priority-queue-typed 2.0.4 → 2.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (101) hide show
  1. package/dist/data-structures/base/iterable-element-base.d.ts +186 -83
  2. package/dist/data-structures/base/iterable-element-base.js +149 -107
  3. package/dist/data-structures/base/iterable-entry-base.d.ts +95 -119
  4. package/dist/data-structures/base/iterable-entry-base.js +59 -116
  5. package/dist/data-structures/base/linear-base.d.ts +250 -192
  6. package/dist/data-structures/base/linear-base.js +137 -274
  7. package/dist/data-structures/binary-tree/avl-tree-counter.d.ts +126 -158
  8. package/dist/data-structures/binary-tree/avl-tree-counter.js +171 -205
  9. package/dist/data-structures/binary-tree/avl-tree-multi-map.d.ts +100 -69
  10. package/dist/data-structures/binary-tree/avl-tree-multi-map.js +135 -87
  11. package/dist/data-structures/binary-tree/avl-tree.d.ts +138 -149
  12. package/dist/data-structures/binary-tree/avl-tree.js +208 -195
  13. package/dist/data-structures/binary-tree/binary-tree.d.ts +476 -632
  14. package/dist/data-structures/binary-tree/binary-tree.js +612 -879
  15. package/dist/data-structures/binary-tree/bst.d.ts +258 -306
  16. package/dist/data-structures/binary-tree/bst.js +505 -481
  17. package/dist/data-structures/binary-tree/red-black-tree.d.ts +107 -179
  18. package/dist/data-structures/binary-tree/red-black-tree.js +114 -209
  19. package/dist/data-structures/binary-tree/tree-counter.d.ts +132 -154
  20. package/dist/data-structures/binary-tree/tree-counter.js +172 -203
  21. package/dist/data-structures/binary-tree/tree-multi-map.d.ts +72 -69
  22. package/dist/data-structures/binary-tree/tree-multi-map.js +105 -85
  23. package/dist/data-structures/graph/abstract-graph.d.ts +238 -233
  24. package/dist/data-structures/graph/abstract-graph.js +267 -237
  25. package/dist/data-structures/graph/directed-graph.d.ts +108 -224
  26. package/dist/data-structures/graph/directed-graph.js +146 -233
  27. package/dist/data-structures/graph/map-graph.d.ts +49 -55
  28. package/dist/data-structures/graph/map-graph.js +56 -59
  29. package/dist/data-structures/graph/undirected-graph.d.ts +103 -146
  30. package/dist/data-structures/graph/undirected-graph.js +129 -149
  31. package/dist/data-structures/hash/hash-map.d.ts +164 -338
  32. package/dist/data-structures/hash/hash-map.js +270 -457
  33. package/dist/data-structures/heap/heap.d.ts +214 -289
  34. package/dist/data-structures/heap/heap.js +340 -349
  35. package/dist/data-structures/heap/max-heap.d.ts +11 -47
  36. package/dist/data-structures/heap/max-heap.js +11 -66
  37. package/dist/data-structures/heap/min-heap.d.ts +12 -47
  38. package/dist/data-structures/heap/min-heap.js +11 -66
  39. package/dist/data-structures/linked-list/doubly-linked-list.d.ts +231 -347
  40. package/dist/data-structures/linked-list/doubly-linked-list.js +368 -494
  41. package/dist/data-structures/linked-list/singly-linked-list.d.ts +261 -310
  42. package/dist/data-structures/linked-list/singly-linked-list.js +447 -466
  43. package/dist/data-structures/linked-list/skip-linked-list.d.ts +0 -107
  44. package/dist/data-structures/linked-list/skip-linked-list.js +0 -100
  45. package/dist/data-structures/priority-queue/max-priority-queue.d.ts +12 -56
  46. package/dist/data-structures/priority-queue/max-priority-queue.js +11 -78
  47. package/dist/data-structures/priority-queue/min-priority-queue.d.ts +11 -57
  48. package/dist/data-structures/priority-queue/min-priority-queue.js +10 -79
  49. package/dist/data-structures/priority-queue/priority-queue.d.ts +2 -61
  50. package/dist/data-structures/priority-queue/priority-queue.js +8 -83
  51. package/dist/data-structures/queue/deque.d.ts +227 -254
  52. package/dist/data-structures/queue/deque.js +309 -348
  53. package/dist/data-structures/queue/queue.d.ts +180 -201
  54. package/dist/data-structures/queue/queue.js +265 -248
  55. package/dist/data-structures/stack/stack.d.ts +124 -102
  56. package/dist/data-structures/stack/stack.js +181 -125
  57. package/dist/data-structures/trie/trie.d.ts +164 -165
  58. package/dist/data-structures/trie/trie.js +189 -172
  59. package/dist/interfaces/binary-tree.d.ts +56 -6
  60. package/dist/interfaces/graph.d.ts +16 -0
  61. package/dist/types/data-structures/base/base.d.ts +1 -1
  62. package/dist/types/data-structures/graph/abstract-graph.d.ts +4 -0
  63. package/dist/types/utils/utils.d.ts +6 -6
  64. package/dist/utils/utils.d.ts +110 -49
  65. package/dist/utils/utils.js +148 -73
  66. package/package.json +2 -2
  67. package/src/data-structures/base/iterable-element-base.ts +238 -115
  68. package/src/data-structures/base/iterable-entry-base.ts +96 -120
  69. package/src/data-structures/base/linear-base.ts +271 -277
  70. package/src/data-structures/binary-tree/avl-tree-counter.ts +198 -216
  71. package/src/data-structures/binary-tree/avl-tree-multi-map.ts +192 -101
  72. package/src/data-structures/binary-tree/avl-tree.ts +239 -206
  73. package/src/data-structures/binary-tree/binary-tree.ts +681 -905
  74. package/src/data-structures/binary-tree/bst.ts +568 -570
  75. package/src/data-structures/binary-tree/red-black-tree.ts +161 -222
  76. package/src/data-structures/binary-tree/tree-counter.ts +199 -218
  77. package/src/data-structures/binary-tree/tree-multi-map.ts +131 -97
  78. package/src/data-structures/graph/abstract-graph.ts +339 -264
  79. package/src/data-structures/graph/directed-graph.ts +146 -236
  80. package/src/data-structures/graph/map-graph.ts +63 -60
  81. package/src/data-structures/graph/undirected-graph.ts +129 -152
  82. package/src/data-structures/hash/hash-map.ts +274 -496
  83. package/src/data-structures/heap/heap.ts +389 -402
  84. package/src/data-structures/heap/max-heap.ts +12 -76
  85. package/src/data-structures/heap/min-heap.ts +13 -76
  86. package/src/data-structures/linked-list/doubly-linked-list.ts +426 -530
  87. package/src/data-structures/linked-list/singly-linked-list.ts +495 -517
  88. package/src/data-structures/linked-list/skip-linked-list.ts +1 -108
  89. package/src/data-structures/priority-queue/max-priority-queue.ts +12 -87
  90. package/src/data-structures/priority-queue/min-priority-queue.ts +11 -88
  91. package/src/data-structures/priority-queue/priority-queue.ts +3 -92
  92. package/src/data-structures/queue/deque.ts +381 -357
  93. package/src/data-structures/queue/queue.ts +310 -264
  94. package/src/data-structures/stack/stack.ts +217 -131
  95. package/src/data-structures/trie/trie.ts +240 -175
  96. package/src/interfaces/binary-tree.ts +240 -6
  97. package/src/interfaces/graph.ts +37 -0
  98. package/src/types/data-structures/base/base.ts +5 -5
  99. package/src/types/data-structures/graph/abstract-graph.ts +5 -0
  100. package/src/types/utils/utils.ts +9 -5
  101. package/src/utils/utils.ts +152 -86
@@ -1,4 +1,11 @@
1
1
  "use strict";
2
+ /**
3
+ * data-structure-typed
4
+ *
5
+ * @author Pablo Zeng
6
+ * @copyright Copyright (c) 2022 Pablo Zeng <zrwusa@gmail.com>
7
+ * @license MIT License
8
+ */
2
9
  Object.defineProperty(exports, "__esModule", { value: true });
3
10
  exports.AbstractGraph = exports.AbstractEdge = exports.AbstractVertex = void 0;
4
11
  const utils_1 = require("../../utils");
@@ -6,13 +13,6 @@ const base_1 = require("../base");
6
13
  const heap_1 = require("../heap");
7
14
  const queue_1 = require("../queue");
8
15
  class AbstractVertex {
9
- /**
10
- * The function is a protected constructor that takes an key and an optional value as parameters.
11
- * @param {VertexKey} key - The `key` parameter is of type `VertexKey` and represents the identifier of the vertex. It is
12
- * used to uniquely identify the vertex object.
13
- * @param {V} [value] - The parameter "value" is an optional parameter of type V. It is used to assign a value to the
14
- * vertex. If no value is provided, it will be set to undefined.
15
- */
16
16
  constructor(key, value) {
17
17
  this.key = key;
18
18
  this.value = value;
@@ -20,15 +20,6 @@ class AbstractVertex {
20
20
  }
21
21
  exports.AbstractVertex = AbstractVertex;
22
22
  class AbstractEdge {
23
- /**
24
- * The above function is a protected constructor that initializes the weight, value, and hash code properties of an
25
- * object.
26
- * @param {number} [weight] - The `weight` parameter is an optional number that represents the weight of the object. If
27
- * a value is provided, it will be assigned to the `_weight` property. If no value is provided, the default value of 1
28
- * will be assigned.
29
- * @param {VO} [value] - The `value` parameter is of type `VO`, which means it can be any type. It is an optional parameter,
30
- * meaning it can be omitted when creating an instance of the class.
31
- */
32
23
  constructor(weight, value) {
33
24
  this.weight = weight !== undefined ? weight : 1;
34
25
  this.value = value;
@@ -39,10 +30,30 @@ class AbstractEdge {
39
30
  }
40
31
  }
41
32
  exports.AbstractEdge = AbstractEdge;
33
+ /**
34
+ * Abstract graph over vertices and edges.
35
+ * @template V - Vertex value type.
36
+ * @template E - Edge value type.
37
+ * @template VO - Concrete vertex subclass (extends AbstractVertex<V>).
38
+ * @template EO - Concrete edge subclass (extends AbstractEdge<E>).
39
+ * @remarks Time O(1), Space O(1)
40
+ * @example examples will be generated by unit test
41
+ */
42
42
  class AbstractGraph extends base_1.IterableEntryBase {
43
- constructor() {
43
+ /**
44
+ * Construct a graph with runtime defaults.
45
+ * @param options - `GraphOptions<V>` in `options.graph` (e.g. `vertexValueInitializer`, `defaultEdgeWeight`).
46
+ * @remarks Time O(1), Space O(1)
47
+ */
48
+ constructor(options) {
44
49
  super();
50
+ this._options = { defaultEdgeWeight: 1 };
45
51
  this._vertexMap = new Map();
52
+ const graph = options === null || options === void 0 ? void 0 : options.graph;
53
+ this._options = Object.assign({ defaultEdgeWeight: 1 }, (graph !== null && graph !== void 0 ? graph : {}));
54
+ }
55
+ get options() {
56
+ return this._options;
46
57
  }
47
58
  get vertexMap() {
48
59
  return this._vertexMap;
@@ -54,33 +65,29 @@ class AbstractGraph extends base_1.IterableEntryBase {
54
65
  return this._vertexMap.size;
55
66
  }
56
67
  /**
57
- * Time Complexity: O(1) - Constant time for Map lookup.
58
- * Space Complexity: O(1) - Constant space, as it creates only a few variables.
59
- *
60
- * The function "getVertex" returns the vertex with the specified ID or undefined if it doesn't exist.
61
- * @param {VertexKey} vertexKey - The `vertexKey` parameter is the identifier of the vertex that you want to retrieve from
62
- * the `_vertexMap` map.
63
- * @returns The method `getVertex` returns the vertex with the specified `vertexKey` if it exists in the `_vertexMap`
64
- * map. If the vertex does not exist, it returns `undefined`.
68
+ * Get vertex instance by key.
69
+ * @param vertexKey - Vertex key.
70
+ * @returns Vertex instance or `undefined`.
71
+ * @remarks Time O(1), Space O(1)
65
72
  */
66
73
  getVertex(vertexKey) {
67
74
  return this._vertexMap.get(vertexKey) || undefined;
68
75
  }
69
76
  /**
70
- * Time Complexity: O(1) - Constant time for Map lookup.
71
- * Space Complexity: O(1) - Constant space, as it creates only a few variables.
72
- *
73
- * The function checks if a vertex exists in a graph.
74
- * @param {VO | VertexKey} vertexOrKey - The parameter `vertexOrKey` can be either a vertex object (`VO`) or a vertex ID
75
- * (`VertexKey`).
76
- * @returns a boolean value.
77
+ * Whether a vertex exists.
78
+ * @param vertexOrKey - Vertex or key.
79
+ * @returns `true` if present, otherwise `false`.
80
+ * @remarks Time O(1) avg, Space O(1)
77
81
  */
78
82
  hasVertex(vertexOrKey) {
79
83
  return this._vertexMap.has(this._getVertexKey(vertexOrKey));
80
84
  }
81
85
  /**
82
- * Time Complexity: O(1) - Constant time for Map operations.
83
- * Space Complexity: O(1) - Constant space, as it creates only a few variables.
86
+ * Add a vertex by key/value or by pre-built vertex.
87
+ * @param keyOrVertex - Vertex key or existing vertex instance.
88
+ * @param value - Optional payload.
89
+ * @returns `true` if inserted; `false` when key already exists.
90
+ * @remarks Time O(1) avg, Space O(1)
84
91
  */
85
92
  addVertex(keyOrVertex, value) {
86
93
  if (keyOrVertex instanceof AbstractVertex) {
@@ -91,19 +98,21 @@ class AbstractGraph extends base_1.IterableEntryBase {
91
98
  return this._addVertex(newVertex);
92
99
  }
93
100
  }
101
+ /**
102
+ * Type guard: check if a value is a valid vertex key.
103
+ * @param potentialKey - Value to test.
104
+ * @returns `true` if string/number; else `false`.
105
+ * @remarks Time O(1), Space O(1)
106
+ */
94
107
  isVertexKey(potentialKey) {
95
108
  const potentialKeyType = typeof potentialKey;
96
109
  return potentialKeyType === 'string' || potentialKeyType === 'number';
97
110
  }
98
111
  /**
99
- * Time Complexity: O(K), where K is the number of vertexMap to be removed.
100
- * Space Complexity: O(1) - Constant space, as it creates only a few variables.
101
- *
102
- * The function removes all vertexMap from a graph and returns a boolean indicating if any vertexMap were removed.
103
- * @param {VO[] | VertexKey[]} vertexMap - The `vertexMap` parameter can be either an array of vertexMap (`VO[]`) or an array
104
- * of vertex IDs (`VertexKey[]`).
105
- * @returns a boolean value. It returns true if at least one vertex was successfully removed, and false if no vertexMap
106
- * were removed.
112
+ * Delete multiple vertices.
113
+ * @param vertexMap - Array of vertices or keys.
114
+ * @returns `true` if any vertex was removed.
115
+ * @remarks Time O(sum(deg)), Space O(1)
107
116
  */
108
117
  removeManyVertices(vertexMap) {
109
118
  const removed = [];
@@ -113,23 +122,24 @@ class AbstractGraph extends base_1.IterableEntryBase {
113
122
  return removed.length > 0;
114
123
  }
115
124
  /**
116
- * Time Complexity: O(1) - Depends on the implementation in the concrete class.
117
- * Space Complexity: O(1) - Depends on the implementation in the concrete class.
118
- *
119
- * The function checks if there is an edge between two vertexMap and returns a boolean value indicating the result.
120
- * @param {VertexKey | VO} v1 - The parameter v1 can be either a VertexKey or a VO. A VertexKey represents the unique
121
- * identifier of a vertex in a graph, while VO represents the type of the vertex object itself.
122
- * @param {VertexKey | VO} v2 - The parameter `v2` represents the second vertex in the edge. It can be either a
123
- * `VertexKey` or a `VO` type, which represents the type of the vertex.
124
- * @returns A boolean value is being returned.
125
+ * Whether an edge exists between two vertices.
126
+ * @param v1 - Endpoint A vertex or key.
127
+ * @param v2 - Endpoint B vertex or key.
128
+ * @returns `true` if present; otherwise `false`.
129
+ * @remarks Time O(1) avg, Space O(1)
125
130
  */
126
131
  hasEdge(v1, v2) {
127
132
  const edge = this.getEdge(v1, v2);
128
133
  return !!edge;
129
134
  }
130
135
  /**
131
- * Time Complexity: O(1) - Depends on the implementation in the concrete class.
132
- * Space Complexity: O(1) - Depends on the implementation in the concrete class.
136
+ * Add an edge by instance or by `(src, dest, weight?, value?)`.
137
+ * @param srcOrEdge - Edge instance or source vertex/key.
138
+ * @param dest - Destination vertex/key (when adding by pair).
139
+ * @param weight - Edge weight.
140
+ * @param value - Edge payload.
141
+ * @returns `true` if inserted; otherwise `false`.
142
+ * @remarks Time O(1) avg, Space O(1)
133
143
  */
134
144
  addEdge(srcOrEdge, dest, weight, value) {
135
145
  if (srcOrEdge instanceof AbstractEdge) {
@@ -152,18 +162,12 @@ class AbstractGraph extends base_1.IterableEntryBase {
152
162
  }
153
163
  }
154
164
  /**
155
- * Time Complexity: O(1) - Constant time for Map and Edge operations.
156
- * Space Complexity: O(1) - Constant space, as it creates only a few variables.
157
- *
158
- * The function sets the weight of an edge between two vertexMap in a graph.
159
- * @param {VertexKey | VO} srcOrKey - The `srcOrKey` parameter can be either a `VertexKey` or a `VO` object. It represents
160
- * the source vertex of the edge.
161
- * @param {VertexKey | VO} destOrKey - The `destOrKey` parameter represents the destination vertex of the edge. It can be
162
- * either a `VertexKey` or a vertex object `VO`.
163
- * @param {number} weight - The weight parameter represents the weight of the edge between the source vertex (srcOrKey)
164
- * and the destination vertex (destOrKey).
165
- * @returns a boolean value. If the edge exists between the source and destination vertexMap, the function will update
166
- * the weight of the edge and return true. If the edge does not exist, the function will return false.
165
+ * Set the weight of an existing edge.
166
+ * @param srcOrKey - Source vertex or key.
167
+ * @param destOrKey - Destination vertex or key.
168
+ * @param weight - New weight.
169
+ * @returns `true` if updated; otherwise `false`.
170
+ * @remarks Time O(1) avg, Space O(1)
167
171
  */
168
172
  setEdgeWeight(srcOrKey, destOrKey, weight) {
169
173
  const edge = this.getEdge(srcOrKey, destOrKey);
@@ -176,15 +180,12 @@ class AbstractGraph extends base_1.IterableEntryBase {
176
180
  }
177
181
  }
178
182
  /**
179
- * Time Complexity: O(P), where P is the number of paths found (in the worst case, exploring all paths).
180
- * Space Complexity: O(P) - Linear space, where P is the number of paths found.
181
- *
182
- * The function `getAllPathsBetween` finds all paths between two vertexMap in a graph using depth-first search.
183
- * @param {VO | VertexKey} v1 - The parameter `v1` represents either a vertex object (`VO`) or a vertex ID (`VertexKey`).
184
- * It is the starting vertex for finding paths.
185
- * @param {VO | VertexKey} v2 - The parameter `v2` represents either a vertex object (`VO`) or a vertex ID (`VertexKey`).
186
- * @param limit - The count of limitation of result array.
187
- * @returns The function `getAllPathsBetween` returns an array of arrays of vertexMap (`VO[][]`).
183
+ * Enumerate simple paths up to a limit.
184
+ * @param v1 - Source vertex or key.
185
+ * @param v2 - Destination vertex or key.
186
+ * @param limit - Maximum number of paths to collect.
187
+ * @returns Array of paths (each path is an array of vertices).
188
+ * @remarks Time O(paths) worst-case exponential, Space O(V + paths)
188
189
  */
189
190
  getAllPathsBetween(v1, v2, limit = 1000) {
190
191
  const paths = [];
@@ -213,12 +214,10 @@ class AbstractGraph extends base_1.IterableEntryBase {
213
214
  return paths;
214
215
  }
215
216
  /**
216
- * Time Complexity: O(L), where L is the length of the path.
217
- * Space Complexity: O(1) - Constant space.
218
- *
219
- * The function calculates the sum of weights along a given path.
220
- * @param {VO[]} path - An array of vertexMap (VO) representing a path in a graph.
221
- * @returns The function `getPathSumWeight` returns the sum of the weights of the edgeMap in the given path.
217
+ * Sum the weights along a vertex path.
218
+ * @param path - Sequence of vertices.
219
+ * @returns Path weight sum (0 if empty or edge missing).
220
+ * @remarks Time O(L), Space O(1) where L is path length
222
221
  */
223
222
  getPathSumWeight(path) {
224
223
  var _a;
@@ -229,21 +228,12 @@ class AbstractGraph extends base_1.IterableEntryBase {
229
228
  return sum;
230
229
  }
231
230
  /**
232
- * Time Complexity: O(V + E) - Depends on the implementation (Dijkstra's algorithm).
233
- * Space Complexity: O(V + E) - Depends on the implementation (Dijkstra's algorithm).
234
- *
235
- * The function `getMinCostBetween` calculates the minimum cost between two vertexMap in a graph, either based on edge
236
- * weights or using a breadth-first search algorithm.
237
- * @param {VO | VertexKey} v1 - The parameter `v1` represents the starting vertex or its ID.
238
- * @param {VO | VertexKey} v2 - The parameter `v2` represents the destination vertex or its ID. It is the vertex to which
239
- * you want to find the minimum cost or weight from the source vertex `v1`.
240
- * @param {boolean} [isWeight] - isWeight is an optional parameter that indicates whether the graph edgeMap have weights.
241
- * If isWeight is set to true, the function will calculate the minimum cost between v1 and v2 based on the weights of
242
- * the edgeMap. If isWeight is set to false or not provided, the function will calculate the
243
- * @returns The function `getMinCostBetween` returns a number representing the minimum cost between two vertexMap (`v1`
244
- * and `v2`). If the `isWeight` parameter is `true`, it calculates the minimum weight among all paths between the
245
- * vertexMap. If `isWeight` is `false` or not provided, it uses a breadth-first search (BFS) algorithm to calculate the
246
- * minimum number of
231
+ * Minimum hops/weight between two vertices.
232
+ * @param v1 - Source vertex or key.
233
+ * @param v2 - Destination vertex or key.
234
+ * @param isWeight - If `true`, compare by path weight; otherwise by hop count.
235
+ * @returns Minimum cost or `undefined` if missing/unreachable.
236
+ * @remarks Time O((V + E) log V) weighted / O(V + E) unweighted, Space O(V + E)
247
237
  */
248
238
  getMinCostBetween(v1, v2, isWeight) {
249
239
  if (isWeight === undefined)
@@ -257,7 +247,6 @@ class AbstractGraph extends base_1.IterableEntryBase {
257
247
  return min;
258
248
  }
259
249
  else {
260
- // BFS
261
250
  const vertex2 = this._getVertex(v2);
262
251
  const vertex1 = this._getVertex(v1);
263
252
  if (!(vertex1 && vertex2)) {
@@ -268,12 +257,11 @@ class AbstractGraph extends base_1.IterableEntryBase {
268
257
  visited.set(vertex1, true);
269
258
  let cost = 0;
270
259
  while (queue.length > 0) {
271
- for (let i = 0; i < queue.length; i++) {
260
+ for (let i = 0, layerSize = queue.length; i < layerSize; i++) {
272
261
  const cur = queue.shift();
273
262
  if (cur === vertex2) {
274
263
  return cost;
275
264
  }
276
- // TODO consider optimizing to AbstractGraph
277
265
  if (cur !== undefined) {
278
266
  const neighbors = this.getNeighbors(cur);
279
267
  for (const neighbor of neighbors) {
@@ -290,23 +278,13 @@ class AbstractGraph extends base_1.IterableEntryBase {
290
278
  }
291
279
  }
292
280
  /**
293
- * Time Complexity: O(V + E) - Depends on the implementation (Dijkstra's algorithm or DFS).
294
- * Space Complexity: O(V + E) - Depends on the implementation (Dijkstra's algorithm or DFS).
295
- *
296
- * The function `getMinPathBetween` returns the minimum path between two vertexMap in a graph, either based on weight or
297
- * using a breadth-first search algorithm.
298
- * @param {VO | VertexKey} v1 - The parameter `v1` represents the starting vertex of the path. It can be either a vertex
299
- * object (`VO`) or a vertex ID (`VertexKey`).
300
- * @param {VO | VertexKey} v2 - VO | VertexKey - The second vertex or vertex ID between which we want to find the minimum
301
- * path.
302
- * @param {boolean} [isWeight] - A boolean flag indicating whether to consider the weight of edgeMap in finding the
303
- * minimum path. If set to true, the function will use Dijkstra's algorithm to find the minimum weighted path. If set
304
- * to false, the function will use breadth-first search (BFS) to find the minimum path.
305
- * @param isDFS - If set to true, it enforces the use of getAllPathsBetween to first obtain all possible paths,
306
- * followed by iterative computation of the shortest path. This approach may result in exponential time complexity,
307
- * so the default method is to use the Dijkstra algorithm to obtain the shortest weighted path.
308
- * @returns The function `getMinPathBetween` returns an array of vertexMap (`VO[]`) representing the minimum path between
309
- * two vertexMap (`v1` and `v2`). If there is no path between the vertexMap, it returns `undefined`.
281
+ * Minimum path (as vertex sequence) between two vertices.
282
+ * @param v1 - Source vertex or key.
283
+ * @param v2 - Destination vertex or key.
284
+ * @param isWeight - If `true`, compare by path weight; otherwise by hop count.
285
+ * @param isDFS - For weighted mode only: if `true`, brute-force all paths; if `false`, use Dijkstra.
286
+ * @returns Vertex sequence, or `undefined`/empty when unreachable depending on branch.
287
+ * @remarks Time O((V + E) log V) weighted / O(V + E) unweighted, Space O(V + E)
310
288
  */
311
289
  getMinPathBetween(v1, v2, isWeight, isDFS = false) {
312
290
  var _a, _b;
@@ -329,11 +307,19 @@ class AbstractGraph extends base_1.IterableEntryBase {
329
307
  return allPaths[minIndex] || undefined;
330
308
  }
331
309
  else {
310
+ /**
311
+ * Dijkstra (binary-heap) shortest paths for non-negative weights.
312
+ * @param src - Source vertex or key.
313
+ * @param dest - Optional destination for early stop.
314
+ * @param getMinDist - If `true`, compute global minimum distance.
315
+ * @param genPaths - If `true`, also generate path arrays.
316
+ * @returns Result bag or `undefined` if source missing.
317
+ * @remarks Time O((V + E) log V), Space O(V + E)
318
+ */
332
319
  return (_b = (_a = this.dijkstra(v1, v2, true, true)) === null || _a === void 0 ? void 0 : _a.minPath) !== null && _b !== void 0 ? _b : [];
333
320
  }
334
321
  }
335
322
  else {
336
- // DFS
337
323
  let minPath = [];
338
324
  const vertex1 = this._getVertex(v1);
339
325
  const vertex2 = this._getVertex(v2);
@@ -360,23 +346,13 @@ class AbstractGraph extends base_1.IterableEntryBase {
360
346
  }
361
347
  }
362
348
  /**
363
- * Time Complexity: O(V^2 + E) - Quadratic time in the worst case (no heap optimization).
364
- * Space Complexity: O(V + E) - Depends on the implementation (Dijkstra's algorithm).
365
- *
366
- * The function `dijkstraWithoutHeap` implements Dijkstra's algorithm to find the shortest path between two vertexMap in
367
- * a graph without using a heap data structure.
368
- * @param {VO | VertexKey} src - The source vertex from which to start the Dijkstra's algorithm. It can be either a
369
- * vertex object or a vertex ID.
370
- * @param {VO | VertexKey | undefined} [dest] - The `dest` parameter in the `dijkstraWithoutHeap` function is an optional
371
- * parameter that specifies the destination vertex for the Dijkstra algorithm. It can be either a vertex object or its
372
- * identifier. If no destination is provided, the value is set to `undefined`.
373
- * @param {boolean} [getMinDist] - The `getMinDist` parameter is a boolean flag that determines whether the minimum
374
- * distance from the source vertex to the destination vertex should be calculated and returned in the result. If
375
- * `getMinDist` is set to `true`, the `minDist` property in the result will contain the minimum distance
376
- * @param {boolean} [genPaths] - The `genPaths` parameter is a boolean flag that determines whether or not to generate
377
- * paths in the Dijkstra algorithm. If `genPaths` is set to `true`, the algorithm will calculate and return the
378
- * shortest paths from the source vertex to all other vertexMap in the graph. If `genPaths
379
- * @returns The function `dijkstraWithoutHeap` returns an object of type `DijkstraResult<VO>`.
349
+ * Dijkstra without heap (array-based selection).
350
+ * @param src - Source vertex or key.
351
+ * @param dest - Optional destination for early stop.
352
+ * @param getMinDist - If `true`, compute global minimum distance.
353
+ * @param genPaths - If `true`, also generate path arrays.
354
+ * @returns Result bag or `undefined` if source missing.
355
+ * @remarks Time O(V^2 + E), Space O(V + E)
380
356
  */
381
357
  dijkstraWithoutHeap(src, dest = undefined, getMinDist = false, genPaths = false) {
382
358
  let minDist = Number.MAX_SAFE_INTEGER;
@@ -386,7 +362,7 @@ class AbstractGraph extends base_1.IterableEntryBase {
386
362
  const vertexMap = this._vertexMap;
387
363
  const distMap = new Map();
388
364
  const seen = new Set();
389
- const preMap = new Map(); // predecessor
365
+ const preMap = new Map();
390
366
  const srcVertex = this._getVertex(src);
391
367
  const destVertex = dest ? this._getVertex(dest) : undefined;
392
368
  if (!srcVertex) {
@@ -449,7 +425,6 @@ class AbstractGraph extends base_1.IterableEntryBase {
449
425
  if (edge) {
450
426
  const curFromMap = distMap.get(cur);
451
427
  const neighborFromMap = distMap.get(neighbor);
452
- // TODO after no-non-undefined-assertion not ensure the logic
453
428
  if (curFromMap !== undefined && neighborFromMap !== undefined) {
454
429
  if (edge.weight + curFromMap < neighborFromMap) {
455
430
  distMap.set(neighbor, edge.weight + curFromMap);
@@ -475,26 +450,6 @@ class AbstractGraph extends base_1.IterableEntryBase {
475
450
  getPaths(minDest);
476
451
  return { distMap, preMap, seen, paths, minDist, minPath };
477
452
  }
478
- /**
479
- * Time Complexity: O((V + E) * log(V)) - Depends on the implementation (using a binary heap).
480
- * Space Complexity: O(V + E) - Depends on the implementation (using a binary heap).
481
- *
482
- * Dijkstra's algorithm is used to find the shortest paths from a source node to all other nodes in a graph. Its basic idea is to repeatedly choose the node closest to the source node and update the distances of other nodes using this node as an intermediary. Dijkstra's algorithm requires that the edge weights in the graph are non-negative.
483
- * The `dijkstra` function implements Dijkstra's algorithm to find the shortest path between a source vertex and an
484
- * optional destination vertex, and optionally returns the minimum distance, the paths, and other information.
485
- * @param {VO | VertexKey} src - The `src` parameter represents the source vertex from which the Dijkstra algorithm will
486
- * start. It can be either a vertex object or a vertex ID.
487
- * @param {VO | VertexKey | undefined} [dest] - The `dest` parameter is the destination vertex or vertex ID. It specifies the
488
- * vertex to which the shortest path is calculated from the source vertex. If no destination is provided, the algorithm
489
- * will calculate the shortest paths to all other vertexMap from the source vertex.
490
- * @param {boolean} [getMinDist] - The `getMinDist` parameter is a boolean flag that determines whether the minimum
491
- * distance from the source vertex to the destination vertex should be calculated and returned in the result. If
492
- * `getMinDist` is set to `true`, the `minDist` property in the result will contain the minimum distance
493
- * @param {boolean} [genPaths] - The `genPaths` parameter is a boolean flag that determines whether or not to generate
494
- * paths in the Dijkstra algorithm. If `genPaths` is set to `true`, the algorithm will calculate and return the
495
- * shortest paths from the source vertex to all other vertexMap in the graph. If `genPaths
496
- * @returns The function `dijkstra` returns an object of type `DijkstraResult<VO>`.
497
- */
498
453
  dijkstra(src, dest = undefined, getMinDist = false, genPaths = false) {
499
454
  var _a;
500
455
  let minDist = Number.MAX_SAFE_INTEGER;
@@ -504,7 +459,7 @@ class AbstractGraph extends base_1.IterableEntryBase {
504
459
  const vertexMap = this._vertexMap;
505
460
  const distMap = new Map();
506
461
  const seen = new Set();
507
- const preMap = new Map(); // predecessor
462
+ const preMap = new Map();
508
463
  const srcVertex = this._getVertex(src);
509
464
  const destVertex = dest ? this._getVertex(dest) : undefined;
510
465
  if (!srcVertex)
@@ -518,11 +473,6 @@ class AbstractGraph extends base_1.IterableEntryBase {
518
473
  heap.add({ key: 0, value: srcVertex });
519
474
  distMap.set(srcVertex, 0);
520
475
  preMap.set(srcVertex, undefined);
521
- /**
522
- * The function `getPaths` retrieves all paths from vertexMap to a specified minimum vertex.
523
- * @param {VO | undefined} minV - The parameter `minV` is of type `VO | undefined`. It represents the minimum vertex value or
524
- * undefined.
525
- */
526
476
  const getPaths = (minV) => {
527
477
  for (const vertex of vertexMap) {
528
478
  const vertexOrKey = vertex[1];
@@ -562,7 +512,7 @@ class AbstractGraph extends base_1.IterableEntryBase {
562
512
  const weight = (_a = this.getEdge(cur, neighbor)) === null || _a === void 0 ? void 0 : _a.weight;
563
513
  if (typeof weight === 'number') {
564
514
  const distSrcToNeighbor = distMap.get(neighbor);
565
- if (distSrcToNeighbor) {
515
+ if (distSrcToNeighbor !== undefined) {
566
516
  if (dist + weight < distSrcToNeighbor) {
567
517
  heap.add({ key: dist + weight, value: neighbor });
568
518
  preMap.set(neighbor, cur);
@@ -592,22 +542,13 @@ class AbstractGraph extends base_1.IterableEntryBase {
592
542
  return { distMap, preMap, seen, paths, minDist, minPath };
593
543
  }
594
544
  /**
595
- * Time Complexity: O(V * E) - Quadratic time in the worst case (Bellman-Ford algorithm).
596
- * Space Complexity: O(V + E) - Depends on the implementation (Bellman-Ford algorithm).
597
- *
598
- * one to rest pairs
599
- * The Bellman-Ford algorithm is also used to find the shortest paths from a source node to all other nodes in a graph. Unlike Dijkstra's algorithm, it can handle edge weights that are negative. Its basic idea involves iterative relaxation of all edgeMap for several rounds to gradually approximate the shortest paths. Due to its ability to handle negative-weight edgeMap, the Bellman-Ford algorithm is more flexible in some scenarios.
600
- * The `bellmanFord` function implements the Bellman-Ford algorithm to find the shortest path from a source vertex to
601
- * all other vertexMap in a graph, and optionally detects negative cycles and generates the minimum path.
602
- * @param {VO | VertexKey} src - The `src` parameter is the source vertex from which the Bellman-Ford algorithm will
603
- * start calculating the shortest paths. It can be either a vertex object or a vertex ID.
604
- * @param {boolean} [scanNegativeCycle] - A boolean flag indicating whether to scan for negative cycles in the graph.
605
- * @param {boolean} [getMin] - The `getMin` parameter is a boolean flag that determines whether the algorithm should
606
- * calculate the minimum distance from the source vertex to all other vertexMap in the graph. If `getMin` is set to
607
- * `true`, the algorithm will find the minimum distance and update the `min` variable with the minimum
608
- * @param {boolean} [genPath] - A boolean flag indicating whether to generate paths for all vertexMap from the source
609
- * vertex.
610
- * @returns The function `bellmanFord` returns an object with the following properties:
545
+ * Bellman-Ford single-source shortest paths with option to scan negative cycles.
546
+ * @param src - Source vertex or key.
547
+ * @param scanNegativeCycle - If `true`, also detect negative cycles.
548
+ * @param getMin - If `true`, compute global minimum distance.
549
+ * @param genPath - If `true`, generate path arrays via predecessor map.
550
+ * @returns Result bag including distances, predecessors, and optional cycle flag.
551
+ * @remarks Time O(V * E), Space O(V + E)
611
552
  */
612
553
  bellmanFord(src, scanNegativeCycle, getMin, genPath) {
613
554
  if (getMin === undefined)
@@ -617,10 +558,9 @@ class AbstractGraph extends base_1.IterableEntryBase {
617
558
  const srcVertex = this._getVertex(src);
618
559
  const paths = [];
619
560
  const distMap = new Map();
620
- const preMap = new Map(); // predecessor
561
+ const preMap = new Map();
621
562
  let min = Number.MAX_SAFE_INTEGER;
622
563
  let minPath = [];
623
- // TODO
624
564
  let hasNegativeCycle;
625
565
  if (scanNegativeCycle)
626
566
  hasNegativeCycle = false;
@@ -696,31 +636,9 @@ class AbstractGraph extends base_1.IterableEntryBase {
696
636
  return { hasNegativeCycle, distMap, preMap, paths, min, minPath };
697
637
  }
698
638
  /**
699
- * Dijkstra algorithm time: O(logVE) space: O(VO + EO)
700
- */
701
- /**
702
- * Dijkstra algorithm time: O(logVE) space: O(VO + EO)
703
- * Dijkstra's algorithm is used to find the shortest paths from a source node to all other nodes in a graph. Its basic idea is to repeatedly choose the node closest to the source node and update the distances of other nodes using this node as an intermediary. Dijkstra's algorithm requires that the edge weights in the graph are non-negative.
704
- */
705
- /**
706
- * BellmanFord time:O(VE) space:O(VO)
707
- * one to rest pairs
708
- * The Bellman-Ford algorithm is also used to find the shortest paths from a source node to all other nodes in a graph. Unlike Dijkstra's algorithm, it can handle edge weights that are negative. Its basic idea involves iterative relaxation of all edgeMap for several rounds to gradually approximate the shortest paths. Due to its ability to handle negative-weight edgeMap, the Bellman-Ford algorithm is more flexible in some scenarios.
709
- * The `bellmanFord` function implements the Bellman-Ford algorithm to find the shortest path from a source vertex to
710
- */
711
- /**
712
- * Time Complexity: O(V^3) - Cubic time (Floyd-Warshall algorithm).
713
- * Space Complexity: O(V^2) - Quadratic space (Floyd-Warshall algorithm).
714
- *
715
- * Not support graph with negative weight cycle
716
- * all pairs
717
- * The Floyd-Warshall algorithm is used to find the shortest paths between all pairs of nodes in a graph. It employs dynamic programming to compute the shortest paths from any node to any other node. The Floyd-Warshall algorithm's advantage lies in its ability to handle graphs with negative-weight edgeMap, and it can simultaneously compute shortest paths between any two nodes.
718
- * The function implements the Floyd-Warshall algorithm to find the shortest path between all pairs of vertexMap in a
719
- * graph.
720
- * @returns The function `floydWarshall()` returns an object with two properties: `costs` and `predecessor`. The `costs`
721
- * property is a 2D array of numbers representing the shortest path costs between vertexMap in a graph. The
722
- * `predecessor` property is a 2D array of vertexMap (or `undefined`) representing the predecessor vertexMap in the shortest
723
- * path between vertexMap in the
639
+ * Floyd–Warshall all-pairs shortest paths.
640
+ * @returns `{ costs, predecessor }` matrices.
641
+ * @remarks Time O(V^3), Space O(V^2)
724
642
  */
725
643
  floydWarshall() {
726
644
  var _a;
@@ -728,7 +646,6 @@ class AbstractGraph extends base_1.IterableEntryBase {
728
646
  const n = idAndVertices.length;
729
647
  const costs = [];
730
648
  const predecessor = [];
731
- // successors
732
649
  for (let i = 0; i < n; i++) {
733
650
  costs[i] = [];
734
651
  predecessor[i] = [];
@@ -754,8 +671,10 @@ class AbstractGraph extends base_1.IterableEntryBase {
754
671
  return { costs, predecessor };
755
672
  }
756
673
  /**
757
- * O(V+E+C)
758
- * O(V+C)
674
+ * Enumerate simple cycles (may be expensive).
675
+ * @param isInclude2Cycle - If `true`, include 2-cycles when graph semantics allow.
676
+ * @returns Array of cycles (each as array of vertex keys).
677
+ * @remarks Time exponential in worst-case, Space O(V + E)
759
678
  */
760
679
  getCycles(isInclude2Cycle = false) {
761
680
  const cycles = [];
@@ -780,7 +699,6 @@ class AbstractGraph extends base_1.IterableEntryBase {
780
699
  for (const vertex of this.vertexMap.values()) {
781
700
  dfs(vertex, [], visited);
782
701
  }
783
- // Use a set to eliminate duplicate cycles
784
702
  const uniqueCycles = new Map();
785
703
  for (const cycle of cycles) {
786
704
  const sorted = [...cycle].sort().toString();
@@ -790,24 +708,22 @@ class AbstractGraph extends base_1.IterableEntryBase {
790
708
  uniqueCycles.set(sorted, cycle);
791
709
  }
792
710
  }
793
- // Convert the unique cycles back to an array
711
+ /**
712
+ * Map entries to an array via callback.
713
+ * @param callback - `(key, value, index, self) => T`.
714
+ * @param thisArg - Optional `this` for callback.
715
+ * @returns Mapped results.
716
+ * @remarks Time O(V), Space O(V)
717
+ */
794
718
  return [...uniqueCycles].map(cycleString => cycleString[1]);
795
719
  }
796
720
  /**
797
- * Time Complexity: O(n)
798
- * Space Complexity: O(n)
799
- *
800
- * The `filter` function iterates over key-value pairs in a data structure and returns an array of
801
- * pairs that satisfy a given predicate.
802
- * @param predicate - The `predicate` parameter is a callback function that takes four arguments:
803
- * `value`, `key`, `index`, and `this`. It is used to determine whether an element should be included
804
- * in the filtered array. The callback function should return `true` if the element should be
805
- * included, and `
806
- * @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
807
- * specify the value of `this` within the `predicate` function. It is used when you want to bind a
808
- * specific object as the context for the `predicate` function. If `thisArg` is provided, it will be
809
- * @returns The `filter` method returns an array of key-value pairs `[VertexKey, V | undefined][]`
810
- * that satisfy the given predicate function.
721
+ * Induced-subgraph filter: keep vertices where `predicate(key, value)` is true,
722
+ * and only keep edges whose endpoints both survive.
723
+ * @param predicate - `(key, value, index, self) => boolean`.
724
+ * @param thisArg - Optional `this` for callback.
725
+ * @returns A new graph of the same concrete class (`this` type).
726
+ * @remarks Time O(V + E), Space O(V + E)
811
727
  */
812
728
  filter(predicate, thisArg) {
813
729
  const filtered = [];
@@ -818,21 +734,23 @@ class AbstractGraph extends base_1.IterableEntryBase {
818
734
  }
819
735
  index++;
820
736
  }
821
- return filtered;
737
+ return this._createLike(filtered, this._snapshotOptions());
822
738
  }
823
739
  /**
824
- * Time Complexity: O(n)
825
- * Space Complexity: O(n)
826
- *
827
- * The `map` function iterates over the elements of a collection and applies a callback function to
828
- * each element, returning an array of the results.
829
- * @param callback - The callback parameter is a function that will be called for each element in the
830
- * map. It takes four arguments:
831
- * @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
832
- * specify the value of `this` within the callback function. If `thisArg` is provided, it will be
833
- * used as the `this` value when calling the callback function. If `thisArg` is not provided, `
834
- * @returns The `map` function is returning an array of type `T[]`.
740
+ * Preserve the old behavior: return filtered entries as an array.
741
+ * @remarks Time O(V), Space O(V)
835
742
  */
743
+ filterEntries(predicate, thisArg) {
744
+ const filtered = [];
745
+ let index = 0;
746
+ for (const [key, value] of this) {
747
+ if (predicate.call(thisArg, key, value, index, this)) {
748
+ filtered.push([key, value]);
749
+ }
750
+ index++;
751
+ }
752
+ return filtered;
753
+ }
836
754
  map(callback, thisArg) {
837
755
  const mapped = [];
838
756
  let index = 0;
@@ -842,23 +760,135 @@ class AbstractGraph extends base_1.IterableEntryBase {
842
760
  }
843
761
  return mapped;
844
762
  }
763
+ /**
764
+ * Create a deep clone of the graph with the same species.
765
+ * @remarks Time O(V + E), Space O(V + E)
766
+ */
767
+ /**
768
+ * Create a deep clone of the graph with the same species.
769
+ * @returns A new graph of the same concrete class (`this` type).
770
+ * @remarks Time O(V + E), Space O(V + E)
771
+ */
772
+ clone() {
773
+ return this._createLike(undefined, this._snapshotOptions());
774
+ }
775
+ // ===== Same-species factory & cloning helpers =====
776
+ /**
777
+ * Internal iterator over `[key, value]` entries in insertion order.
778
+ * @returns Iterator of `[VertexKey, V | undefined]`.
779
+ * @remarks Time O(V), Space O(1)
780
+ */
845
781
  *_getIterator() {
846
782
  for (const vertex of this._vertexMap.values()) {
847
783
  yield [vertex.key, vertex.value];
848
784
  }
849
785
  }
786
+ /**
787
+ * Capture configuration needed to reproduce the current graph.
788
+ * Currently the graph has no runtime options, so we return an empty object.
789
+ */
790
+ /**
791
+ * Capture configuration needed to reproduce the current graph.
792
+ * @returns Options bag (opaque to callers).
793
+ * @remarks Time O(1), Space O(1)
794
+ */
795
+ _snapshotOptions() {
796
+ return { graph: Object.assign({}, this._options) };
797
+ }
798
+ /**
799
+ * Create an empty graph instance of the same concrete species (Directed/Undirected/etc).
800
+ * @remarks Time O(1), Space O(1)
801
+ */
802
+ /**
803
+ * Create an empty graph instance of the same concrete species.
804
+ * @param _options - Snapshot options from `_snapshotOptions()`.
805
+ * @returns A new empty graph instance of `this` type.
806
+ * @remarks Time O(1), Space O(1)
807
+ */
808
+ _createInstance(_options) {
809
+ const Ctor = this.constructor;
810
+ const instance = new Ctor();
811
+ const graph = _options === null || _options === void 0 ? void 0 : _options.graph;
812
+ if (graph)
813
+ instance._options = Object.assign(Object.assign({}, instance._options), graph);
814
+ else
815
+ instance._options = Object.assign(Object.assign({}, instance._options), this._options);
816
+ return instance;
817
+ }
818
+ /**
819
+ * Create a same-species graph populated with the given entries.
820
+ * Also preserves edges between kept vertices from the source graph.
821
+ * @remarks Time O(V + E), Space O(V + E)
822
+ */
823
+ /**
824
+ * Create a same-species graph populated with entries; preserves edges among kept vertices.
825
+ * @param iter - Optional entries to seed the new graph.
826
+ * @param options - Snapshot options.
827
+ * @returns A new graph of `this` type.
828
+ * @remarks Time O(V + E), Space O(V + E)
829
+ */
830
+ _createLike(iter, options) {
831
+ const g = this._createInstance(options);
832
+ // 1) Add vertices
833
+ if (iter) {
834
+ for (const [k, v] of iter) {
835
+ g.addVertex(k, v);
836
+ }
837
+ }
838
+ else {
839
+ for (const [k, v] of this) {
840
+ g.addVertex(k, v);
841
+ }
842
+ }
843
+ // 2) Add edges whose endpoints exist in the new graph
844
+ const edges = this.edgeSet();
845
+ for (const e of edges) {
846
+ const ends = this.getEndsOfEdge(e);
847
+ if (!ends)
848
+ continue;
849
+ const [va, vb] = ends;
850
+ const ka = va.key;
851
+ const kb = vb.key;
852
+ const hasA = g.hasVertex ? g.hasVertex(ka) : false;
853
+ const hasB = g.hasVertex ? g.hasVertex(kb) : false;
854
+ if (hasA && hasB) {
855
+ const w = e.weight;
856
+ const val = e.value;
857
+ const newEdge = g.createEdge(ka, kb, w, val);
858
+ g._addEdge(newEdge);
859
+ }
860
+ }
861
+ return g;
862
+ }
863
+ /**
864
+ * Insert a pre-built vertex into the graph.
865
+ * @param newVertex - Concrete vertex instance.
866
+ * @returns `true` if inserted; `false` if key already exists.
867
+ * @remarks Time O(1) avg, Space O(1)
868
+ */
850
869
  _addVertex(newVertex) {
851
870
  if (this.hasVertex(newVertex)) {
852
871
  return false;
853
- // throw (new Error('Duplicated vertex key is not allowed'));
854
872
  }
855
873
  this._vertexMap.set(newVertex.key, newVertex);
856
874
  return true;
857
875
  }
876
+ /**
877
+ * Resolve a vertex key or instance to the concrete vertex instance.
878
+ * @param vertexOrKey - Vertex key or existing vertex.
879
+ * @returns Vertex instance or `undefined`.
880
+ * @remarks Time O(1), Space O(1)
881
+ */
858
882
  _getVertex(vertexOrKey) {
859
883
  const vertexKey = this._getVertexKey(vertexOrKey);
860
884
  return this._vertexMap.get(vertexKey) || undefined;
861
885
  }
886
+ /**
887
+ * Resolve a vertex key from a key or vertex instance.
888
+ * @param vertexOrKey - Vertex key or existing vertex.
889
+ * @returns The vertex key.
890
+ * @remarks Time O(1), Space O(1)
891
+ */
862
892
  _getVertexKey(vertexOrKey) {
863
893
  return vertexOrKey instanceof AbstractVertex ? vertexOrKey.key : vertexOrKey;
864
894
  }