porffor 0.14.0-c6edfd328 → 0.14.0-d6c141d91

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/CONTRIBUTING.md CHANGED
@@ -198,11 +198,13 @@ Store the character code into the `out` pointer variable, and increment it.
198
198
 
199
199
  ## Porffor-specific TS notes
200
200
 
201
- - For declaring variables, you must use explicit type annotations currently (eg `let a: number = 1`, not `let a = 1`)
201
+ - For declaring variables, you must use explicit type annotations currently (eg `let a: number = 1`, not `let a = 1`).
202
202
  - You might spot `Porffor.fastOr`/`Porffor.fastAnd`, these are non-short circuiting versions of `||`/`&&`, taking any number of conditions as arguments. You shouldn't don't need to use or worry about these.
203
- - **There are ~no objects, you cannot use them/literals.**
203
+ - **There are ~no objects, you cannot use them.**
204
204
  - Attempt to avoid string/array-heavy code and use more variables instead if possible, easier on memory and CPU/perf.
205
205
  - Do not set a return type for prototype methods, it can cause errors/unexpected results.
206
+ - You cannot use other functions in the file not exported, or variables not inside the current function.
207
+ - `if (...)` uses a fast truthy implementation which is not spec-compliant as most conditions should be strictly checked. To use spec-compliant behavior, use `if (Boolean(...))`.
206
208
 
207
209
  <br>
208
210
 
package/bf_bun ADDED
Binary file
package/bf_deno ADDED
Binary file
package/bf_porf ADDED
Binary file
package/bf_porf_fast ADDED
Binary file
package/bf_porf_lto ADDED
Binary file
package/compiler/2c.js CHANGED
@@ -119,6 +119,9 @@ const removeBrackets = str => {
119
119
  };
120
120
 
121
121
  export default ({ funcs, globals, tags, data, exceptions, pages }) => {
122
+ // fix declaring order for c
123
+ funcs.reverse();
124
+
122
125
  const invOperatorOpcode = Object.values(operatorOpcode).reduce((acc, x) => {
123
126
  for (const k in x) {
124
127
  acc[x[k]] = k;
@@ -156,6 +159,11 @@ export default ({ funcs, globals, tags, data, exceptions, pages }) => {
156
159
  prependMain.set('_data', data.map(x => `memcpy(_memory + ${x.offset}, (unsigned char[]){${x.bytes.join(',')}}, ${x.bytes.length});`).join('\n'));
157
160
  }
158
161
 
162
+ if (importFuncs.find(x => x.name === '__Porffor_readArgv')) {
163
+ prepend.set('argv', `int _argc; char** _argv;`);
164
+ prependMain.set('argv', `_argc = argc; _argv = argv;`);
165
+ }
166
+
159
167
  if (out) out += '\n';
160
168
 
161
169
  let depth = 1;
@@ -207,8 +215,9 @@ export default ({ funcs, globals, tags, data, exceptions, pages }) => {
207
215
 
208
216
  const returns = f.returns.length > 0;
209
217
 
210
- const shouldInline = f.internal;
211
- out += `${f.name === 'main' ? 'int' : (f.internal ? (returns ? CValtype.f64 : 'void') : 'struct ReturnValue')} ${shouldInline ? 'inline ' : ''}${sanitize(f.name)}(${f.params.map((x, i) => `${CValtype[x]} ${invLocals[i]}`).join(', ')}) {\n`;
218
+ const shouldInline = false; // f.internal;
219
+ if (f.name === 'main') out += `int main(${prependMain.has('argv') ? 'int argc, char* argv[]' : ''}) {\n`;
220
+ else out += `${f.internal ? (returns ? CValtype.f64 : 'void') : 'struct ReturnValue'} ${shouldInline ? 'inline ' : ''}${sanitize(f.name)}(${f.params.map((x, i) => `${CValtype[x]} ${invLocals[i]}`).join(', ')}) {\n`;
212
221
 
213
222
  if (f.name === 'main') {
214
223
  out += [...prependMain.values()].join('\n');
@@ -459,6 +468,60 @@ _time_out = _time.tv_nsec / 1000000. + _time.tv_sec * 1000.;`);
459
468
  winIncludes.set('windows.h', true);
460
469
  break;
461
470
 
471
+ case '__Porffor_readArgv':
472
+ includes.set('stdlib.h', true);
473
+
474
+ prepend.set('__Porffor_readArgv',
475
+ `void __Porffor_readArgv(u32 index, u32 outPtr) {
476
+ if (index >= _argc) {
477
+ printf("expected %d arguments\\n", index);
478
+ exit(1);
479
+ }
480
+
481
+ char* arg = _argv[index];
482
+
483
+ u32 read = 0;
484
+ char* out = _memory + outPtr + 4;
485
+ char ch;
486
+ while ((ch = *(arg++)) != 0) {
487
+ out[read++] = ch;
488
+ }
489
+
490
+ memcpy(_memory + outPtr, &read, sizeof(read));
491
+ }`);
492
+
493
+ line(`__Porffor_readArgv((u32)(${vals.at(-2)}), (u32)(${vals.pop()}))`);
494
+ vals.pop();
495
+ break;
496
+
497
+ case '__Porffor_readFile':
498
+ includes.set('stdio.h', true);
499
+ includes.set('stdlib.h', true);
500
+
501
+ prepend.set('__Porffor_readFile',
502
+ `void __Porffor_readFile(u32 pathPtr, u32 outPtr) {
503
+ char* path = _memory + pathPtr + 4;
504
+ FILE* fp = fopen(path, "r");
505
+ if (fp == NULL) {
506
+ printf("failed to open file: %s\\n", path);
507
+ exit(1);
508
+ }
509
+
510
+ u32 read = 0;
511
+ char* out = _memory + outPtr + 4;
512
+ char ch;
513
+ while ((ch = fgetc(fp)) != EOF) {
514
+ out[read++] = ch;
515
+ }
516
+
517
+ fclose(fp);
518
+
519
+ memcpy(_memory + outPtr, &read, sizeof(read));
520
+ }`);
521
+ line(`__Porffor_readFile((u32)(${vals.at(-2)}), (u32)(${vals.pop()}))`);
522
+ vals.pop();
523
+ break;
524
+
462
525
  default:
463
526
  log.warning('2c', `unimplemented import: ${importFunc.name}`);
464
527
  break;
@@ -1,4 +1,5 @@
1
1
  // @porf --valtype=i32
2
+ import type {} from './porffor.d.ts';
2
3
 
3
4
  export const __String_prototype_trimLeft = (_this: string) => {
4
5
  return __String_prototype_trimStart(_this);
@@ -1,3 +1,5 @@
1
+ import type {} from './porffor.d.ts';
2
+
1
3
  export const __Array_isArray = (x: unknown): boolean =>
2
4
  // Porffor.wasm`local.get ${x+1}` == Porffor.TYPES.array;
3
5
  Porffor.rawType(x) == Porffor.TYPES.array;
@@ -146,10 +148,78 @@ export const __Array_prototype_valueOf = (_this: any[]) => {
146
148
  return _this;
147
149
  };
148
150
 
149
- export const __Array_prototype_forEach = (_this: any[], callbackFn: Function) => {
151
+
152
+ export const __Array_prototype_forEach = (_this: any[], callbackFn: any) => {
150
153
  const len: i32 = _this.length;
151
154
  let i: i32 = 0;
152
155
  while (i < len) {
153
156
  callbackFn(_this[i], i++, _this);
154
157
  }
158
+ };
159
+
160
+ export const __Array_prototype_filter = (_this: any[], callbackFn: any) => {
161
+ const out: any[] = [];
162
+
163
+ const len: i32 = _this.length;
164
+ let i: i32 = 0;
165
+ while (i < len) {
166
+ const el: any = _this[i];
167
+ if (Boolean(callbackFn(el, i++, _this))) out.push(el);
168
+ }
169
+
170
+ return out;
171
+ };
172
+
173
+ export const __Array_prototype_map = (_this: any[], callbackFn: any) => {
174
+ const out: any[] = [];
175
+
176
+ const len: i32 = _this.length;
177
+ let i: i32 = 0;
178
+ while (i < len) {
179
+ out.push(callbackFn(_this[i], i++, _this));
180
+ }
181
+
182
+ return out;
183
+ };
184
+
185
+ export const __Array_prototype_find = (_this: any[], callbackFn: any) => {
186
+ const len: i32 = _this.length;
187
+ let i: i32 = 0;
188
+ while (i < len) {
189
+ const el: any = _this[i];
190
+ if (Boolean(callbackFn(el, i++, _this))) return el;
191
+ }
192
+ };
193
+
194
+ export const __Array_prototype_findLast = (_this: any[], callbackFn: any) => {
195
+ let i: i32 = _this.length;
196
+ while (i > 0) {
197
+ const el: any = _this[--i];
198
+ if (Boolean(callbackFn(el, i, _this))) return el;
199
+ }
200
+ };
201
+
202
+ export const __Array_prototype_findIndex = (_this: any[], callbackFn: any) => {
203
+ const len: i32 = _this.length;
204
+ let i: i32 = 0;
205
+ while (i < len) {
206
+ if (Boolean(callbackFn(_this[i], i++, _this))) return i;
207
+ }
208
+ };
209
+
210
+ export const __Array_prototype_findLastIndex = (_this: any[], callbackFn: any) => {
211
+ let i: i32 = _this.length;
212
+ while (i > 0) {
213
+ if (Boolean(callbackFn(_this[--i], i, _this))) return i;
214
+ }
215
+ };
216
+
217
+ export const __Array_prototype_every = (_this: any[], callbackFn: any) => {
218
+ const len: i32 = _this.length;
219
+ let i: i32 = 0;
220
+ while (i < len) {
221
+ if (!Boolean(callbackFn(_this[i], i++, _this))) return false;
222
+ }
223
+
224
+ return true;
155
225
  };
@@ -1,4 +1,5 @@
1
1
  // @porf --valtype=i32
2
+ import type {} from './porffor.d.ts';
2
3
 
3
4
  export const btoa = (input: bytestring): bytestring => {
4
5
  const keyStr: bytestring = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=';
@@ -1,3 +1,5 @@
1
+ import type {} from './porffor.d.ts';
2
+
1
3
  // 20.3.3.2 Boolean.prototype.toString ()
2
4
  // https://tc39.es/ecma262/#sec-boolean.prototype.tostring
3
5
  export const __Boolean_prototype_toString = (_this: boolean) => {
@@ -1,4 +1,5 @@
1
1
  // @porf --valtype=i32
2
+ import type {} from './porffor.d.ts';
2
3
 
3
4
  export const __crypto_randomUUID = (): bytestring => {
4
5
  let bytes: bytestring = '................';
@@ -1,3 +1,5 @@
1
+ import type {} from './porffor.d.ts';
2
+
1
3
  // 21.4.1.3 Day (t)
2
4
  // https://tc39.es/ecma262/multipage/numbers-and-dates.html#sec-day
3
5
  // 1. Return 𝔽(floor(ℝ(t / msPerDay))).
@@ -1,6 +1,5 @@
1
1
  // @porf --valtype=i32
2
-
3
- import type {} from './porffor';
2
+ import type {} from './porffor.d.ts';
4
3
 
5
4
  export const escape = (input: string|bytestring): bytestring => {
6
5
  // we have no byte array yet so use bytestring with 0x00 and 0x01 via escape characters
@@ -1,3 +1,5 @@
1
+ import type {} from './porffor.d.ts';
2
+
1
3
  export const __Function_prototype_toString = (_this: Function) => {
2
4
  // todo: actually use source
3
5
  let out: bytestring = 'function () {}';
@@ -1,3 +1,5 @@
1
+ import type {} from './porffor.d.ts';
2
+
1
3
  // radix: number|any for rawType check
2
4
  // export const parseInt = (input: string|bytestring, radix: number|any): f64 => {
3
5
  export const parseInt = (input: string|bytestring, radix: number): f64 => {
@@ -0,0 +1,410 @@
1
+ import type {} from './porffor.d.ts';
2
+
3
+ // todo: use any and Number(x) in all these later
4
+ // todo: specify the rest of this file later
5
+ // todo/perf: make i32 variants later
6
+ // todo/perf: add a compiler pref for accuracy vs perf (epsilion?)
7
+
8
+ export const __Math_exp = (x: number): number => {
9
+ if (!Number.isFinite(x)) {
10
+ if (x == -Infinity) return 0;
11
+ return x;
12
+ }
13
+
14
+ if (x < 0) {
15
+ // exp(-x) = 1 / exp(+x)
16
+ return 1 / Math.exp(-x);
17
+ }
18
+
19
+ const k: number = Math.floor(x / Math.LN2);
20
+ const r: number = x - k * Math.LN2;
21
+
22
+ // Taylor series via Horner's method
23
+ let term: number = r;
24
+ let sum: number = 1 + r;
25
+ let i: number = 2;
26
+
27
+ while (Math.abs(term) > 1e-15) {
28
+ term *= r / i;
29
+ sum += term;
30
+ i++;
31
+ }
32
+
33
+ return sum * (1 << k);
34
+ };
35
+
36
+ export const __Math_log2 = (y: number): number => {
37
+ if (y <= 0) return NaN;
38
+ if (!Number.isFinite(y)) return y;
39
+
40
+ // approx using log knowledge
41
+ let x: number = y;
42
+ let exponent: number = 0;
43
+
44
+ while (x >= 2) {
45
+ x /= 2;
46
+ exponent++;
47
+ }
48
+
49
+ while (x < 1) {
50
+ x *= 2;
51
+ exponent--;
52
+ }
53
+
54
+ // 1 <= x < 2 -> 0 <= x < 1
55
+ x -= 1;
56
+
57
+ // refine with Newton-Raphson method
58
+ let delta: number;
59
+ do {
60
+ const e_x: number = Math.exp(x * Math.LN2);
61
+ delta = (e_x - y) / (e_x * Math.LN2);
62
+ x -= delta;
63
+ } while (Math.abs(delta) > 1e-15);
64
+
65
+ return x + exponent;
66
+ };
67
+
68
+ export const __Math_log = (y: number): number => {
69
+ if (y <= 0) {
70
+ if (y == 0) return -Infinity;
71
+ return NaN;
72
+ }
73
+ if (!Number.isFinite(y)) return y;
74
+
75
+ // guess using log knowledge
76
+ let x: number = y > 1 ? Math.log2(y) : 0;
77
+
78
+ // refine with Newton-Raphson method
79
+ let delta: number;
80
+ do {
81
+ const e_x: number = Math.exp(x);
82
+ delta = (e_x - y) / e_x;
83
+ x -= delta;
84
+ } while (Math.abs(delta) > 1e-15);
85
+
86
+ return x;
87
+ };
88
+
89
+ export const __Math_log10 = (x: number): number => {
90
+ if (x <= 0) {
91
+ if (x == 0) return -Infinity;
92
+ return NaN;
93
+ }
94
+ if (!Number.isFinite(x)) return x;
95
+
96
+ return Math.log(x) / Math.LN10;
97
+ };
98
+
99
+ // 21.3.2.26 Math.pow (base, exponent)
100
+ // https://tc39.es/ecma262/#sec-math.pow
101
+ export const __Math_pow = (base: number, exponent: number): number => {
102
+ // 1. Set base to ? ToNumber(base).
103
+ // 2. Set exponent to ? ToNumber(exponent).
104
+ // todo
105
+
106
+ // 3. Return Number::exponentiate(base, exponent).
107
+
108
+ // Number::exponentiate (base, exponent)
109
+ // https://tc39.es/ecma262/#sec-numeric-types-number-exponentiate
110
+ // 1. If exponent is NaN, return NaN.
111
+ if (Number.isNaN(exponent)) return NaN;
112
+
113
+ // 2. If exponent is either +0𝔽 or -0𝔽, return 1𝔽.
114
+ if (exponent == 0) return 1;
115
+
116
+ if (!Number.isFinite(base)) {
117
+ // 3. If base is NaN, return NaN.
118
+ if (Number.isNaN(base)) return base;
119
+
120
+ // 4. If base is +∞𝔽, then
121
+ if (base == Infinity) {
122
+ // a. If exponent > +0𝔽, return +∞𝔽. Otherwise, return +0𝔽.
123
+ if (exponent > 0) return base;
124
+ return 0;
125
+ }
126
+
127
+ // 5. If base is -∞𝔽, then
128
+ const isOdd = exponent % 2 == 1;
129
+
130
+ // a. If exponent > +0𝔽, then
131
+ if (exponent > 0) {
132
+ // i. If exponent is an odd integral Number, return -∞𝔽. Otherwise, return +∞𝔽.
133
+ if (isOdd) return -Infinity;
134
+ return Infinity;
135
+ }
136
+
137
+ // b. Else,
138
+ // i. If exponent is an odd integral Number, return -0𝔽. Otherwise, return +0𝔽.
139
+ if (isOdd) return -0;
140
+ return 0;
141
+ }
142
+
143
+ if (base == 0) {
144
+ // 6. If base is +0𝔽, then
145
+ if (1 / base == Infinity) {
146
+ // a. If exponent > +0𝔽, return +0𝔽. Otherwise, return +∞𝔽.
147
+ if (exponent > 0) return 0;
148
+ return Infinity;
149
+ }
150
+
151
+ // 7. If base is -0𝔽, then
152
+ const isOdd = exponent % 2 == 1;
153
+
154
+ // a. If exponent > +0𝔽, then
155
+ if (exponent > 0) {
156
+ // i. If exponent is an odd integral Number, return -0𝔽. Otherwise, return +0𝔽.
157
+ if (isOdd) return -0;
158
+ return 0;
159
+ }
160
+
161
+ // b. Else,
162
+ // i. If exponent is an odd integral Number, return -∞𝔽. Otherwise, return +∞𝔽.
163
+ if (isOdd) return -Infinity;
164
+ return Infinity;
165
+ }
166
+
167
+ // 8. Assert: base is finite and is neither +0𝔽 nor -0𝔽.
168
+ // todo
169
+
170
+ // 9. If exponent is +∞𝔽, then
171
+ if (exponent == Infinity) {
172
+ const abs = Math.abs(base);
173
+
174
+ // a. If abs(ℝ(base)) > 1, return +∞𝔽.
175
+ if (abs > 1) return Infinity;
176
+
177
+ // b. If abs(ℝ(base)) = 1, return NaN.
178
+ if (abs == 1) return NaN;
179
+
180
+ // c. If abs(ℝ(base)) < 1, return +0𝔽.
181
+ return 0;
182
+ }
183
+
184
+ // 10. If exponent is -∞𝔽, then
185
+ if (exponent == -Infinity) {
186
+ const abs = Math.abs(base);
187
+
188
+ // a. If abs(ℝ(base)) > 1, return +0𝔽.
189
+ if (abs > 1) return 0;
190
+
191
+ // b. If abs(ℝ(base)) = 1, return NaN.
192
+ if (abs == 1) return NaN;
193
+
194
+ // c. If abs(ℝ(base)) < 1, return +∞𝔽.
195
+ return Infinity;
196
+ }
197
+
198
+ // 11. Assert: exponent is finite and is neither +0𝔽 nor -0𝔽.
199
+ // todo
200
+
201
+ // 12. If base < -0𝔽 and exponent is not an integral Number, return NaN.
202
+ if (base < 0) if (!Number.isInteger(exponent)) return NaN;
203
+
204
+ // 13. Return an implementation-approximated Number value representing the result of raising ℝ(base) to the ℝ(exponent) power.
205
+ return Math.exp(exponent * Math.log(base));
206
+ };
207
+
208
+
209
+ export const __Math_expm1 = (x: number): number => {
210
+ if (!Number.isFinite(x)) {
211
+ if (x == -Infinity) return -1;
212
+ return x;
213
+ }
214
+
215
+ // use exp(x) - 1 for large x (perf)
216
+ if (Math.abs(x) > 1e-5) return Math.exp(x) - 1;
217
+
218
+ // Taylor series
219
+ let sum: number = x;
220
+ let term: number = x;
221
+ let i: number = 2;
222
+
223
+ while (Math.abs(term) > 1e-15) {
224
+ term *= x / i;
225
+ sum += term;
226
+ i++;
227
+ }
228
+
229
+ return sum;
230
+ };
231
+
232
+ export const __Math_log1p = (x: number): number => {
233
+ if (x == -1) return -Infinity; // log(0) = -inf
234
+ if (!Number.isFinite(x)) return x;
235
+
236
+ // use exp(x) - 1 for large x (perf)
237
+ if (Math.abs(x) > 1e-5) return Math.log(1 + x);
238
+
239
+ // Taylor series
240
+ let sum: number = 0;
241
+ let term: number = x;
242
+ let i: number = 2;
243
+
244
+ while (Math.abs(term) > 1e-15) {
245
+ term *= -x / i;
246
+ sum += term;
247
+ i++;
248
+ }
249
+
250
+ return sum;
251
+ };
252
+
253
+
254
+ export const __Math_sqrt = (y: number): number => {
255
+ if (y <= 0) {
256
+ if (y == 0) return 0;
257
+ return NaN;
258
+ }
259
+ if (!Number.isFinite(y)) return y;
260
+
261
+ // Babylonian method
262
+ let x: number = y;
263
+ let prev: number;
264
+
265
+ do {
266
+ prev = x;
267
+ x = 0.5 * (x + y / x);
268
+ } while (Math.abs(prev - x) > 1e-15);
269
+
270
+ return x;
271
+ };
272
+
273
+ export const __Math_cbrt = (y: number): number => {
274
+ if (y == 0) return 0; // cbrt(0) = 0
275
+ if (!Number.isFinite(y)) return y;
276
+
277
+ // Babylonian method
278
+ let x = Math.abs(y);
279
+
280
+ let prev: number;
281
+
282
+ do {
283
+ prev = x;
284
+ x = (2 * x + y / (x * x)) / 3;
285
+ } while (Math.abs(prev - x) > 1e-15);
286
+
287
+ return y < 0 ? -x : x;
288
+ };
289
+
290
+
291
+ // todo: varargs
292
+ export const __Math_hypot = (x: number, y: number): number => Math.sqrt(x * x + y * y);
293
+
294
+ export const __Math_sin = (x: number): number => {
295
+ // -inf <= x <= inf -> 0 <= x <= 2pi
296
+ const piX2: number = Math.PI * 2;
297
+ x %= piX2;
298
+ if (x < 0) x += piX2;
299
+
300
+ const x2: number = x * x;
301
+
302
+ return x * (
303
+ 1 + x2 * (
304
+ -1.66666666666666307295e-1 + x2 * (
305
+ 8.33333333332211858878e-3 + x2 * (
306
+ -1.98412698295895385996e-4 + x2 * (
307
+ 2.75573136213857245213e-6 + x2 * (
308
+ -2.50507477628578072866e-8 + x2 * (
309
+ 1.58962301576546568060e-10
310
+ )
311
+ )
312
+ )
313
+ )
314
+ )
315
+ )
316
+ );
317
+
318
+ // todo: investigate which is better (consider perf and accuracy)
319
+ // const x2 = x * x;
320
+ // const x4 = x2 * x2;
321
+ // const x6 = x4 * x2;
322
+ // const x8 = x4 * x4;
323
+ // const x10 = x6 * x4;
324
+ // const x12 = x6 * x6;
325
+ // const x14 = x12 * x2;
326
+
327
+ // return x * (
328
+ // 1 - x2 / 6 + x4 / 120 - x6 / 5040 + x8 / 362880 - x10 / 39916800 + x12 / 6227020800 - x14 / 1307674368000
329
+ // );
330
+ };
331
+
332
+ export const __Math_cos = (x: number): number => Math.sin(x - Math.PI / 2);
333
+ export const __Math_tan = (x: number): number => Math.sin(x) / Math.cos(x);
334
+
335
+ export const __Math_sinh = (x: number): number => (Math.exp(x) - Math.exp(-x)) / 2;
336
+ export const __Math_cosh = (x: number): number => (Math.exp(x) + Math.exp(-x)) / 2;
337
+ export const __Math_tanh = (x: number): number => Math.sinh(x) / Math.cosh(x);
338
+
339
+
340
+ export const __Math_asinh = (x: number): number => Math.log(x + Math.sqrt(x * x + 1));
341
+ export const __Math_acosh = (x: number): number => {
342
+ if (x < 1) return NaN;
343
+ return Math.log(x + Math.sqrt(x * x - 1));
344
+ };
345
+ export const __Math_atanh = (x: number): number => {
346
+ if (Math.abs(x) >= 1) return NaN;
347
+ return 0.5 * Math.log((1 + x) / (1 - x));
348
+ };
349
+
350
+
351
+ export const __Math_asin = (x: number): number => {
352
+ if (x <= -1) {
353
+ if (x == -1) return -Math.PI / 2;
354
+ return NaN;
355
+ }
356
+ if (x >= 1) {
357
+ if (x == 1) return Math.PI / 2;
358
+ return NaN;
359
+ }
360
+
361
+ // Taylor series
362
+ let sum: number = x;
363
+ let term: number = x;
364
+ let n: number = 1;
365
+
366
+ while (Math.abs(term) > 1e-15) {
367
+ term *= x * x * (2 * n - 1) * (2 * n - 1) / ((2 * n) * (2 * n + 1));
368
+ sum += term / (2 * n + 1);
369
+ n++;
370
+ }
371
+
372
+ return sum;
373
+ };
374
+
375
+ export const __Math_acos = (x: number): number => Math.asin(x) - Math.PI / 2;
376
+
377
+ export const __Math_atan = (x: number): number => {
378
+ if (x == Infinity) return Math.PI / 2
379
+ if (x == -Infinity) return -Math.PI / 2;
380
+
381
+ // Taylor series
382
+ let sum: number = x;
383
+ let term: number = x;
384
+ let n: number = 1;
385
+
386
+ while (Math.abs(term) > 1e-15) {
387
+ term *= -x * x * (2 * n - 1) / ((2 * n) * (2 * n + 1));
388
+ sum += term;
389
+ n++;
390
+ }
391
+
392
+ return sum;
393
+ };
394
+
395
+ export const __Math_atan2 = (y: number, x: number): number => {
396
+ if (x == 0) {
397
+ if (y > 0) return Math.PI / 2;
398
+ if (y < 0) return -Math.PI / 2;
399
+
400
+ return NaN;
401
+ }
402
+
403
+ const ratio = y / x;
404
+ if (x > 0) {
405
+ return Math.atan(ratio);
406
+ }
407
+
408
+ if (y >= 0) return Math.atan(ratio) + Math.PI;
409
+ return Math.atan(ratio) - Math.PI;
410
+ };
@@ -1,3 +1,5 @@
1
+ import type {} from './porffor.d.ts';
2
+
1
3
  // radix: number|any for rawType check
2
4
  export const __Number_prototype_toString = (_this: number, radix: number|any) => {
3
5
  let out: bytestring = '';
@@ -1,3 +1,5 @@
1
+ import type {} from './porffor.d.ts';
2
+
1
3
  export const __Object_prototype_toString = (_this: object) => {
2
4
  let out: bytestring = '[object Object]';
3
5
  return out;
@@ -1,3 +1,5 @@
1
+ import type {} from './porffor.d.ts';
2
+
1
3
  // dark wasm magic for dealing with memory, sorry.
2
4
  export const __Porffor_allocate = (): number => {
3
5
  Porffor.wasm`i32.const 1