg(t, M, B.layoutBox);
5408
+ const Q = JA();
5409
+ w ? Mg(Q, g.applyTransform(D, !0), B.measuredBox) : Mg(Q, M, B.layoutBox);
5410
+ const C = !Ee(t);
5411
5411
  let i = !1;
5412
5412
  if (!g.resumeFrom) {
5413
5413
  const o = g.getClosestProjectingParent();
@@ -5424,8 +5424,8 @@ function pi(g) {
5424
5424
  g.notifyListeners("didUpdate", {
5425
5425
  layout: M,
5426
5426
  snapshot: B,
5427
- delta: t,
5428
- layoutDelta: Q,
5427
+ delta: Q,
5428
+ layoutDelta: t,
5429
5429
  hasLayoutChanged: C,
5430
5430
  hasRelativeLayoutChanged: i
5431
5431
  });
@@ -5615,15 +5615,15 @@ class ws extends mA {
5615
5615
  root: B ? B.current : void 0,
5616
5616
  rootMargin: M,
5617
5617
  threshold: typeof D == "number" ? D : Ds[D]
5618
- }, Q = (t) => {
5619
- const { isIntersecting: C } = t;
5618
+ }, t = (Q) => {
5619
+ const { isIntersecting: C } = Q;
5620
5620
  if (this.isInView === C || (this.isInView = C, e && !C && this.hasEnteredView))
5621
5621
  return;
5622
5622
  C && (this.hasEnteredView = !0), this.node.animationState && this.node.animationState.setActive("whileInView", C);
5623
5623
  const { onViewportEnter: i, onViewportLeave: o } = this.node.getProps(), I = C ? i : o;
5624
- I && I(t);
5624
+ I && I(Q);
5625
5625
  };
5626
- return Ms(this.node.current, w, Q);
5626
+ return Ms(this.node.current, w, t);
5627
5627
  }
5628
5628
  mount() {
5629
5629
  this.startObserver();
@@ -5708,19 +5708,19 @@ class Is {
5708
5708
  scrapeMotionValuesFromProps(A, B, M) {
5709
5709
  return {};
5710
5710
  }
5711
- constructor({ parent: A, props: B, presenceContext: M, reducedMotionConfig: D, blockInitialAnimation: e, visualState: w }, Q = {}) {
5711
+ constructor({ parent: A, props: B, presenceContext: M, reducedMotionConfig: D, blockInitialAnimation: e, visualState: w }, t = {}) {
5712
5712
  this.current = null, this.children = /* @__PURE__ */ new Set(), this.isVariantNode = !1, this.isControllingVariants = !1, this.shouldReduceMotion = null, this.values = /* @__PURE__ */ new Map(), this.KeyframeResolver = oM, this.features = {}, this.valueSubscriptions = /* @__PURE__ */ new Map(), this.prevMotionValues = {}, this.events = {}, this.propEventSubscriptions = {}, this.notifyUpdate = () => this.notify("Update", this.latestValues), this.render = () => {
5713
5713
  this.current && (this.triggerBuild(), this.renderInstance(this.current, this.renderState, this.props.style, this.projection));
5714
5714
  }, this.renderScheduledAt = 0, this.scheduleRender = () => {
5715
5715
  const E = sA.now();
5716
5716
  this.renderScheduledAt < E && (this.renderScheduledAt = E, R.render(this.render, !1, !0));
5717
5717
  };
5718
- const { latestValues: t, renderState: C, onUpdate: i } = w;
5719
- this.onUpdate = i, this.latestValues = t, this.baseTarget = { ...t }, this.initialValues = B.initial ? { ...t } : {}, this.renderState = C, this.parent = A, this.props = B, this.presenceContext = M, this.depth = A ? A.depth + 1 : 0, this.reducedMotionConfig = D, this.options = Q, this.blockInitialAnimation = !!e, this.isControllingVariants = Jg(B), this.isVariantNode = _D(B), this.isVariantNode && (this.variantChildren = /* @__PURE__ */ new Set()), this.manuallyAnimateOnMount = !!(A && A.current);
5718
+ const { latestValues: Q, renderState: C, onUpdate: i } = w;
5719
+ this.onUpdate = i, this.latestValues = Q, this.baseTarget = { ...Q }, this.initialValues = B.initial ? { ...Q } : {}, this.renderState = C, this.parent = A, this.props = B, this.presenceContext = M, this.depth = A ? A.depth + 1 : 0, this.reducedMotionConfig = D, this.options = t, this.blockInitialAnimation = !!e, this.isControllingVariants = Jg(B), this.isVariantNode = _D(B), this.isVariantNode && (this.variantChildren = /* @__PURE__ */ new Set()), this.manuallyAnimateOnMount = !!(A && A.current);
5720
5720
  const { willChange: o, ...I } = this.scrapeMotionValuesFromProps(B, {}, this);
5721
5721
  for (const E in I) {
5722
5722
  const r = I[E];
5723
- t[E] !== void 0 && T(r) && r.set(t[E], !1);
5723
+ Q[E] !== void 0 && T(r) && r.set(Q[E], !1);
5724
5724
  }
5725
5725
  }
5726
5726
  mount(A) {
@@ -5738,8 +5738,8 @@ class Is {
5738
5738
  }
5739
5739
  bindToMotionValue(A, B) {
5740
5740
  this.valueSubscriptions.has(A) && this.valueSubscriptions.get(A)();
5741
- const M = KA.has(A), D = B.on("change", (Q) => {
5742
- this.latestValues[A] = Q, this.props.onUpdate && R.preRender(this.notifyUpdate), M && this.projection && (this.projection.isTransformDirty = !0);
5741
+ const M = KA.has(A), D = B.on("change", (t) => {
5742
+ this.latestValues[A] = t, this.props.onUpdate && R.preRender(this.notifyUpdate), M && this.projection && (this.projection.isTransformDirty = !0);
5743
5743
  }), e = B.on("renderRequest", this.scheduleRender);
5744
5744
  let w;
5745
5745
  window.MotionCheckAppearSync && (w = window.MotionCheckAppearSync(this, A, B)), this.valueSubscriptions.set(A, () => {
@@ -5980,7 +5980,7 @@ const ls = (g, A) => HB(g) ? new rs(A) : new ns(A, {
5980
5980
  widthLogo: D = "65px",
5981
5981
  ...e
5982
5982
  }, w) => {
5983
- const [Q, t] = F(!1), C = eA(/* @__PURE__ */ new Map()), i = () => t(!Q), [o, I] = F({
5983
+ const [t, Q] = F(!1), C = eA(/* @__PURE__ */ new Map()), i = () => Q(!t), [o, I] = F({
5984
5984
  top: 0,
5985
5985
  left: 0,
5986
5986
  width: 0,
@@ -6001,12 +6001,12 @@ const ls = (g, A) => HB(g) ? new rs(A) : new ns(A, {
6001
6001
  });
6002
6002
  }, [A]), tA(() => {
6003
6003
  const l = window.matchMedia("(min-width: 640px)"), Y = () => {
6004
- l.matches && Q && t(!1);
6004
+ l.matches && t && Q(!1);
6005
6005
  };
6006
6006
  return l.addEventListener("change", Y), () => {
6007
6007
  l.removeEventListener("change", Y);
6008
6008
  };
6009
- }, [Q]);
6009
+ }, [t]);
6010
6010
  const E = {
6011
6011
  goatData: "bg-zinc-900",
6012
6012
  secondary: "bg-[#ededed]",
@@ -6044,7 +6044,7 @@ const ls = (g, A) => HB(g) ? new rs(A) : new ns(A, {
6044
6044
  }
6045
6045
  ),
6046
6046
  /* @__PURE__ */ U("div", { className: "relative flex h-16 items-center justify-between", children: [
6047
- /* @__PURE__ */ s("div", { className: "absolute inset-y-0 left-0 flex items-center sm:hidden", children: /* @__PURE__ */ s("button", { className: `menu ${Q ? g === "secondary" ? "openedark" : "opened" : ""}`, onClick: i, "aria-label": "Main Menu", children: /* @__PURE__ */ U("svg", { width: "45", height: "45", viewBox: "0 0 100 100", style: { fill: "#f9f8f8 !important" }, children: [
6047
+ /* @__PURE__ */ s("div", { className: "absolute inset-y-0 left-0 flex items-center sm:hidden", children: /* @__PURE__ */ s("button", { className: `menu ${t ? g === "secondary" ? "openedark" : "opened" : ""}`, onClick: i, "aria-label": "Main Menu", children: /* @__PURE__ */ U("svg", { width: "45", height: "45", viewBox: "0 0 100 100", style: { fill: "#f9f8f8 !important" }, children: [
6048
6048
  /* @__PURE__ */ s("path", { className: g === "secondary" ? "linedark linedark1" : "line line1", d: "M 20,29.000046 H 80.000231 C 80.000231,29.000046 94.498839,28.817352 94.532987,66.711331 94.543142,77.980673 90.966081,81.670246 85.259173,81.668997 79.552261,81.667751 75.000211,74.999942 75.000211,74.999942 L 25.000021,25.000058" }),
6049
6049
  /* @__PURE__ */ s("path", { className: g === "secondary" ? "linedark linedark2" : "line line2", d: "M 20,50 H 80" }),
6050
6050
  /* @__PURE__ */ s("path", { className: g === "secondary" ? "linedark linedark3" : "line line3", d: "M 20,70.999954 H 80.000231 C 80.000231,70.999954 94.498839,71.182648 94.532987,33.288669 94.543142,22.019327 90.966081,18.329754 85.259173,18.331003 79.552261,18.332249 75.000211,25.000058 75.000211,25.000058 L 25.000021,74.999942" })
@@ -6071,7 +6071,7 @@ const ls = (g, A) => HB(g) ? new rs(A) : new ns(A, {
6071
6071
  ),
6072
6072
  (!B || B.trim() === "") && /* @__PURE__ */ s("div", { className: `text-[10px] ${a[g]} tracking-[4px]`, children: "DATA" })
6073
6073
  ] }) }),
6074
- /* @__PURE__ */ s("div", { className: "hidden sm:ml-6 sm:block flex-grow", children: /* @__PURE__ */ s("nav", { className: "flex justify-end", children: /* @__PURE__ */ s("ul", { className: "flex space-x-4", children: A.map(({ label: l, href: Y, refId: Z }) => /* @__PURE__ */ s("li", { children: /* @__PURE__ */ s(aM, { href: Y, Viewport: G[g], colorButton: c[g], children: /* @__PURE__ */ s(
6074
+ /* @__PURE__ */ s("div", { className: "hidden sm:ml-6 sm:block flex-grow", children: /* @__PURE__ */ s("nav", { className: "flex justify-end", children: /* @__PURE__ */ s("ul", { className: "flex space-x-4", children: A.map(({ label: l, href: Y, refId: Z }) => /* @__PURE__ */ s("li", { children: /* @__PURE__ */ s(aM, { href: Y, Viewport: G[g], colorButton: c[g], setIsOpen: Q, children: /* @__PURE__ */ s(
6075
6075
  "div",
6076
6076
  {
6077
6077
  ref: (n) => n && Z && C.current.set(Z, n),
@@ -6083,7 +6083,7 @@ const ls = (g, A) => HB(g) ? new rs(A) : new ns(A, {
6083
6083
  ] })
6084
6084
  ] })
6085
6085
  ] }),
6086
- Q && /* @__PURE__ */ s("div", { className: "space-y-1 px-2 pt-2 pb-3", children: A.map(({ label: l, href: Y }) => /* @__PURE__ */ s(aM, { href: Y, Viewport: G[g], colorButton: c[g], children: l }, Y)) })
6086
+ t && /* @__PURE__ */ s("div", { className: "space-y-1 px-2 pt-2 pb-3", children: A.map(({ label: l, href: Y }) => /* @__PURE__ */ s(aM, { href: Y, Viewport: G[g], colorButton: c[g], setIsOpen: Q, children: l }, Y)) })
6087
6087
  ] });
6088
6088
  }
6089
6089
  );
@@ -6097,8 +6097,8 @@ const Ys = oA(
6097
6097
  explore: D = {},
6098
6098
  overlap: e = {},
6099
6099
  nameImages: w = !1,
6100
- nameImagesBotton: Q = !1,
6101
- handletext4: t,
6100
+ nameImagesBotton: t = !1,
6101
+ handletext4: Q,
6102
6102
  handletext5: C,
6103
6103
  ...i
6104
6104
  }, o) => {
@@ -6149,7 +6149,7 @@ const Ys = oA(
6149
6149
  ] }),
6150
6150
  /* @__PURE__ */ s("p", { className: "text-sm md:text-lg mb-6", children: e.text3 }),
6151
6151
  /* @__PURE__ */ U("div", { className: "flex gap-4", children: [
6152
- e.text4 && /* @__PURE__ */ s(_g, { variant: A, onClick: t, size: "small", label: e.text4 }),
6152
+ e.text4 && /* @__PURE__ */ s(_g, { variant: A, onClick: Q, size: "small", label: e.text4 }),
6153
6153
  e.text5 && /* @__PURE__ */ s(_g, { variant: "tertiary", onClick: C, size: "small", label: e.text5 })
6154
6154
  ] })
6155
6155
  ] }),
@@ -6176,7 +6176,7 @@ const Ys = oA(
6176
6176
  )
6177
6177
  ] }) }),
6178
6178
  w && /* @__PURE__ */ s("div", { className: "absolute inset-0 flex flex-col justify-center items-center text-white z-10 transition-opacity duration-700 ease-in-out", children: /* @__PURE__ */ s("h1", { className: "text-4xl font-bold", children: ((u = g[I]) == null ? void 0 : u.alt) || "Título dinámico" }, I) }),
6179
- Q && /* @__PURE__ */ s("div", { className: "absolute bottom-8 left-1/2 transform -translate-x-1/2 text-center z-10", children: /* @__PURE__ */ s("p", { className: "text-lg font-medium text-white", children: (d = g[I]) == null ? void 0 : d.alt }) }),
6179
+ t && /* @__PURE__ */ s("div", { className: "absolute bottom-8 left-1/2 transform -translate-x-1/2 text-center z-10", children: /* @__PURE__ */ s("p", { className: "text-lg font-medium text-white", children: (d = g[I]) == null ? void 0 : d.alt }) }),
6180
6180
  /* @__PURE__ */ s(
6181
6181
  "div",
6182
6182
  {
@@ -6262,8 +6262,8 @@ const ue = ({ infoText: g, disabled: A = !1, bgStyles: B }) => {
6262
6262
  icon: D,
6263
6263
  placeholder: e = "Enter text",
6264
6264
  title: w,
6265
- info: Q = !1,
6266
- infoText: t,
6265
+ info: t = !1,
6266
+ infoText: Q,
6267
6267
  positionIcon: C = "left",
6268
6268
  type: i = "text",
6269
6269
  error: o = !1,
@@ -6311,7 +6311,7 @@ const ue = ({ infoText: g, disabled: A = !1, bgStyles: B }) => {
6311
6311
  return /* @__PURE__ */ U("div", { className: "relative", children: [
6312
6312
  w && /* @__PURE__ */ U("div", { className: "flex items-center text-xs mb-1 font-medium text-gray-800", children: [
6313
6313
  /* @__PURE__ */ s("span", { style: { color: g === "tertiary" ? "#73787f" : "" }, children: w }),
6314
- Q && t && /* @__PURE__ */ s(ue, { infoText: t, disabled: B, bgStyles: n[g] })
6314
+ t && Q && /* @__PURE__ */ s(ue, { infoText: Q, disabled: B, bgStyles: n[g] })
6315
6315
  ] }),
6316
6316
  /* @__PURE__ */ U("div", { className: "relative flex items-center", children: [
6317
6317
  D && C === "left" && /* @__PURE__ */ s("span", { className: "absolute left-3", children: y() }),
@@ -6362,8 +6362,8 @@ const ms = N.forwardRef(
6362
6362
  icon: D,
6363
6363
  placeholder: e = "Select an option",
6364
6364
  title: w,
6365
- info: Q = !1,
6366
- infoText: t,
6365
+ info: t = !1,
6366
+ infoText: Q,
6367
6367
  positionIcon: C = "left",
6368
6368
  error: i = !1,
6369
6369
  errorMessage: o = "",
@@ -6407,7 +6407,7 @@ const ms = N.forwardRef(
6407
6407
  return /* @__PURE__ */ U("div", { className: "relative", children: [
6408
6408
  w && /* @__PURE__ */ U("div", { className: "flex items-center text-xs mb-1 font-medium text-gray-800", children: [
6409
6409
  /* @__PURE__ */ s("span", { style: { color: g === "tertiary" ? "#73787f" : "" }, children: w }),
6410
- Q && t && /* @__PURE__ */ s(ue, { infoText: t, disabled: B, bgStyles: l[g] })
6410
+ t && Q && /* @__PURE__ */ s(ue, { infoText: Q, disabled: B, bgStyles: l[g] })
6411
6411
  ] }),
6412
6412
  /* @__PURE__ */ U("div", { className: "relative flex items-center", children: [
6413
6413
  D && C === "left" && /* @__PURE__ */ s("span", { className: "absolute left-3", children: n() }),
@@ -6469,8 +6469,8 @@ const ys = "
6469
6469
  dataFiscal: D = {},
6470
6470
  logo: e,
6471
6471
  heightLogo: w = "60px",
6472
- widthLogo: Q = "85px",
6473
- company: t = "2025 GOAT DATA",
6472
+ widthLogo: t = "85px",
6473
+ company: Q = "2025 GOAT DATA",
6474
6474
  ...C
6475
6475
  }, i) => {
6476
6476
  const [o] = F("Hola, Necesito más información!"), I = `
@@ -6510,7 +6510,7 @@ const ys = "
6510
6510
  /* @__PURE__ */ s(
6511
6511
  "img",
6512
6512
  {
6513
- style: { height: w && w.trim() !== "" ? w : "40px", width: Q && Q.trim() !== "" ? Q : "65px" },
6513
+ style: { height: w && w.trim() !== "" ? w : "40px", width: t && t.trim() !== "" ? t : "65px" },
6514
6514
  src: e && e.trim() !== "" ? e : g === "secondary" || g === "experiences" ? kA : AB,
6515
6515
  alt: "logo"
6516
6516
  }
@@ -6551,7 +6551,7 @@ const ys = "
6551
6551
  ] })
6552
6552
  ] }),
6553
6553
  /* @__PURE__ */ U("div", { className: `${r[g]} py-4 flex flex-col items-center`, children: [
6554
- /* @__PURE__ */ s("p", { className: "text-xs text-white", children: `© ${t}. TODOS LOS DERECHOS RESERVADOS.` }),
6554
+ /* @__PURE__ */ s("p", { className: "text-xs text-white", children: `© ${Q}. TODOS LOS DERECHOS RESERVADOS.` }),
6555
6555
  /* @__PURE__ */ U("a", { href: "https://goatdata.com.ar/", target: "_blank", rel: "noopener noreferrer", className: "mt-2 flex items-center", children: [
6556
6556
  /* @__PURE__ */ s("span", { className: "text-xs text-white underline", children: "Diseñado y desarrollado por" }),
6557
6557
  /* @__PURE__ */ s("img", { src: ys, alt: "Goat Data Logo", className: "h-2.5 mx-1" }),