porffor 0.14.0-b481bfc5f → 0.14.0-bb0b06c17
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/compiler/assemble.js +14 -0
- package/compiler/builtins/array.ts +76 -0
- package/compiler/builtins/math.ts +408 -0
- package/compiler/builtins.js +3 -4
- package/compiler/codegen.js +187 -104
- package/compiler/generated_builtins.js +314 -27
- package/compiler/precompile.js +4 -3
- package/package.json +1 -1
package/compiler/assemble.js
CHANGED
@@ -116,6 +116,20 @@ export default (funcs, globals, tags, pages, data, flags) => {
|
|
116
116
|
] ])
|
117
117
|
);
|
118
118
|
|
119
|
+
if (pages.has('func argc lut')) {
|
120
|
+
// generate func argc lut data
|
121
|
+
const bytes = [];
|
122
|
+
for (let i = 0; i < funcs.length; i++) {
|
123
|
+
const argc = Math.floor(funcs[i].params.length / 2);
|
124
|
+
bytes.push(argc % 256, (argc / 256 | 0) % 256);
|
125
|
+
}
|
126
|
+
|
127
|
+
data.push({
|
128
|
+
offset: pages.get('func argc lut').ind * pageSize,
|
129
|
+
bytes
|
130
|
+
});
|
131
|
+
}
|
132
|
+
|
119
133
|
// const t0 = performance.now();
|
120
134
|
|
121
135
|
// specially optimized assembly for globals as this version is much (>5x) faster than traditional createSection()
|
@@ -144,4 +144,80 @@ export const __Array_prototype_toReversed = (_this: any[]) => {
|
|
144
144
|
|
145
145
|
export const __Array_prototype_valueOf = (_this: any[]) => {
|
146
146
|
return _this;
|
147
|
+
};
|
148
|
+
|
149
|
+
|
150
|
+
export const __Array_prototype_forEach = (_this: any[], callbackFn: any) => {
|
151
|
+
const len: i32 = _this.length;
|
152
|
+
let i: i32 = 0;
|
153
|
+
while (i < len) {
|
154
|
+
callbackFn(_this[i], i++, _this);
|
155
|
+
}
|
156
|
+
};
|
157
|
+
|
158
|
+
export const __Array_prototype_filter = (_this: any[], callbackFn: any) => {
|
159
|
+
const out: any[] = [];
|
160
|
+
|
161
|
+
const len: i32 = _this.length;
|
162
|
+
let i: i32 = 0;
|
163
|
+
while (i < len) {
|
164
|
+
const el: any = _this[i];
|
165
|
+
if (callbackFn(el, i++, _this)) out.push(el);
|
166
|
+
}
|
167
|
+
|
168
|
+
return out;
|
169
|
+
};
|
170
|
+
|
171
|
+
export const __Array_prototype_map = (_this: any[], callbackFn: any) => {
|
172
|
+
const out: any[] = [];
|
173
|
+
|
174
|
+
const len: i32 = _this.length;
|
175
|
+
let i: i32 = 0;
|
176
|
+
while (i < len) {
|
177
|
+
out.push(callbackFn(_this[i], i++, _this));
|
178
|
+
}
|
179
|
+
|
180
|
+
return out;
|
181
|
+
};
|
182
|
+
|
183
|
+
export const __Array_prototype_find = (_this: any[], callbackFn: any) => {
|
184
|
+
const len: i32 = _this.length;
|
185
|
+
let i: i32 = 0;
|
186
|
+
while (i < len) {
|
187
|
+
const el: any = _this[i];
|
188
|
+
if (callbackFn(el, i++, _this)) return el;
|
189
|
+
}
|
190
|
+
};
|
191
|
+
|
192
|
+
export const __Array_prototype_findLast = (_this: any[], callbackFn: any) => {
|
193
|
+
let i: i32 = _this.length;
|
194
|
+
while (i > 0) {
|
195
|
+
const el: any = _this[--i];
|
196
|
+
if (callbackFn(el, i, _this)) return el;
|
197
|
+
}
|
198
|
+
};
|
199
|
+
|
200
|
+
export const __Array_prototype_findIndex = (_this: any[], callbackFn: any) => {
|
201
|
+
const len: i32 = _this.length;
|
202
|
+
let i: i32 = 0;
|
203
|
+
while (i < len) {
|
204
|
+
if (callbackFn(_this[i], i++, _this)) return i;
|
205
|
+
}
|
206
|
+
};
|
207
|
+
|
208
|
+
export const __Array_prototype_findLastIndex = (_this: any[], callbackFn: any) => {
|
209
|
+
let i: i32 = _this.length;
|
210
|
+
while (i > 0) {
|
211
|
+
if (callbackFn(_this[--i], i, _this)) return i;
|
212
|
+
}
|
213
|
+
};
|
214
|
+
|
215
|
+
export const __Array_prototype_every = (_this: any[], callbackFn: any) => {
|
216
|
+
const len: i32 = _this.length;
|
217
|
+
let i: i32 = 0;
|
218
|
+
while (i < len) {
|
219
|
+
if (!callbackFn(_this[i], i++, _this)) return false;
|
220
|
+
}
|
221
|
+
|
222
|
+
return true;
|
147
223
|
};
|
@@ -0,0 +1,408 @@
|
|
1
|
+
// todo: use any and Number(x) in all these later
|
2
|
+
// todo: specify the rest of this file later
|
3
|
+
// todo/perf: make i32 variants later
|
4
|
+
// todo/perf: add a compiler pref for accuracy vs perf (epsilion?)
|
5
|
+
|
6
|
+
export const __Math_exp = (x: number): number => {
|
7
|
+
if (!Number.isFinite(x)) {
|
8
|
+
if (x == -Infinity) return 0;
|
9
|
+
return x;
|
10
|
+
}
|
11
|
+
|
12
|
+
if (x < 0) {
|
13
|
+
// exp(-x) = 1 / exp(+x)
|
14
|
+
return 1 / Math.exp(-x);
|
15
|
+
}
|
16
|
+
|
17
|
+
const k: number = Math.floor(x / Math.LN2);
|
18
|
+
const r: number = x - k * Math.LN2;
|
19
|
+
|
20
|
+
// Horner's method
|
21
|
+
let term: number = r;
|
22
|
+
let sum: number = 1 + r;
|
23
|
+
let i: number = 2;
|
24
|
+
|
25
|
+
while (Math.abs(term) > 1e-15) {
|
26
|
+
term *= r / i;
|
27
|
+
sum += term;
|
28
|
+
i++;
|
29
|
+
}
|
30
|
+
|
31
|
+
return sum * (1 << k);
|
32
|
+
};
|
33
|
+
|
34
|
+
export const __Math_log2 = (y: number): number => {
|
35
|
+
if (y <= 0) return NaN;
|
36
|
+
if (!Number.isFinite(y)) return y;
|
37
|
+
|
38
|
+
// approx using log knowledge
|
39
|
+
let x: number = y;
|
40
|
+
let exponent: number = 0;
|
41
|
+
|
42
|
+
while (x >= 2) {
|
43
|
+
x /= 2;
|
44
|
+
exponent++;
|
45
|
+
}
|
46
|
+
|
47
|
+
while (x < 1) {
|
48
|
+
x *= 2;
|
49
|
+
exponent--;
|
50
|
+
}
|
51
|
+
|
52
|
+
// 1 <= x < 2 -> 0 <= x < 1
|
53
|
+
x -= 1;
|
54
|
+
|
55
|
+
// refine with Newton-Raphson method
|
56
|
+
let delta: number;
|
57
|
+
do {
|
58
|
+
const e_x: number = Math.exp(x * Math.LN2);
|
59
|
+
delta = (e_x - y) / (e_x * Math.LN2);
|
60
|
+
x -= delta;
|
61
|
+
} while (Math.abs(delta) > 1e-15);
|
62
|
+
|
63
|
+
return x + exponent;
|
64
|
+
};
|
65
|
+
|
66
|
+
export const __Math_log = (y: number): number => {
|
67
|
+
if (y <= 0) {
|
68
|
+
if (y == 0) return -Infinity;
|
69
|
+
return NaN;
|
70
|
+
}
|
71
|
+
if (!Number.isFinite(y)) return y;
|
72
|
+
|
73
|
+
// guess using log knowledge
|
74
|
+
let x: number = y > 1 ? Math.log2(y) : 0;
|
75
|
+
|
76
|
+
// refine with Newton-Raphson method
|
77
|
+
let delta: number;
|
78
|
+
do {
|
79
|
+
const e_x: number = Math.exp(x);
|
80
|
+
delta = (e_x - y) / e_x;
|
81
|
+
x -= delta;
|
82
|
+
} while (Math.abs(delta) > 1e-15);
|
83
|
+
|
84
|
+
return x;
|
85
|
+
};
|
86
|
+
|
87
|
+
export const __Math_log10 = (x: number): number => {
|
88
|
+
if (x <= 0) {
|
89
|
+
if (x == 0) return -Infinity;
|
90
|
+
return NaN;
|
91
|
+
}
|
92
|
+
if (!Number.isFinite(x)) return x;
|
93
|
+
|
94
|
+
return Math.log(x) / Math.LN10;
|
95
|
+
};
|
96
|
+
|
97
|
+
// 21.3.2.26 Math.pow (base, exponent)
|
98
|
+
// https://tc39.es/ecma262/#sec-math.pow
|
99
|
+
export const __Math_pow = (base: number, exponent: number): number => {
|
100
|
+
// 1. Set base to ? ToNumber(base).
|
101
|
+
// 2. Set exponent to ? ToNumber(exponent).
|
102
|
+
// todo
|
103
|
+
|
104
|
+
// 3. Return Number::exponentiate(base, exponent).
|
105
|
+
|
106
|
+
// Number::exponentiate (base, exponent)
|
107
|
+
// https://tc39.es/ecma262/#sec-numeric-types-number-exponentiate
|
108
|
+
// 1. If exponent is NaN, return NaN.
|
109
|
+
if (Number.isNaN(exponent)) return NaN;
|
110
|
+
|
111
|
+
// 2. If exponent is either +0𝔽 or -0𝔽, return 1𝔽.
|
112
|
+
if (exponent == 0) return 1;
|
113
|
+
|
114
|
+
if (!Number.isFinite(base)) {
|
115
|
+
// 3. If base is NaN, return NaN.
|
116
|
+
if (Number.isNaN(base)) return base;
|
117
|
+
|
118
|
+
// 4. If base is +∞𝔽, then
|
119
|
+
if (base == Infinity) {
|
120
|
+
// a. If exponent > +0𝔽, return +∞𝔽. Otherwise, return +0𝔽.
|
121
|
+
if (exponent > 0) return base;
|
122
|
+
return 0;
|
123
|
+
}
|
124
|
+
|
125
|
+
// 5. If base is -∞𝔽, then
|
126
|
+
const isOdd = exponent % 2 == 1;
|
127
|
+
|
128
|
+
// a. If exponent > +0𝔽, then
|
129
|
+
if (exponent > 0) {
|
130
|
+
// i. If exponent is an odd integral Number, return -∞𝔽. Otherwise, return +∞𝔽.
|
131
|
+
if (isOdd) return -Infinity;
|
132
|
+
return Infinity;
|
133
|
+
}
|
134
|
+
|
135
|
+
// b. Else,
|
136
|
+
// i. If exponent is an odd integral Number, return -0𝔽. Otherwise, return +0𝔽.
|
137
|
+
if (isOdd) return -0;
|
138
|
+
return 0;
|
139
|
+
}
|
140
|
+
|
141
|
+
if (base == 0) {
|
142
|
+
// 6. If base is +0𝔽, then
|
143
|
+
if (1 / base == Infinity) {
|
144
|
+
// a. If exponent > +0𝔽, return +0𝔽. Otherwise, return +∞𝔽.
|
145
|
+
if (exponent > 0) return 0;
|
146
|
+
return Infinity;
|
147
|
+
}
|
148
|
+
|
149
|
+
// 7. If base is -0𝔽, then
|
150
|
+
const isOdd = exponent % 2 == 1;
|
151
|
+
|
152
|
+
// a. If exponent > +0𝔽, then
|
153
|
+
if (exponent > 0) {
|
154
|
+
// i. If exponent is an odd integral Number, return -0𝔽. Otherwise, return +0𝔽.
|
155
|
+
if (isOdd) return -0;
|
156
|
+
return 0;
|
157
|
+
}
|
158
|
+
|
159
|
+
// b. Else,
|
160
|
+
// i. If exponent is an odd integral Number, return -∞𝔽. Otherwise, return +∞𝔽.
|
161
|
+
if (isOdd) return -Infinity;
|
162
|
+
return Infinity;
|
163
|
+
}
|
164
|
+
|
165
|
+
// 8. Assert: base is finite and is neither +0𝔽 nor -0𝔽.
|
166
|
+
// todo
|
167
|
+
|
168
|
+
// 9. If exponent is +∞𝔽, then
|
169
|
+
if (exponent == Infinity) {
|
170
|
+
const abs = Math.abs(base);
|
171
|
+
|
172
|
+
// a. If abs(ℝ(base)) > 1, return +∞𝔽.
|
173
|
+
if (abs > 1) return Infinity;
|
174
|
+
|
175
|
+
// b. If abs(ℝ(base)) = 1, return NaN.
|
176
|
+
if (abs == 1) return NaN;
|
177
|
+
|
178
|
+
// c. If abs(ℝ(base)) < 1, return +0𝔽.
|
179
|
+
return 0;
|
180
|
+
}
|
181
|
+
|
182
|
+
// 10. If exponent is -∞𝔽, then
|
183
|
+
if (exponent == -Infinity) {
|
184
|
+
const abs = Math.abs(base);
|
185
|
+
|
186
|
+
// a. If abs(ℝ(base)) > 1, return +0𝔽.
|
187
|
+
if (abs > 1) return 0;
|
188
|
+
|
189
|
+
// b. If abs(ℝ(base)) = 1, return NaN.
|
190
|
+
if (abs == 1) return NaN;
|
191
|
+
|
192
|
+
// c. If abs(ℝ(base)) < 1, return +∞𝔽.
|
193
|
+
return Infinity;
|
194
|
+
}
|
195
|
+
|
196
|
+
// 11. Assert: exponent is finite and is neither +0𝔽 nor -0𝔽.
|
197
|
+
// todo
|
198
|
+
|
199
|
+
// 12. If base < -0𝔽 and exponent is not an integral Number, return NaN.
|
200
|
+
if (base < 0) if (!Number.isInteger(exponent)) return NaN;
|
201
|
+
|
202
|
+
// 13. Return an implementation-approximated Number value representing the result of raising ℝ(base) to the ℝ(exponent) power.
|
203
|
+
return Math.exp(exponent * Math.log(base));
|
204
|
+
};
|
205
|
+
|
206
|
+
|
207
|
+
export const __Math_expm1 = (x: number): number => {
|
208
|
+
if (!Number.isFinite(x)) {
|
209
|
+
if (x == -Infinity) return -1;
|
210
|
+
return x;
|
211
|
+
}
|
212
|
+
|
213
|
+
// use exp(x) - 1 for large x (perf)
|
214
|
+
if (Math.abs(x) > 1e-5) return Math.exp(x) - 1;
|
215
|
+
|
216
|
+
// Taylor series
|
217
|
+
let sum: number = x;
|
218
|
+
let term: number = x;
|
219
|
+
let i: number = 2;
|
220
|
+
|
221
|
+
while (Math.abs(term) > 1e-15) {
|
222
|
+
term *= x / i;
|
223
|
+
sum += term;
|
224
|
+
i++;
|
225
|
+
}
|
226
|
+
|
227
|
+
return sum;
|
228
|
+
};
|
229
|
+
|
230
|
+
export const __Math_log1p = (x: number): number => {
|
231
|
+
if (x == -1) return -Infinity; // log(0) = -inf
|
232
|
+
if (!Number.isFinite(x)) return x;
|
233
|
+
|
234
|
+
// use exp(x) - 1 for large x (perf)
|
235
|
+
if (Math.abs(x) > 1e-5) return Math.log(1 + x);
|
236
|
+
|
237
|
+
// Taylor series
|
238
|
+
let sum: number = 0;
|
239
|
+
let term: number = x;
|
240
|
+
let i: number = 2;
|
241
|
+
|
242
|
+
while (Math.abs(term) > 1e-15) {
|
243
|
+
term *= -x / i;
|
244
|
+
sum += term;
|
245
|
+
i++;
|
246
|
+
}
|
247
|
+
|
248
|
+
return sum;
|
249
|
+
};
|
250
|
+
|
251
|
+
|
252
|
+
export const __Math_sqrt = (y: number): number => {
|
253
|
+
if (y <= 0) {
|
254
|
+
if (y == 0) return 0;
|
255
|
+
return NaN;
|
256
|
+
}
|
257
|
+
if (!Number.isFinite(y)) return y;
|
258
|
+
|
259
|
+
// Babylonian method
|
260
|
+
let x: number = y;
|
261
|
+
let prev: number;
|
262
|
+
|
263
|
+
do {
|
264
|
+
prev = x;
|
265
|
+
x = 0.5 * (x + y / x);
|
266
|
+
} while (Math.abs(prev - x) > 1e-15);
|
267
|
+
|
268
|
+
return x;
|
269
|
+
};
|
270
|
+
|
271
|
+
export const __Math_cbrt = (y: number): number => {
|
272
|
+
if (y == 0) return 0; // cbrt(0) = 0
|
273
|
+
if (!Number.isFinite(y)) return y;
|
274
|
+
|
275
|
+
// Babylonian method
|
276
|
+
let x = Math.abs(y);
|
277
|
+
|
278
|
+
let prev: number;
|
279
|
+
|
280
|
+
do {
|
281
|
+
prev = x;
|
282
|
+
x = (2 * x + y / (x * x)) / 3;
|
283
|
+
} while (Math.abs(prev - x) > 1e-15);
|
284
|
+
|
285
|
+
return y < 0 ? -x : x;
|
286
|
+
};
|
287
|
+
|
288
|
+
|
289
|
+
// todo: varargs
|
290
|
+
export const __Math_hypot = (x: number, y: number): number => Math.sqrt(x * x + y * y);
|
291
|
+
|
292
|
+
export const __Math_sin = (x: number): number => {
|
293
|
+
// -inf <= x <= inf -> 0 <= x <= 2pi
|
294
|
+
const piX2: number = Math.PI * 2;
|
295
|
+
x %= piX2;
|
296
|
+
if (x < 0) x += piX2;
|
297
|
+
|
298
|
+
const x2: number = x * x;
|
299
|
+
|
300
|
+
return x * (
|
301
|
+
1 + x2 * (
|
302
|
+
-1.66666666666666307295e-1 + x2 * (
|
303
|
+
8.33333333332211858878e-3 + x2 * (
|
304
|
+
-1.98412698295895385996e-4 + x2 * (
|
305
|
+
2.75573136213857245213e-6 + x2 * (
|
306
|
+
-2.50507477628578072866e-8 + x2 * (
|
307
|
+
1.58962301576546568060e-10
|
308
|
+
)
|
309
|
+
)
|
310
|
+
)
|
311
|
+
)
|
312
|
+
)
|
313
|
+
)
|
314
|
+
);
|
315
|
+
|
316
|
+
// todo: investigate which is better (consider perf and accuracy)
|
317
|
+
// const x2 = x * x;
|
318
|
+
// const x4 = x2 * x2;
|
319
|
+
// const x6 = x4 * x2;
|
320
|
+
// const x8 = x4 * x4;
|
321
|
+
// const x10 = x6 * x4;
|
322
|
+
// const x12 = x6 * x6;
|
323
|
+
// const x14 = x12 * x2;
|
324
|
+
|
325
|
+
// return x * (
|
326
|
+
// 1 - x2 / 6 + x4 / 120 - x6 / 5040 + x8 / 362880 - x10 / 39916800 + x12 / 6227020800 - x14 / 1307674368000
|
327
|
+
// );
|
328
|
+
};
|
329
|
+
|
330
|
+
export const __Math_cos = (x: number): number => Math.sin(x - Math.PI / 2);
|
331
|
+
export const __Math_tan = (x: number): number => Math.sin(x) / Math.cos(x);
|
332
|
+
|
333
|
+
export const __Math_sinh = (x: number): number => (Math.exp(x) - Math.exp(-x)) / 2;
|
334
|
+
export const __Math_cosh = (x: number): number => (Math.exp(x) + Math.exp(-x)) / 2;
|
335
|
+
export const __Math_tanh = (x: number): number => Math.sinh(x) / Math.cosh(x);
|
336
|
+
|
337
|
+
|
338
|
+
export const __Math_asinh = (x: number): number => Math.log(x + Math.sqrt(x * x + 1));
|
339
|
+
export const __Math_acosh = (x: number): number => {
|
340
|
+
if (x < 1) return NaN;
|
341
|
+
return Math.log(x + Math.sqrt(x * x - 1));
|
342
|
+
};
|
343
|
+
export const __Math_atanh = (x: number): number => {
|
344
|
+
if (Math.abs(x) >= 1) return NaN;
|
345
|
+
return 0.5 * Math.log((1 + x) / (1 - x));
|
346
|
+
};
|
347
|
+
|
348
|
+
|
349
|
+
export const __Math_asin = (x: number): number => {
|
350
|
+
if (x <= -1) {
|
351
|
+
if (x == -1) return -Math.PI / 2;
|
352
|
+
return NaN;
|
353
|
+
}
|
354
|
+
if (x >= 1) {
|
355
|
+
if (x == 1) return Math.PI / 2;
|
356
|
+
return NaN;
|
357
|
+
}
|
358
|
+
|
359
|
+
// Taylor series
|
360
|
+
let sum: number = x;
|
361
|
+
let term: number = x;
|
362
|
+
let n: number = 1;
|
363
|
+
|
364
|
+
while (Math.abs(term) > 1e-15) {
|
365
|
+
term *= x * x * (2 * n - 1) * (2 * n - 1) / ((2 * n) * (2 * n + 1));
|
366
|
+
sum += term / (2 * n + 1);
|
367
|
+
n++;
|
368
|
+
}
|
369
|
+
|
370
|
+
return sum;
|
371
|
+
};
|
372
|
+
|
373
|
+
export const __Math_acos = (x: number): number => Math.asin(x) - Math.PI / 2;
|
374
|
+
|
375
|
+
export const __Math_atan = (x: number): number => {
|
376
|
+
if (x == Infinity) return Math.PI / 2
|
377
|
+
if (x == -Infinity) return -Math.PI / 2;
|
378
|
+
|
379
|
+
// Taylor series
|
380
|
+
let sum: number = x;
|
381
|
+
let term: number = x;
|
382
|
+
let n: number = 1;
|
383
|
+
|
384
|
+
while (Math.abs(term) > 1e-15) {
|
385
|
+
term *= -x * x * (2 * n - 1) / ((2 * n) * (2 * n + 1));
|
386
|
+
sum += term;
|
387
|
+
n++;
|
388
|
+
}
|
389
|
+
|
390
|
+
return sum;
|
391
|
+
};
|
392
|
+
|
393
|
+
export const __Math_atan2 = (y: number, x: number): number => {
|
394
|
+
if (x == 0) {
|
395
|
+
if (y > 0) return Math.PI / 2;
|
396
|
+
if (y < 0) return -Math.PI / 2;
|
397
|
+
|
398
|
+
return NaN;
|
399
|
+
}
|
400
|
+
|
401
|
+
const ratio = y / x;
|
402
|
+
if (x > 0) {
|
403
|
+
return Math.atan(ratio);
|
404
|
+
}
|
405
|
+
|
406
|
+
if (y >= 0) return Math.atan(ratio) + Math.PI;
|
407
|
+
return Math.atan(ratio) - Math.PI;
|
408
|
+
};
|
package/compiler/builtins.js
CHANGED
@@ -221,8 +221,7 @@ export const BuiltinFuncs = function() {
|
|
221
221
|
typedParams: true,
|
222
222
|
locals: [ Valtype.i32, Valtype.i32 ],
|
223
223
|
returns: [],
|
224
|
-
|
225
|
-
wasm: (scope, { typeSwitch }) => [
|
224
|
+
wasm: (scope, { typeSwitch, builtin }) => [
|
226
225
|
...typeSwitch(scope, [ [ Opcodes.local_get, 1 ] ], {
|
227
226
|
[TYPES.number]: [
|
228
227
|
[ Opcodes.local_get, 0 ],
|
@@ -327,14 +326,14 @@ export const BuiltinFuncs = function() {
|
|
327
326
|
|
328
327
|
[ Opcodes.loop, Blocktype.void ],
|
329
328
|
|
330
|
-
// print current
|
329
|
+
// print current array element
|
331
330
|
[ Opcodes.local_get, 2 ],
|
332
331
|
[ Opcodes.load, 0, ValtypeSize.i32 ],
|
333
332
|
|
334
333
|
[ Opcodes.local_get, 2 ],
|
335
334
|
[ Opcodes.i32_load8_u, 0, ValtypeSize.i32 + ValtypeSize[valtype] ],
|
336
335
|
|
337
|
-
[ Opcodes.call,
|
336
|
+
[ Opcodes.call, builtin('__Porffor_print') ],
|
338
337
|
|
339
338
|
// increment pointer by sizeof valtype
|
340
339
|
[ Opcodes.local_get, 2 ],
|