pimath 0.1.4 → 0.1.6

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/pimath.js CHANGED
@@ -1,22 +1,22 @@
1
- var Ti = Object.defineProperty;
2
- var ri = (o) => {
1
+ var qi = Object.defineProperty;
2
+ var si = (o) => {
3
3
  throw TypeError(o);
4
4
  };
5
- var Ai = (o, e, t) => e in o ? Ti(o, e, { enumerable: !0, configurable: !0, writable: !0, value: t }) : o[e] = t;
6
- var a = (o, e, t) => Ai(o, typeof e != "symbol" ? e + "" : e, t), Gt = (o, e, t) => e.has(o) || ri("Cannot " + t);
7
- var i = (o, e, t) => (Gt(o, e, "read from private field"), t ? t.call(o) : e.get(o)), f = (o, e, t) => e.has(o) ? ri("Cannot add the same private member more than once") : e instanceof WeakSet ? e.add(o) : e.set(o, t), h = (o, e, t, s) => (Gt(o, e, "write to private field"), s ? s.call(o, t) : e.set(o, t), t), M = (o, e, t) => (Gt(o, e, "access private method"), t);
8
- function Mi(o) {
9
- const e = oi(o), t = [];
5
+ var Ti = (o, e, t) => e in o ? qi(o, e, { enumerable: !0, configurable: !0, writable: !0, value: t }) : o[e] = t;
6
+ var a = (o, e, t) => Ti(o, typeof e != "symbol" ? e + "" : e, t), Ut = (o, e, t) => e.has(o) || si("Cannot " + t);
7
+ var i = (o, e, t) => (Ut(o, e, "read from private field"), t ? t.call(o) : e.get(o)), d = (o, e, t) => e.has(o) ? si("Cannot add the same private member more than once") : e instanceof WeakSet ? e.add(o) : e.set(o, t), h = (o, e, t, s) => (Ut(o, e, "write to private field"), s ? s.call(o, t) : e.set(o, t), t), M = (o, e, t) => (Ut(o, e, "access private method"), t);
8
+ function Ai(o) {
9
+ const e = ni(o), t = [];
10
10
  let s, r;
11
11
  for (; e.length > 0; )
12
12
  s = e.shift() ?? 1, r = (e.length > 0 ? e.pop() : +s) ?? 1, t.push([s, r]);
13
13
  return t;
14
14
  }
15
- function Ii(...o) {
16
- const e = ei(...o);
15
+ function Mi(...o) {
16
+ const e = _t(...o);
17
17
  return o.map((t) => t / e);
18
18
  }
19
- function oi(o) {
19
+ function ni(o) {
20
20
  const e = Math.abs(o), t = Math.sqrt(e), s = [];
21
21
  for (let r = 1; r <= t; r++)
22
22
  o % r === 0 && (s.push(r), s.push(e / r));
@@ -24,7 +24,7 @@ function oi(o) {
24
24
  return r - n;
25
25
  }), [...new Set(s)];
26
26
  }
27
- function ei(...o) {
27
+ function _t(...o) {
28
28
  const e = function(r, n) {
29
29
  return n === 0 ? r : e(n, r % n);
30
30
  };
@@ -39,53 +39,53 @@ function ei(...o) {
39
39
  ;
40
40
  return Math.abs(t);
41
41
  }
42
- function Ci(...o) {
42
+ function Ii(...o) {
43
43
  return o.reduce(function(e, t) {
44
- return Math.abs(e * t / ei(e, t));
44
+ return Math.abs(e * t / _t(e, t));
45
45
  });
46
46
  }
47
- function $i(o, e = 3) {
47
+ function Ci(o, e = 3) {
48
48
  return +o.toFixed(e);
49
49
  }
50
- function Pi(o) {
50
+ function $i(o) {
51
51
  if (Number.isSafeInteger(o) || o.toString().split(".")[0].length < 10)
52
52
  return 0;
53
53
  throw new Error("Periodic value: Not implemented yet");
54
54
  }
55
- function Si(o) {
55
+ function Pi(o) {
56
56
  const e = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973];
57
57
  return o === void 0 ? e : e.slice(0, Math.min(e.length, o));
58
58
  }
59
- function Bi(o, e) {
59
+ function Si(o, e) {
60
60
  const t = [], s = e === !0 ? +o : o ** 2;
61
61
  for (let r = 0; r <= o; r++)
62
62
  for (let n = 0; n <= o; n++)
63
63
  r ** 2 + n ** 2 === s && t.push([r, n, o]);
64
64
  return t;
65
65
  }
66
- function Ri(o, e = 2) {
66
+ function Bi(o, e = 2) {
67
67
  return +`${Math.round(+`${o}e${e}`)}e-${e}`;
68
68
  }
69
69
  const G = {
70
- decompose: Mi,
71
- dividers: oi,
72
- divideNumbersByGCD: Ii,
73
- gcd: ei,
74
- lcm: Ci,
75
- numberCorrection: $i,
76
- periodic: Pi,
77
- primes: Si,
78
- pythagoreanTripletsWithTarget: Bi,
79
- round: Ri
70
+ decompose: Ai,
71
+ dividers: ni,
72
+ divideNumbersByGCD: Mi,
73
+ gcd: _t,
74
+ lcm: Ii,
75
+ numberCorrection: Ci,
76
+ periodic: $i,
77
+ primes: Pi,
78
+ pythagoreanTripletsWithTarget: Si,
79
+ round: Bi
80
80
  };
81
81
  var w, b, ot, Be;
82
82
  const $ = class $ {
83
83
  constructor(e, t) {
84
84
  // #region Class fields (2)
85
- f(this, w, 1);
86
- f(this, b, 1);
87
- f(this, ot, !1);
88
- f(this, Be, "frac");
85
+ d(this, w, 1);
86
+ d(this, b, 1);
87
+ d(this, ot, !1);
88
+ d(this, Be, "frac");
89
89
  // ------------------------------------------
90
90
  /**
91
91
  * Parse the value to get the numerator and denominator
@@ -331,10 +331,10 @@ let c = $;
331
331
  var Z, J, se, We;
332
332
  class ft {
333
333
  constructor(...e) {
334
- f(this, Z);
335
- f(this, J);
336
- f(this, se);
337
- f(this, We);
334
+ d(this, Z);
335
+ d(this, J);
336
+ d(this, se);
337
+ d(this, We);
338
338
  // ------------------------------------------
339
339
  // Creation / parsing functions
340
340
  // ------------------------------------------
@@ -394,104 +394,104 @@ class ft {
394
394
  }
395
395
  }
396
396
  Z = new WeakMap(), J = new WeakMap(), se = new WeakMap(), We = new WeakMap();
397
- var hi = (o) => {
397
+ var oi = (o) => {
398
398
  throw TypeError(o);
399
- }, ai = (o, e, t) => e.has(o) || hi("Cannot " + t), K = (o, e, t) => (ai(o, e, "read from private field"), t ? t.call(o) : e.get(o)), tt = (o, e, t) => e.has(o) ? hi("Cannot add the same private member more than once") : e instanceof WeakSet ? e.add(o) : e.set(o, t), be = (o, e, t, s) => (ai(o, e, "write to private field"), e.set(o, t), t);
400
- const li = {
399
+ }, hi = (o, e, t) => e.has(o) || oi("Cannot " + t), K = (o, e, t) => (hi(o, e, "read from private field"), t ? t.call(o) : e.get(o)), tt = (o, e, t) => e.has(o) ? oi("Cannot add the same private member more than once") : e instanceof WeakSet ? e.add(o) : e.set(o, t), be = (o, e, t, s) => (hi(o, e, "write to private field"), e.set(o, t), t);
400
+ const ai = {
401
401
  pi: Math.PI,
402
402
  e: Math.exp(1)
403
403
  };
404
- var d = /* @__PURE__ */ ((o) => (o.VARIABLE = "variable", o.COEFFICIENT = "coefficient", o.OPERATION = "operation", o.CONSTANT = "constant", o.FUNCTION = "function", o.FUNCTION_ARGUMENT = "function-argument", o.MONOM = "monom", o.LEFT_PARENTHESIS = "(", o.RIGHT_PARENTHESIS = ")", o))(d || {}), it = /* @__PURE__ */ ((o) => (o.EXPRESSION = "expression", o.POLYNOM = "polynom", o.SET = "set", o.NUMERIC = "numeric", o))(it || {});
405
- function zi(o, e) {
404
+ var m = /* @__PURE__ */ ((o) => (o.VARIABLE = "variable", o.COEFFICIENT = "coefficient", o.OPERATION = "operation", o.CONSTANT = "constant", o.FUNCTION = "function", o.FUNCTION_ARGUMENT = "function-argument", o.MONOM = "monom", o.LEFT_PARENTHESIS = "(", o.RIGHT_PARENTHESIS = ")", o))(m || {}), it = /* @__PURE__ */ ((o) => (o.EXPRESSION = "expression", o.POLYNOM = "polynom", o.SET = "set", o.NUMERIC = "numeric", o))(it || {});
405
+ function Ri(o, e) {
406
406
  if (o.length <= 1)
407
407
  return o;
408
- const t = Object.keys(e).filter((E) => e[E].type === d.FUNCTION).map((E) => E);
408
+ const t = Object.keys(e).filter((E) => e[E].type === m.FUNCTION).map((E) => E);
409
409
  t.sort((E, L) => L.length - E.length);
410
- const s = new RegExp(`^(${t.join("|")})\\(`), r = Object.keys(li);
410
+ const s = new RegExp(`^(${t.join("|")})\\(`), r = Object.keys(ai);
411
411
  r.sort((E, L) => L.length - E.length);
412
412
  const n = new RegExp(`^(${r.join("|")})`), l = /^(\d+(\.\d+)?)/;
413
- let u = "", p, m, g;
413
+ let u = "", f, p, g;
414
414
  for (; o.length > 0; ) {
415
- if (p = m, g = void 0, t.length > 0 && s.exec(o)) {
415
+ if (f = p, g = void 0, t.length > 0 && s.exec(o)) {
416
416
  const E = t.find((L) => o.startsWith(L));
417
- E && (g = E + "(", o = o.slice(E.length + 1), m = d.FUNCTION);
417
+ E && (g = E + "(", o = o.slice(E.length + 1), p = m.FUNCTION);
418
418
  } else if (r.length > 0 && n.exec(o)) {
419
419
  const E = r.find((L) => o.startsWith(L));
420
- E && (g = E, o = o.slice(E.length), m = d.CONSTANT);
420
+ E && (g = E, o = o.slice(E.length), p = m.CONSTANT);
421
421
  } else if (l.exec(o)) {
422
422
  const E = l.exec(o);
423
- E && (g = E[0], o = o.slice(E[0].length), m = d.COEFFICIENT);
423
+ E && (g = E[0], o = o.slice(E[0].length), p = m.COEFFICIENT);
424
424
  } else
425
425
  switch (g = o[0], o = o.slice(1), g) {
426
426
  case "(":
427
- m = d.LEFT_PARENTHESIS;
427
+ p = m.LEFT_PARENTHESIS;
428
428
  break;
429
429
  case ")":
430
- m = d.RIGHT_PARENTHESIS;
430
+ p = m.RIGHT_PARENTHESIS;
431
431
  break;
432
432
  case ",":
433
- m = d.FUNCTION_ARGUMENT;
433
+ p = m.FUNCTION_ARGUMENT;
434
434
  break;
435
435
  case "+":
436
436
  case "-":
437
437
  case "*":
438
438
  case "/":
439
439
  case "^":
440
- m = d.OPERATION;
440
+ p = m.OPERATION;
441
441
  break;
442
442
  default:
443
- m = d.VARIABLE;
443
+ p = m.VARIABLE;
444
444
  }
445
- if (g === void 0 || m === void 0)
445
+ if (g === void 0 || p === void 0)
446
446
  throw new Error("The token is undefined");
447
- u += ki(p, m), u += g;
447
+ u += zi(f, p), u += g;
448
448
  }
449
449
  return u;
450
450
  }
451
- function ki(o, e) {
452
- return o === void 0 || o === d.OPERATION || e === d.OPERATION || o === d.LEFT_PARENTHESIS || o === d.FUNCTION || o === d.FUNCTION_ARGUMENT || e === d.RIGHT_PARENTHESIS || e === d.FUNCTION_ARGUMENT ? "" : "*";
451
+ function zi(o, e) {
452
+ return o === void 0 || o === m.OPERATION || e === m.OPERATION || o === m.LEFT_PARENTHESIS || o === m.FUNCTION || o === m.FUNCTION_ARGUMENT || e === m.RIGHT_PARENTHESIS || e === m.FUNCTION_ARGUMENT ? "" : "*";
453
453
  }
454
- const Li = {
455
- "^": { precedence: 4, associative: "right", type: d.OPERATION },
456
- "*": { precedence: 3, associative: "left", type: d.OPERATION },
457
- "/": { precedence: 3, associative: "left", type: d.OPERATION },
458
- "+": { precedence: 2, associative: "left", type: d.OPERATION },
459
- "-": { precedence: 2, associative: "left", type: d.OPERATION }
454
+ const ki = {
455
+ "^": { precedence: 4, associative: "right", type: m.OPERATION },
456
+ "*": { precedence: 3, associative: "left", type: m.OPERATION },
457
+ "/": { precedence: 3, associative: "left", type: m.OPERATION },
458
+ "+": { precedence: 2, associative: "left", type: m.OPERATION },
459
+ "-": { precedence: 2, associative: "left", type: m.OPERATION }
460
+ }, Li = {
461
+ "^": { precedence: 4, associative: "right", type: m.OPERATION },
462
+ "*": { precedence: 3, associative: "left", type: m.OPERATION },
463
+ "/": { precedence: 3, associative: "left", type: m.OPERATION },
464
+ "+": { precedence: 2, associative: "left", type: m.OPERATION },
465
+ "-": { precedence: 2, associative: "left", type: m.OPERATION },
466
+ "%": { precedence: 3, associative: "right", type: m.OPERATION },
467
+ sin: { precedence: 4, associative: "right", type: m.FUNCTION },
468
+ cos: { precedence: 4, associative: "right", type: m.FUNCTION },
469
+ tan: { precedence: 4, associative: "right", type: m.FUNCTION },
470
+ sqrt: { precedence: 4, associative: "right", type: m.FUNCTION },
471
+ nthrt: { precedence: 4, associative: "right", type: m.FUNCTION },
472
+ ",": { precedence: 2, associative: "left", type: m.FUNCTION_ARGUMENT }
460
473
  }, Di = {
461
- "^": { precedence: 4, associative: "right", type: d.OPERATION },
462
- "*": { precedence: 3, associative: "left", type: d.OPERATION },
463
- "/": { precedence: 3, associative: "left", type: d.OPERATION },
464
- "+": { precedence: 2, associative: "left", type: d.OPERATION },
465
- "-": { precedence: 2, associative: "left", type: d.OPERATION },
466
- "%": { precedence: 3, associative: "right", type: d.OPERATION },
467
- sin: { precedence: 4, associative: "right", type: d.FUNCTION },
468
- cos: { precedence: 4, associative: "right", type: d.FUNCTION },
469
- tan: { precedence: 4, associative: "right", type: d.FUNCTION },
470
- sqrt: { precedence: 4, associative: "right", type: d.FUNCTION },
471
- nthrt: { precedence: 4, associative: "right", type: d.FUNCTION },
472
- ",": { precedence: 2, associative: "left", type: d.FUNCTION_ARGUMENT }
474
+ "^": { precedence: 4, associative: "right", type: m.OPERATION },
475
+ "*": { precedence: 3, associative: "left", type: m.OPERATION },
476
+ "/": { precedence: 3, associative: "left", type: m.OPERATION },
477
+ "+": { precedence: 2, associative: "left", type: m.OPERATION },
478
+ "-": { precedence: 2, associative: "left", type: m.OPERATION },
479
+ "%": { precedence: 3, associative: "right", type: m.OPERATION },
480
+ sin: { precedence: 4, associative: "right", type: m.FUNCTION },
481
+ cos: { precedence: 4, associative: "right", type: m.FUNCTION },
482
+ tan: { precedence: 4, associative: "right", type: m.FUNCTION },
483
+ sqrt: { precedence: 4, associative: "right", type: m.FUNCTION },
484
+ nthrt: { precedence: 4, associative: "right", type: m.FUNCTION },
485
+ ln: { precedence: 4, associative: "right", type: m.FUNCTION },
486
+ log: { precedence: 4, associative: "right", type: m.FUNCTION }
473
487
  }, Zi = {
474
- "^": { precedence: 4, associative: "right", type: d.OPERATION },
475
- "*": { precedence: 3, associative: "left", type: d.OPERATION },
476
- "/": { precedence: 3, associative: "left", type: d.OPERATION },
477
- "+": { precedence: 2, associative: "left", type: d.OPERATION },
478
- "-": { precedence: 2, associative: "left", type: d.OPERATION },
479
- "%": { precedence: 3, associative: "right", type: d.OPERATION },
480
- sin: { precedence: 4, associative: "right", type: d.FUNCTION },
481
- cos: { precedence: 4, associative: "right", type: d.FUNCTION },
482
- tan: { precedence: 4, associative: "right", type: d.FUNCTION },
483
- sqrt: { precedence: 4, associative: "right", type: d.FUNCTION },
484
- nthrt: { precedence: 4, associative: "right", type: d.FUNCTION },
485
- ln: { precedence: 4, associative: "right", type: d.FUNCTION },
486
- log: { precedence: 4, associative: "right", type: d.FUNCTION }
487
- }, Vi = {
488
- "&": { precedence: 3, associative: "left", type: d.OPERATION },
489
- "|": { precedence: 3, associative: "left", type: d.OPERATION },
490
- "!": { precedence: 4, associative: "right", type: d.OPERATION },
491
- "-": { precedence: 2, associative: "left", type: d.OPERATION }
488
+ "&": { precedence: 3, associative: "left", type: m.OPERATION },
489
+ "|": { precedence: 3, associative: "left", type: m.OPERATION },
490
+ "!": { precedence: 4, associative: "right", type: m.OPERATION },
491
+ "-": { precedence: 2, associative: "left", type: m.OPERATION }
492
492
  };
493
493
  var je, st, ie, dt, ke;
494
- class ci {
494
+ class li {
495
495
  constructor(e) {
496
496
  tt(this, je), tt(this, st, []), tt(this, ie, {}), tt(this, dt, []), tt(this, ke), be(this, je, typeof e > "u" ? it.POLYNOM : e), this.tokenConfigInitialization();
497
497
  }
@@ -503,7 +503,7 @@ class ci {
503
503
  return K(this, st).map((e) => e.token);
504
504
  }
505
505
  tokenConfigInitialization() {
506
- return K(this, je) === it.SET ? (be(this, ie, Vi), be(this, ke, !1)) : K(this, je) === it.NUMERIC ? (be(this, ie, Zi), be(this, ke, !0)) : K(this, je) === it.EXPRESSION ? (be(this, ie, Di), be(this, ke, !0)) : (be(this, ie, Li), be(this, ke, !0)), be(this, dt, Object.keys(K(this, ie)).sort((e, t) => t.length - e.length)), K(this, ie);
506
+ return K(this, je) === it.SET ? (be(this, ie, Zi), be(this, ke, !1)) : K(this, je) === it.NUMERIC ? (be(this, ie, Di), be(this, ke, !0)) : K(this, je) === it.EXPRESSION ? (be(this, ie, Li), be(this, ke, !0)) : (be(this, ie, ki), be(this, ke, !0)), be(this, dt, Object.keys(K(this, ie)).sort((e, t) => t.length - e.length)), K(this, ie);
507
507
  }
508
508
  /**
509
509
  * Get the next token to analyse.
@@ -513,31 +513,31 @@ class ci {
513
513
  NextToken(e, t) {
514
514
  let s, r;
515
515
  if (s = "", r = void 0, e[t] === "(")
516
- s = "(", r = d.LEFT_PARENTHESIS;
516
+ s = "(", r = m.LEFT_PARENTHESIS;
517
517
  else if (e[t] === ")")
518
- s = ")", r = d.RIGHT_PARENTHESIS;
518
+ s = ")", r = m.RIGHT_PARENTHESIS;
519
519
  else if (e[t] === ",")
520
- s = ",", r = d.FUNCTION_ARGUMENT;
520
+ s = ",", r = m.FUNCTION_ARGUMENT;
521
521
  else {
522
522
  for (const n of K(this, dt))
523
523
  if (e.substring(t, t + n.length) === n) {
524
524
  s += n, r = K(this, ie)[n].type;
525
525
  break;
526
526
  }
527
- for (const n in li)
527
+ for (const n in ai)
528
528
  if (e.substring(t, t + n.length) === n) {
529
- s += n, r = d.CONSTANT;
529
+ s += n, r = m.CONSTANT;
530
530
  break;
531
531
  }
532
532
  if (s === "")
533
533
  if (/[0-9.]/.exec(e[t])) {
534
534
  const n = /^([0-9.]+)/.exec(e.substring(t));
535
- s = n ? n[0] : "", r = d.COEFFICIENT;
535
+ s = n ? n[0] : "", r = m.COEFFICIENT;
536
536
  } else if (/[a-zA-Z]/.exec(e[t])) {
537
537
  const n = /^([a-zA-Z])/.exec(e.substring(t));
538
- s = n ? n[0] : "", r = d.VARIABLE;
538
+ s = n ? n[0] : "", r = m.VARIABLE;
539
539
  } else
540
- console.log("Unidentified token", e[t], e, t), s = e[t], r = d.MONOM;
540
+ console.log("Unidentified token", e[t], e, t), s = e[t], r = m.MONOM;
541
541
  }
542
542
  if (r === void 0)
543
543
  throw new Error(`Token type is undefined for token ${s}`);
@@ -552,43 +552,43 @@ class ci {
552
552
  parse(e, t) {
553
553
  const s = [], r = [];
554
554
  let n = "", l = 0, u;
555
- (t ?? K(this, ke)) && (e = zi(e, K(this, ie)));
556
- const p = 50;
557
- let m = 50, g;
555
+ (t ?? K(this, ke)) && (e = Ri(e, K(this, ie)));
556
+ const f = 50;
557
+ let p = 50, g;
558
558
  for (; l < e.length; ) {
559
- if (m--, m === 0) {
559
+ if (p--, p === 0) {
560
560
  console.log("SECURITY LEVEL 1 EXIT");
561
561
  break;
562
562
  }
563
563
  switch ([n, l, u] = this.NextToken(e, l), u) {
564
- case d.MONOM:
565
- case d.COEFFICIENT:
566
- case d.VARIABLE:
567
- case d.CONSTANT:
564
+ case m.MONOM:
565
+ case m.COEFFICIENT:
566
+ case m.VARIABLE:
567
+ case m.CONSTANT:
568
568
  s.push({
569
569
  token: n,
570
570
  tokenType: u
571
571
  });
572
572
  break;
573
- case d.OPERATION:
573
+ case m.OPERATION:
574
574
  if (r.length > 0) {
575
575
  let E = r[r.length - 1];
576
- for (g = +p; E.token in K(this, ie) && //either o1 is left-associative and its precedence is less than or equal to that of o2,
576
+ for (g = +f; E.token in K(this, ie) && //either o1 is left-associative and its precedence is less than or equal to that of o2,
577
577
  (K(this, ie)[n].associative === "left" && K(this, ie)[n].precedence <= K(this, ie)[E.token].precedence || //or o1 is right associative, and has precedence less than that of o2,
578
578
  K(this, ie)[n].associative === "right" && K(this, ie)[n].precedence < K(this, ie)[E.token].precedence); ) {
579
579
  if (g--, g === 0) {
580
580
  console.log("SECURITY LEVEL 2 OPERATION EXIT");
581
581
  break;
582
582
  }
583
- if (s.push(r.pop() ?? { token: "", tokenType: d.OPERATION }), r.length === 0)
583
+ if (s.push(r.pop() ?? { token: "", tokenType: m.OPERATION }), r.length === 0)
584
584
  break;
585
585
  E = r[r.length - 1];
586
586
  }
587
587
  }
588
588
  r.push({ token: n, tokenType: u });
589
589
  break;
590
- case d.FUNCTION_ARGUMENT:
591
- for (g = +p; r[r.length - 1].token !== "(" && r.length > 0; ) {
590
+ case m.FUNCTION_ARGUMENT:
591
+ for (g = +f; r[r.length - 1].token !== "(" && r.length > 0; ) {
592
592
  if (g--, g === 0) {
593
593
  console.log("SECURITY LEVEL 2 FUNCTION ARGUMENT EXIT");
594
594
  break;
@@ -596,11 +596,11 @@ class ci {
596
596
  s.push(r.pop() ?? { token: n, tokenType: u });
597
597
  }
598
598
  break;
599
- case d.LEFT_PARENTHESIS:
600
- r.push({ token: n, tokenType: u }), e[l] === "-" && s.push({ token: "0", tokenType: d.COEFFICIENT });
599
+ case m.LEFT_PARENTHESIS:
600
+ r.push({ token: n, tokenType: u }), e[l] === "-" && s.push({ token: "0", tokenType: m.COEFFICIENT });
601
601
  break;
602
- case d.RIGHT_PARENTHESIS:
603
- for (g = +p; r[r.length - 1].token !== "(" && r.length > 1; ) {
602
+ case m.RIGHT_PARENTHESIS:
603
+ for (g = +f; r[r.length - 1].token !== "(" && r.length > 1; ) {
604
604
  if (g--, g === 0) {
605
605
  console.log("SECURITY LEVEL 2 CLOSING PARENTHESIS EXIT");
606
606
  break;
@@ -609,7 +609,7 @@ class ci {
609
609
  }
610
610
  r.pop();
611
611
  break;
612
- case d.FUNCTION:
612
+ case m.FUNCTION:
613
613
  r.push({ token: n, tokenType: u });
614
614
  break;
615
615
  default:
@@ -623,9 +623,9 @@ je = /* @__PURE__ */ new WeakMap(), st = /* @__PURE__ */ new WeakMap(), ie = /*
623
623
  var O, v, He, pt, Re, bt, xt;
624
624
  const P = class P {
625
625
  constructor(e) {
626
- f(this, He);
627
- f(this, O);
628
- f(this, v);
626
+ d(this, He);
627
+ d(this, O);
628
+ d(this, v);
629
629
  /**
630
630
  * Clone the current Monom.
631
631
  */
@@ -855,7 +855,7 @@ const P = class P {
855
855
  * Create a zero value monom
856
856
  */
857
857
  a(this, "zero", () => (h(this, O, new c().zero()), h(this, v, {}), this));
858
- f(this, Re, (e) => {
858
+ d(this, Re, (e) => {
859
859
  let t = this.coefficient.value;
860
860
  if (typeof e == "number") {
861
861
  const s = {}, r = this.variables[0];
@@ -877,27 +877,27 @@ const P = class P {
877
877
  }
878
878
  return t;
879
879
  });
880
- f(this, bt, (e) => {
881
- const s = new ci().parse(e).rpn, r = [];
880
+ d(this, bt, (e) => {
881
+ const s = new li().parse(e).rpn, r = [];
882
882
  if (s.length === 0)
883
883
  return this.zero(), this;
884
884
  if (s.length === 1) {
885
885
  const n = s[0];
886
- return this.one(), n.tokenType === d.COEFFICIENT ? this.coefficient = new c(n.token) : n.tokenType === d.VARIABLE && this.setLetter(n.token, 1), this;
886
+ return this.one(), n.tokenType === m.COEFFICIENT ? this.coefficient = new c(n.token) : n.tokenType === m.VARIABLE && this.setLetter(n.token, 1), this;
887
887
  } else
888
888
  for (const n of s)
889
889
  i(this, xt).call(this, r, n);
890
890
  return this.one(), this.multiply(r[0]), this;
891
891
  });
892
- f(this, xt, (e, t) => {
893
- var p;
892
+ d(this, xt, (e, t) => {
893
+ var f;
894
894
  let s, r, n, l, u;
895
- if (t.tokenType === d.COEFFICIENT)
895
+ if (t.tokenType === m.COEFFICIENT)
896
896
  e.push(new P(new c(t.token)));
897
- else if (t.tokenType === d.VARIABLE) {
898
- const m = new P().one();
899
- m.setLetter(t.token, 1), e.push(m.clone());
900
- } else if (t.tokenType === d.OPERATION)
897
+ else if (t.tokenType === m.VARIABLE) {
898
+ const p = new P().one();
899
+ p.setLetter(t.token, 1), e.push(p.clone());
900
+ } else if (t.tokenType === m.OPERATION)
901
901
  switch (t.token) {
902
902
  case "-":
903
903
  r = e.pop() ?? new P().zero(), s = e.pop() ?? new P().zero(), e.push(s.subtract(r));
@@ -909,7 +909,7 @@ const P = class P {
909
909
  r = e.pop() ?? new P().one(), s = e.pop() ?? new P().one(), e.push(s.divide(r));
910
910
  break;
911
911
  case "^": {
912
- u = ((p = e.pop()) == null ? void 0 : p.coefficient) ?? new c().one(), n = e.pop() ?? new P().one(), l = n.variables[0], l && n.setLetter(l, u), e.push(n);
912
+ u = ((f = e.pop()) == null ? void 0 : f.coefficient) ?? new c().one(), n = e.pop() ?? new P().one(), l = n.variables[0], l && n.setLetter(l, u), e.push(n);
913
913
  break;
914
914
  }
915
915
  }
@@ -1097,12 +1097,12 @@ a(P, "xMultiply", (...e) => {
1097
1097
  return t;
1098
1098
  });
1099
1099
  let I = P;
1100
- var ue, De, S, ye, rt, ui, fi, di, Ht, pi;
1101
- const ii = class ii {
1100
+ var ue, De, S, ye, rt, ci, ui, fi, Wt, di;
1101
+ const ti = class ti {
1102
1102
  constructor(e, t, s = "x") {
1103
- f(this, S);
1104
- f(this, ue);
1105
- f(this, De);
1103
+ d(this, S);
1104
+ d(this, ue);
1105
+ d(this, De);
1106
1106
  if (h(this, De, s), Object.hasOwn(e, "moveLeft")) {
1107
1107
  const r = e;
1108
1108
  h(this, ue, r.left.clone().subtract(r.right));
@@ -1111,20 +1111,20 @@ const ii = class ii {
1111
1111
  }
1112
1112
  solve() {
1113
1113
  if (i(this, ue).degree().isOne())
1114
- return M(this, S, ui).call(this);
1114
+ return M(this, S, ci).call(this);
1115
1115
  if (i(this, ue).degree().value === 2)
1116
- return M(this, S, fi).call(this);
1117
- const e = M(this, S, pi).call(this);
1116
+ return M(this, S, ui).call(this);
1117
+ const e = M(this, S, di).call(this);
1118
1118
  if (e.length > 0)
1119
1119
  return e;
1120
1120
  if (i(this, ue).degree().value === 3)
1121
- return M(this, S, Ht).call(this);
1121
+ return M(this, S, Wt).call(this);
1122
1122
  throw new Error("The equation degree is too high.");
1123
1123
  }
1124
1124
  solveAsCardan() {
1125
1125
  if (i(this, ue).degree().value !== 3)
1126
1126
  throw new Error("The equation is not cubic.");
1127
- return M(this, S, Ht).call(this);
1127
+ return M(this, S, Wt).call(this);
1128
1128
  }
1129
1129
  };
1130
1130
  ue = new WeakMap(), De = new WeakMap(), S = new WeakSet(), ye = function(e) {
@@ -1146,44 +1146,44 @@ ue = new WeakMap(), De = new WeakMap(), S = new WeakSet(), ye = function(e) {
1146
1146
  tex: (t == null ? void 0 : t.tex) ?? "",
1147
1147
  display: (t == null ? void 0 : t.display) ?? ""
1148
1148
  };
1149
- }, ui = function() {
1149
+ }, ci = function() {
1150
1150
  const e = i(this, ue).monomByDegree(0).coefficient.clone().opposite().divide(i(this, ue).monomByDegree(1).coefficient);
1151
1151
  return [
1152
1152
  M(this, S, ye).call(this, e)
1153
1153
  ];
1154
- }, fi = function() {
1154
+ }, ui = function() {
1155
1155
  const e = i(this, ue), t = e.monomByDegree(2).coefficient, s = e.monomByDegree(1).coefficient, r = e.monomByDegree(0).coefficient, n = s.clone().pow(2).subtract(t.clone().multiply(r).multiply(4));
1156
1156
  if (n.isNegative())
1157
1157
  return [];
1158
1158
  if (n.isSquare()) {
1159
- const l = n.sqrt(), u = s.clone().opposite().add(l).divide(t.clone().multiply(2)), p = s.clone().opposite().subtract(l).divide(t.clone().multiply(2));
1159
+ const l = n.sqrt(), u = s.clone().opposite().add(l).divide(t.clone().multiply(2)), f = s.clone().opposite().subtract(l).divide(t.clone().multiply(2));
1160
1160
  return l.isZero() ? [M(this, S, ye).call(this, u)] : [
1161
1161
  M(this, S, ye).call(this, u),
1162
- M(this, S, ye).call(this, p)
1163
- ].sort((m, g) => m.value - g.value);
1162
+ M(this, S, ye).call(this, f)
1163
+ ].sort((p, g) => p.value - g.value);
1164
1164
  }
1165
- return M(this, S, di).call(this, t, s, n);
1166
- }, di = function(e, t, s) {
1167
- const r = G.dividers(s.value).filter((pe) => Math.sqrt(pe) % 1 === 0).map((pe) => Math.sqrt(pe)).pop() ?? 1, n = G.gcd(2 * e.value, t.value, r) * (e.isNegative() ? -1 : 1), l = t.clone().divide(n).opposite(), u = e.clone().divide(n).multiply(2), p = s.clone().divide(r ** 2), m = Math.abs(r / n), g = r === 1 ? "-" : `-${m} `, E = r === 1 ? "+" : `+${m} `;
1168
- function L(pe, ce, et, Ut) {
1169
- return `\\frac{ ${ce} ${et}\\sqrt{ ${Ut} } }{ ${pe} }`;
1165
+ return M(this, S, fi).call(this, t, s, n);
1166
+ }, fi = function(e, t, s) {
1167
+ const r = G.dividers(s.value).filter((pe) => Math.sqrt(pe) % 1 === 0).map((pe) => Math.sqrt(pe)).pop() ?? 1, n = G.gcd(2 * e.value, t.value, r) * (e.isNegative() ? -1 : 1), l = t.clone().divide(n).opposite(), u = e.clone().divide(n).multiply(2), f = s.clone().divide(r ** 2), p = Math.abs(r / n), g = r === 1 ? "-" : `-${p} `, E = r === 1 ? "+" : `+${p} `;
1168
+ function L(pe, ce, et, jt) {
1169
+ return `\\frac{ ${ce} ${et}\\sqrt{ ${jt} } }{ ${pe} }`;
1170
1170
  }
1171
- function te(pe, ce, et, Ut) {
1172
- return `(${ce}${et}sqrt(${Ut}))/${pe}`;
1171
+ function te(pe, ce, et, jt) {
1172
+ return `(${ce}${et}sqrt(${jt}))/${pe}`;
1173
1173
  }
1174
1174
  const ae = s.value ** 0.5, le = (-t.value - ae) / (2 * e.value), ge = (-t.value + ae) / (2 * e.value);
1175
1175
  return [
1176
1176
  M(this, S, rt).call(this, le, {
1177
- tex: L(u.tex, l.tex, g.toString(), p.tex),
1178
- display: te(u.display, l.display, g.toString(), p.display)
1177
+ tex: L(u.tex, l.tex, g.toString(), f.tex),
1178
+ display: te(u.display, l.display, g.toString(), f.display)
1179
1179
  }),
1180
1180
  M(this, S, rt).call(this, ge, {
1181
- tex: L(u.tex, l.tex, E.toString(), p.tex),
1182
- display: te(u.display, l.display, E.toString(), p.display)
1181
+ tex: L(u.tex, l.tex, E.toString(), f.tex),
1182
+ display: te(u.display, l.display, E.toString(), f.display)
1183
1183
  })
1184
1184
  ].sort((pe, ce) => pe.value - ce.value);
1185
- }, Ht = function() {
1186
- const e = i(this, ue), t = e.monomByDegree(3).coefficient, s = e.monomByDegree(2).coefficient, r = e.monomByDegree(1).coefficient, n = e.monomByDegree(0).coefficient, l = s.clone().divide(t), u = r.clone().divide(t), p = n.clone().divide(t), m = u.clone().subtract(l.clone().pow(2).divide(3)), g = p.clone().subtract(l.clone().multiply(u).divide(3)).add(l.clone().pow(3).multiply(2).divide(27)), E = g.clone().opposite(), L = m.clone().opposite().pow(3).divide(27), te = E.clone().pow(2).subtract(L.clone().multiply(4)).opposite();
1185
+ }, Wt = function() {
1186
+ const e = i(this, ue), t = e.monomByDegree(3).coefficient, s = e.monomByDegree(2).coefficient, r = e.monomByDegree(1).coefficient, n = e.monomByDegree(0).coefficient, l = s.clone().divide(t), u = r.clone().divide(t), f = n.clone().divide(t), p = u.clone().subtract(l.clone().pow(2).divide(3)), g = f.clone().subtract(l.clone().multiply(u).divide(3)).add(l.clone().pow(3).multiply(2).divide(27)), E = g.clone().opposite(), L = p.clone().opposite().pow(3).divide(27), te = E.clone().pow(2).subtract(L.clone().multiply(4)).opposite();
1187
1187
  if (te.isNegative()) {
1188
1188
  const ae = g.clone().opposite().add(te.clone().opposite().sqrt()).divide(2).root(3), le = g.clone().opposite().subtract(te.clone().opposite().sqrt()).divide(2).root(3), ge = ae.clone().add(le).subtract(l.clone().divide(3));
1189
1189
  return [M(this, S, ye).call(this, ge)];
@@ -1196,13 +1196,13 @@ ue = new WeakMap(), De = new WeakMap(), S = new WeakSet(), ye = function(e) {
1196
1196
  ].sort((pe, ce) => pe.value - ce.value);
1197
1197
  }
1198
1198
  if (te.isPositive()) {
1199
- const ae = [], le = m.value, ge = g.value, pe = l.value;
1199
+ const ae = [], le = p.value, ge = g.value, pe = l.value;
1200
1200
  for (let ce = 0; ce < 3; ce++)
1201
1201
  ae.push(2 * Math.sqrt(-le / 3) * Math.cos(Math.acos(3 * ge / (2 * le) * Math.sqrt(-3 / le)) / 3 + 2 * Math.PI * ce / 3) - pe / 3);
1202
1202
  return ae.map((ce) => M(this, S, rt).call(this, ce)).sort((ce, et) => ce.value - et.value);
1203
1203
  }
1204
1204
  return [];
1205
- }, pi = function() {
1205
+ }, di = function() {
1206
1206
  let e = i(this, ue).clone(), t = [];
1207
1207
  const s = e.lcmDenominator();
1208
1208
  s !== 1 && e.multiply(s);
@@ -1227,19 +1227,19 @@ ue = new WeakMap(), De = new WeakMap(), S = new WeakSet(), ye = function(e) {
1227
1227
  return t.sort((g, E) => g.value - E.value);
1228
1228
  if (e.degree().value > 3)
1229
1229
  return [];
1230
- const p = e.clone().parse("0");
1231
- console.log(e.display), console.log(p.display);
1232
- const m = new ii(e, e.clone().parse("0"), i(this, De));
1233
- return t = t.concat(m.solve()), t.sort((g, E) => g.value - E.value);
1230
+ const f = e.clone().parse("0");
1231
+ console.log(e.display), console.log(f.display);
1232
+ const p = new ti(e, e.clone().parse("0"), i(this, De));
1233
+ return t = t.concat(p.solve()), t.sort((g, E) => g.value - E.value);
1234
1234
  };
1235
- let gt = ii;
1236
- var Ze, y, Xe, ht, Et, Nt, Ot, qt, at, Tt, At, Mt, It, mi, Ct, Ye, $t;
1235
+ let gt = ti;
1236
+ var Ze, y, Xe, ht, Et, Nt, Ot, qt, at, Tt, At, Mt, It, pi, Ct, Ye, $t;
1237
1237
  const C = class C {
1238
1238
  constructor(e, ...t) {
1239
- f(this, It);
1239
+ d(this, It);
1240
1240
  // #region Class fields (8)
1241
- f(this, Ze);
1242
- f(this, y);
1241
+ d(this, Ze);
1242
+ d(this, y);
1243
1243
  // #endregion Constructors (7)
1244
1244
  // #region Properties and methods (49)
1245
1245
  /**
@@ -1249,7 +1249,7 @@ const C = class C {
1249
1249
  */
1250
1250
  a(this, "parse", (e, ...t) => {
1251
1251
  if (h(this, y, []), h(this, Ze, []), typeof e == "string")
1252
- return M(this, It, mi).call(this, e, ...t);
1252
+ return M(this, It, pi).call(this, e, ...t);
1253
1253
  if ((typeof e == "number" || e instanceof c || e instanceof I) && t.length === 0)
1254
1254
  i(this, y).push(new I(e));
1255
1255
  else if (e instanceof I && t.length > 0)
@@ -1331,8 +1331,8 @@ const C = class C {
1331
1331
  reminder: new C().zero()
1332
1332
  };
1333
1333
  const n = e.monomByDegree(void 0, t), l = e.degree(t);
1334
- let u, p = this.degree(t).value * 2;
1335
- for (; r.degree(t).isGeq(l) && p > 0 && (p--, u = r.monomByDegree(void 0, t).clone().divide(n), !(!u.isZero() && (s.add(u), r.subtract(e.clone().multiply(u)).reduce(), u.degree(t).isZero()))); )
1334
+ let u, f = this.degree(t).value * 2;
1335
+ for (; r.degree(t).isGeq(l) && f > 0 && (f--, u = r.monomByDegree(void 0, t).clone().divide(n), !(!u.isZero() && (s.add(u), r.subtract(e.clone().multiply(u)).reduce(), u.degree(t).isZero()))); )
1336
1336
  ;
1337
1337
  return s.reduce(), r.reduce(), { quotient: s, reminder: r };
1338
1338
  });
@@ -1367,12 +1367,12 @@ const C = class C {
1367
1367
  } else {
1368
1368
  let u = i(this, qt).call(this, s, l, e ?? "x");
1369
1369
  for (l = s.degree(e).value; u.length > 0; ) {
1370
- const p = u[0];
1371
- if (!s.isDividableBy(p))
1370
+ const f = u[0];
1371
+ if (!s.isDividableBy(f))
1372
1372
  u.shift();
1373
1373
  else {
1374
- const m = s.euclidean(p);
1375
- t.push(p), s = m.quotient.clone(), u = u.filter((g) => {
1374
+ const p = s.euclidean(f);
1375
+ t.push(f), s = p.quotient.clone(), u = u.filter((g) => {
1376
1376
  const E = s.monoms[0], L = s.monoms[s.monoms.length - 1], te = g.monoms[0], ae = g.monoms[g.monoms.length - 1];
1377
1377
  return L.isDivisible(ae) ? E.isDivisible(te) : !1;
1378
1378
  });
@@ -1519,10 +1519,10 @@ const C = class C {
1519
1519
  if (l !== u)
1520
1520
  return t ? l - u : u - l;
1521
1521
  if (s.length > 0)
1522
- for (const p of s) {
1523
- const m = r.degree(p).value, g = n.degree(p).value;
1524
- if (m !== g)
1525
- return t ? m - g : g - m;
1522
+ for (const f of s) {
1523
+ const p = r.degree(f).value, g = n.degree(f).value;
1524
+ if (p !== g)
1525
+ return t ? p - g : g - p;
1526
1526
  }
1527
1527
  return 0;
1528
1528
  }), this;
@@ -1551,7 +1551,7 @@ const C = class C {
1551
1551
  a(this, "zero", () => (h(this, y, []), i(this, y).push(new I().zero()), this));
1552
1552
  // #endregion Getters And Setters (22)
1553
1553
  // #region Private methods (15)
1554
- f(this, Xe, (e, t) => {
1554
+ d(this, Xe, (e, t) => {
1555
1555
  t === void 0 && (t = "=");
1556
1556
  const s = this.clone().reduce().reorder(), r = e.clone().reduce().reorder();
1557
1557
  switch (t) {
@@ -1563,34 +1563,34 @@ const C = class C {
1563
1563
  return !1;
1564
1564
  }
1565
1565
  });
1566
- f(this, ht, (e) => {
1566
+ d(this, ht, (e) => {
1567
1567
  for (const t of i(this, y))
1568
1568
  t.coefficient.divide(e);
1569
1569
  return this;
1570
1570
  });
1571
- f(this, Et, (e) => {
1571
+ d(this, Et, (e) => {
1572
1572
  const t = new c(e);
1573
1573
  for (const s of i(this, y))
1574
1574
  s.coefficient.divide(t);
1575
1575
  return this;
1576
1576
  });
1577
- f(this, Nt, (e) => {
1577
+ d(this, Nt, (e) => {
1578
1578
  let t = 0;
1579
1579
  return i(this, y).forEach((s) => {
1580
1580
  t += s.evaluate(e, !0);
1581
1581
  }), t;
1582
1582
  });
1583
- f(this, Ot, (e) => {
1583
+ d(this, Ot, (e) => {
1584
1584
  var E;
1585
- let t, s, r, n, l, u, p, m, g;
1585
+ let t, s, r, n, l, u, f, p, g;
1586
1586
  if (this.numberOfVars === 1)
1587
- return r = this.monomByDegree(2, e).coefficient, n = this.monomByDegree(1, e).coefficient, l = this.monomByDegree(0, e).coefficient, u = n.clone().pow(2).subtract(r.clone().multiply(l).multiply(4)), u.isZero() ? (p = n.clone().opposite().divide(r.clone().multiply(2)), t = new C(e).subtract(p.display).multiply(p.denominator), s = new C(e).subtract(p.display).multiply(p.denominator), g = r.divide(p.denominator).divide(p.denominator), g.isOne() ? [t, s] : [new C(g.display), t, s]) : u.isPositive() && u.isSquare() ? (p = n.clone().opposite().add(u.clone().sqrt()).divide(r.clone().multiply(2)), m = n.clone().opposite().subtract(u.clone().sqrt()).divide(r.clone().multiply(2)), g = r.divide(p.denominator).divide(m.denominator), g.isOne() ? [
1588
- new C(e).subtract(p.display).multiply(p.denominator),
1589
- new C(e).subtract(m.display).multiply(m.denominator)
1587
+ return r = this.monomByDegree(2, e).coefficient, n = this.monomByDegree(1, e).coefficient, l = this.monomByDegree(0, e).coefficient, u = n.clone().pow(2).subtract(r.clone().multiply(l).multiply(4)), u.isZero() ? (f = n.clone().opposite().divide(r.clone().multiply(2)), t = new C(e).subtract(f.display).multiply(f.denominator), s = new C(e).subtract(f.display).multiply(f.denominator), g = r.divide(f.denominator).divide(f.denominator), g.isOne() ? [t, s] : [new C(g.display), t, s]) : u.isPositive() && u.isSquare() ? (f = n.clone().opposite().add(u.clone().sqrt()).divide(r.clone().multiply(2)), p = n.clone().opposite().subtract(u.clone().sqrt()).divide(r.clone().multiply(2)), g = r.divide(f.denominator).divide(p.denominator), g.isOne() ? [
1588
+ new C(e).subtract(f.display).multiply(f.denominator),
1589
+ new C(e).subtract(p.display).multiply(p.denominator)
1590
1590
  ] : [
1591
1591
  new C(g.display),
1592
- new C(e).subtract(p.display).multiply(p.denominator),
1593
- new C(e).subtract(m.display).multiply(m.denominator)
1592
+ new C(e).subtract(f.display).multiply(f.denominator),
1593
+ new C(e).subtract(p.display).multiply(p.denominator)
1594
1594
  ]) : [this.clone()];
1595
1595
  if (r = this.monomByDegree(2, e), n = this.monomByDegree(1, e), l = this.monomByDegree(0, e), r.isLiteralSquare() && l.isLiteralSquare() && n.clone().pow(2).isSameAs(r.clone().multiply(l))) {
1596
1596
  const L = new C("x", r.coefficient, n.coefficient, l.coefficient), te = i(E = L, Ot).call(E, "x"), ae = [];
@@ -1603,44 +1603,44 @@ const C = class C {
1603
1603
  }
1604
1604
  return [this.clone()];
1605
1605
  });
1606
- f(this, qt, (e, t, s) => {
1606
+ d(this, qt, (e, t, s) => {
1607
1607
  const r = e.monoms[0].dividers, n = e.monoms[e.monoms.length - 1].dividers, l = [];
1608
1608
  return r.forEach((u) => {
1609
- u.degree(s).isLeq(t) && n.forEach((p) => {
1610
- u.degree(s).isNotEqual(p.degree(s)) && (l.push(new C(u, p)), l.push(new C(u, p.clone().opposite())));
1609
+ u.degree(s).isLeq(t) && n.forEach((f) => {
1610
+ u.degree(s).isNotEqual(f.degree(s)) && (l.push(new C(u, f)), l.push(new C(u, f.clone().opposite())));
1611
1611
  });
1612
1612
  }), l;
1613
1613
  });
1614
- f(this, at, (e) => {
1614
+ d(this, at, (e) => {
1615
1615
  for (const t of i(this, y))
1616
1616
  t.coefficient.multiply(e);
1617
1617
  return this.reduce();
1618
1618
  });
1619
- f(this, Tt, (e) => i(this, at).call(this, new c(e)));
1620
- f(this, At, (e) => {
1619
+ d(this, Tt, (e) => i(this, at).call(this, new c(e)));
1620
+ d(this, At, (e) => {
1621
1621
  for (const t of i(this, y))
1622
1622
  t.multiply(e);
1623
1623
  return this.reduce();
1624
1624
  });
1625
- f(this, Mt, (e) => {
1625
+ d(this, Mt, (e) => {
1626
1626
  const t = [];
1627
1627
  for (const s of i(this, y))
1628
1628
  for (const r of e.monoms)
1629
1629
  t.push(I.xMultiply(s, r));
1630
1630
  return h(this, y, t), this.reduce();
1631
1631
  });
1632
- f(this, Ct, (e, t) => {
1632
+ d(this, Ct, (e, t) => {
1633
1633
  switch (t.tokenType) {
1634
- case d.COEFFICIENT:
1634
+ case m.COEFFICIENT:
1635
1635
  e.push(new C(t.token));
1636
1636
  break;
1637
- case d.VARIABLE:
1637
+ case m.VARIABLE:
1638
1638
  e.push(new C().add(new I(t.token)));
1639
1639
  break;
1640
- case d.CONSTANT:
1640
+ case m.CONSTANT:
1641
1641
  console.log("Actually, not supported - will be added later !");
1642
1642
  break;
1643
- case d.OPERATION:
1643
+ case m.OPERATION:
1644
1644
  if (e.length >= 2) {
1645
1645
  const s = e.pop(), r = e.pop();
1646
1646
  if (r === void 0 || s === void 0)
@@ -1670,15 +1670,15 @@ const C = class C {
1670
1670
  } else
1671
1671
  throw new Error("Error parsing the polynom");
1672
1672
  break;
1673
- case d.MONOM:
1673
+ case m.MONOM:
1674
1674
  console.error("The monom token should not appear here");
1675
1675
  break;
1676
- case d.FUNCTION:
1676
+ case m.FUNCTION:
1677
1677
  console.error("The function token should not appear here - might be introduced later.");
1678
1678
  break;
1679
1679
  }
1680
1680
  });
1681
- f(this, Ye, (e, t, s, r) => {
1681
+ d(this, Ye, (e, t, s, r) => {
1682
1682
  let n = "";
1683
1683
  for (const l of i(this, y)) {
1684
1684
  if (l.coefficient.value === 0)
@@ -1692,8 +1692,8 @@ const C = class C {
1692
1692
  * Main parse using a shutting yard class
1693
1693
  * @param inputStr
1694
1694
  */
1695
- f(this, $t, (e) => {
1696
- const s = new ci().parse(e).rpn;
1695
+ d(this, $t, (e) => {
1696
+ const s = new li().parse(e).rpn;
1697
1697
  this.zero();
1698
1698
  const r = [];
1699
1699
  for (const n of s)
@@ -1758,7 +1758,7 @@ const C = class C {
1758
1758
  }
1759
1759
  // #endregion Private methods (15)
1760
1760
  };
1761
- Ze = new WeakMap(), y = new WeakMap(), Xe = new WeakMap(), ht = new WeakMap(), Et = new WeakMap(), Nt = new WeakMap(), Ot = new WeakMap(), qt = new WeakMap(), at = new WeakMap(), Tt = new WeakMap(), At = new WeakMap(), Mt = new WeakMap(), It = new WeakSet(), mi = function(e, ...t) {
1761
+ Ze = new WeakMap(), y = new WeakMap(), Xe = new WeakMap(), ht = new WeakMap(), Et = new WeakMap(), Nt = new WeakMap(), Ot = new WeakMap(), qt = new WeakMap(), at = new WeakMap(), Tt = new WeakMap(), At = new WeakMap(), Mt = new WeakMap(), It = new WeakSet(), pi = function(e, ...t) {
1762
1762
  if (t.length === 0) {
1763
1763
  if (e = "" + e, e !== "" && !isNaN(Number(e))) {
1764
1764
  this.empty();
@@ -1788,16 +1788,16 @@ Ze = new WeakMap(), y = new WeakMap(), Xe = new WeakMap(), ht = new WeakMap(), E
1788
1788
  return this.zero();
1789
1789
  }, Ct = new WeakMap(), Ye = new WeakMap(), $t = new WeakMap();
1790
1790
  let T = C;
1791
- function ni(o, e = !0) {
1791
+ function ri(o, e = !0) {
1792
1792
  return e ? `\\left( ${o} \\right)` : `(${o})`;
1793
1793
  }
1794
1794
  var Ee, Qe, Ne, Oe;
1795
1795
  const we = class we {
1796
1796
  constructor(e, t) {
1797
- f(this, Ee);
1798
- f(this, Qe, !1);
1799
- f(this, Ne);
1800
- f(this, Oe);
1797
+ d(this, Ee);
1798
+ d(this, Qe, !1);
1799
+ d(this, Ne);
1800
+ d(this, Oe);
1801
1801
  if (e instanceof we)
1802
1802
  h(this, Ne, e.polynom.clone()), h(this, Oe, e.power.clone());
1803
1803
  else if (typeof e == "string" && t === void 0) {
@@ -1843,7 +1843,7 @@ const we = class we {
1843
1843
  get display() {
1844
1844
  const e = this.power.numerator, t = this.power.denominator;
1845
1845
  let s, r;
1846
- return i(this, Ee) === 0 && t > 1 ? (s = `${t === 2 ? "sqrt" : `root(${t})`}(${this.polynom.display})`, r = Math.abs(e) === 1 ? "" : `^(${Math.abs(e)})`) : (s = i(this, Qe) && this.power.isOne() ? this.polynom.display : ni(this.polynom.display, !1), r = t === 1 && Math.abs(e) === 1 ? "" : `^(${this.power.display})`), s = `${s}${r}`, i(this, Ee) === 0 && e < 0 && (s = `1/(${s})`), s;
1846
+ return i(this, Ee) === 0 && t > 1 ? (s = `${t === 2 ? "sqrt" : `root(${t})`}(${this.polynom.display})`, r = Math.abs(e) === 1 ? "" : `^(${Math.abs(e)})`) : (s = i(this, Qe) && this.power.isOne() ? this.polynom.display : ri(this.polynom.display, !1), r = t === 1 && Math.abs(e) === 1 ? "" : `^(${this.power.display})`), s = `${s}${r}`, i(this, Ee) === 0 && e < 0 && (s = `1/(${s})`), s;
1847
1847
  }
1848
1848
  divide(e) {
1849
1849
  if (e instanceof we && this.isSameAs(e))
@@ -1922,7 +1922,7 @@ const we = class we {
1922
1922
  get tex() {
1923
1923
  const e = this.power.numerator, t = this.power.denominator;
1924
1924
  let s, r;
1925
- return i(this, Ee) === 0 && t > 1 ? (s = `\\sqrt${t === 2 ? "" : `[ ${t} ]`}{ ${this.polynom.tex} }`, r = Math.abs(e) === 1 ? "" : `^{ ${Math.abs(e)} }`) : (s = i(this, Qe) && this.power.isOne() ? this.polynom.tex : ni(this.polynom.tex), r = t === 1 && Math.abs(e) === 1 ? "" : `^{ ${this.power.tex} }`), s = `${s}${r}`, i(this, Ee) === 0 && e < 0 && (s = `\\frac{ 1 }{ ${s} }`), s;
1925
+ return i(this, Ee) === 0 && t > 1 ? (s = `\\sqrt${t === 2 ? "" : `[ ${t} ]`}{ ${this.polynom.tex} }`, r = Math.abs(e) === 1 ? "" : `^{ ${Math.abs(e)} }`) : (s = i(this, Qe) && this.power.isOne() ? this.polynom.tex : ri(this.polynom.tex), r = t === 1 && Math.abs(e) === 1 ? "" : `^{ ${this.power.tex} }`), s = `${s}${r}`, i(this, Ee) === 0 && e < 0 && (s = `\\frac{ 1 }{ ${s} }`), s;
1926
1926
  }
1927
1927
  get variables() {
1928
1928
  return this.polynom.variables;
@@ -1937,11 +1937,11 @@ var Ue = /* @__PURE__ */ ((o) => (o[o.ROOT = 0] = "ROOT", o[o.POWER = 1] = "POWE
1937
1937
  const xe = class xe {
1938
1938
  constructor(e, t, s) {
1939
1939
  // Left part of the equation
1940
- f(this, q);
1940
+ d(this, q);
1941
1941
  // Right part of the equation
1942
- f(this, A);
1942
+ d(this, A);
1943
1943
  // Signe of the equation
1944
- f(this, re);
1944
+ d(this, re);
1945
1945
  // #endregion Constructors (3)
1946
1946
  // #region Properties and methods (26)
1947
1947
  // ------------------------------------------
@@ -2046,7 +2046,7 @@ const xe = class xe {
2046
2046
  a(this, "test", (e) => this.left.evaluate(e).isEqual(this.right.evaluate(e)));
2047
2047
  // #endregion Getters And Setters (13)
2048
2048
  // #region Private methods (6)
2049
- f(this, Pt, (e) => {
2049
+ d(this, Pt, (e) => {
2050
2050
  if (e.includes("geq"))
2051
2051
  return e.includes("\\geq") ? "\\geq" : "geq";
2052
2052
  if (e.includes("leq"))
@@ -2069,8 +2069,8 @@ const xe = class xe {
2069
2069
  });
2070
2070
  // -----------------------------------------------
2071
2071
  // Equations solving algorithms
2072
- f(this, Ke, (e) => e === void 0 ? "=" : e.includes("geq") || e.includes(">=") || e.includes("=>") ? ">=" : e.includes(">") ? ">" : e.includes("leq") || e.includes("<=") || e.includes("=<") ? "<=" : e.includes("<") ? "<" : "=");
2073
- f(this, St, () => i(this, re) === "=" ? this : i(this, re).includes("<") ? (i(this, re).replace("<", ">"), this) : i(this, re).includes(">") ? (i(this, re).replace(">", "<"), this) : this);
2072
+ d(this, Ke, (e) => e === void 0 ? "=" : e.includes("geq") || e.includes(">=") || e.includes("=>") ? ">=" : e.includes(">") ? ">" : e.includes("leq") || e.includes("<=") || e.includes("=<") ? "<=" : e.includes("<") ? "<" : "=");
2073
+ d(this, St, () => i(this, re) === "=" ? this : i(this, re).includes("<") ? (i(this, re).replace("<", ">"), this) : i(this, re).includes(">") ? (i(this, re).replace(">", "<"), this) : this);
2074
2074
  if (h(this, q, new T().zero()), h(this, A, new T().zero()), h(this, re, "="), e !== void 0 && t === void 0) {
2075
2075
  if (e instanceof xe)
2076
2076
  return e.clone();
@@ -2173,14 +2173,14 @@ const xe = class xe {
2173
2173
  };
2174
2174
  q = new WeakMap(), A = new WeakMap(), re = new WeakMap(), Pt = new WeakMap(), Ke = new WeakMap(), St = new WeakMap();
2175
2175
  let H = xe;
2176
- var N, Ve, lt, Yt;
2176
+ var N, Ve, lt, Xt;
2177
2177
  const me = class me {
2178
2178
  // #endregion Class fields (1)
2179
2179
  // #region Constructors (1)
2180
2180
  constructor(...e) {
2181
2181
  // #region Class fields (1)
2182
- f(this, N, []);
2183
- f(this, Ve, Ue.POWER);
2182
+ d(this, N, []);
2183
+ d(this, Ve, Ue.POWER);
2184
2184
  return this.parse(...e), this;
2185
2185
  }
2186
2186
  // #endregion Constructors (1)
@@ -2269,7 +2269,7 @@ const me = class me {
2269
2269
  throw new Error("Method not implemented.");
2270
2270
  }
2271
2271
  reduce() {
2272
- const e = Wt(this);
2272
+ const e = Gt(this);
2273
2273
  return h(this, N, Object.values(e).map((t) => {
2274
2274
  const s = t[0].polynom, r = t.reduce((n, l) => n.add(l.power), new c("0"));
2275
2275
  return new fe(s, r.reduce());
@@ -2297,11 +2297,11 @@ const me = class me {
2297
2297
  if (e.length === 1)
2298
2298
  return e[0];
2299
2299
  if (e.length === 2)
2300
- return M(s = me, lt, Yt).call(s, e[0], e[1]);
2300
+ return M(s = me, lt, Xt).call(s, e[0], e[1]);
2301
2301
  let t = e[0];
2302
2302
  return e.shift(), e.forEach((r) => {
2303
2303
  var n;
2304
- return t = M(n = me, lt, Yt).call(n, t, r);
2304
+ return t = M(n = me, lt, Xt).call(n, t, r);
2305
2305
  }), t;
2306
2306
  }
2307
2307
  // #endregion Properties and methods (25)
@@ -2343,15 +2343,15 @@ const me = class me {
2343
2343
  }
2344
2344
  // #endregion Private methods (1)
2345
2345
  };
2346
- N = new WeakMap(), Ve = new WeakMap(), lt = new WeakSet(), Yt = function(e, t) {
2347
- const s = Wt(e), r = Wt(t), l = Object.keys(s).filter((u) => Object.hasOwn(r, u)).map((u) => {
2348
- const p = s[u].reduce((g, E) => g.add(E.power), new c("0")), m = r[u].reduce((g, E) => g.add(E.power), new c("0"));
2349
- return new fe(u, c.min(p, m));
2346
+ N = new WeakMap(), Ve = new WeakMap(), lt = new WeakSet(), Xt = function(e, t) {
2347
+ const s = Gt(e), r = Gt(t), l = Object.keys(s).filter((u) => Object.hasOwn(r, u)).map((u) => {
2348
+ const f = s[u].reduce((g, E) => g.add(E.power), new c("0")), p = r[u].reduce((g, E) => g.add(E.power), new c("0"));
2349
+ return new fe(u, c.min(f, p));
2350
2350
  });
2351
2351
  return new me(...l);
2352
- }, f(me, lt);
2353
- let Xt = me;
2354
- function Wt(o) {
2352
+ }, d(me, lt);
2353
+ let Ht = me;
2354
+ function Gt(o) {
2355
2355
  const e = new c().one(), t = o.factors.reduce((s, r) => {
2356
2356
  if (r.polynom.degree().isZero())
2357
2357
  return r.polynom.monoms.length > 0 && e.multiply(r.polynom.monoms[0].coefficient), s;
@@ -2363,25 +2363,25 @@ function Wt(o) {
2363
2363
  var k, Ie, Bt, Rt;
2364
2364
  const Ge = class Ge {
2365
2365
  constructor(...e) {
2366
- f(this, k);
2366
+ d(this, k);
2367
2367
  // Determine the letters in the linear system, usually ['x', 'y']
2368
- f(this, Ie);
2368
+ d(this, Ie);
2369
2369
  a(this, "parse", (...e) => (h(this, k, e.map((t) => new H(t))), i(this, Bt).call(this), this));
2370
2370
  a(this, "clone", () => new Ge().parse(...i(this, k).map((e) => e.clone())));
2371
2371
  a(this, "buildTex", (e, t) => {
2372
2372
  let s, r, n = [];
2373
2373
  const l = [];
2374
- for (const p of e)
2375
- n = n.concat(p.letters());
2374
+ for (const f of e)
2375
+ n = n.concat(f.letters());
2376
2376
  n = [...new Set(n)], n.sort();
2377
- for (let p = 0; p < e.length; p++) {
2378
- const m = e[p];
2377
+ for (let f = 0; f < e.length; f++) {
2378
+ const p = e[f];
2379
2379
  s = [];
2380
2380
  for (const g of n)
2381
- r = m.left.monomByLetter(g), s.length === 0 ? s.push(r.isZero() ? "" : r.tex) : s.push(r.isZero() ? "" : (r.coefficient.sign() === 1 ? "+" : "") + r.tex);
2382
- if (s.push("="), s.push(m.right.tex), (t == null ? void 0 : t[p]) !== void 0) {
2381
+ r = p.left.monomByLetter(g), s.length === 0 ? s.push(r.isZero() ? "" : r.tex) : s.push(r.isZero() ? "" : (r.coefficient.sign() === 1 ? "+" : "") + r.tex);
2382
+ if (s.push("="), s.push(p.right.tex), (t == null ? void 0 : t[f]) !== void 0) {
2383
2383
  s[s.length - 1] = s[s.length - 1] + " \\phantom{\\quad}";
2384
- for (const g of t[p])
2384
+ for (const g of t[f])
2385
2385
  s.push(`\\ \\cdot\\ ${g.startsWith("-") ? "\\left(" + g + "\\right)" : g}`);
2386
2386
  }
2387
2387
  l.push(s.join("&"));
@@ -2408,16 +2408,16 @@ const Ge = class Ge {
2408
2408
  if (l === r)
2409
2409
  continue;
2410
2410
  const u = s[l][r].clone().opposite();
2411
- for (let p = 0; p < s[l].length; p++)
2412
- s[l][p].add(s[r][p].clone().multiply(u));
2413
- if (s[l].slice(0, s[l].length - 1).every((p) => p.isZero()))
2411
+ for (let f = 0; f < s[l].length; f++)
2412
+ s[l][f].add(s[r][f].clone().multiply(u));
2413
+ if (s[l].slice(0, s[l].length - 1).every((f) => f.isZero()))
2414
2414
  return s[l][s[l].length - 1].isZero() ? [new c().infinite()] : [];
2415
2415
  }
2416
2416
  }
2417
2417
  return s.map((r) => r[r.length - 1]);
2418
2418
  });
2419
- f(this, Bt, () => (h(this, Ie, i(this, k).reduce((e, t) => [.../* @__PURE__ */ new Set([...e, ...t.variables])], [])), i(this, Ie).sort(), this));
2420
- f(this, Rt, () => {
2419
+ d(this, Bt, () => (h(this, Ie, i(this, k).reduce((e, t) => [.../* @__PURE__ */ new Set([...e, ...t.variables])], [])), i(this, Ie).sort(), this));
2420
+ d(this, Rt, () => {
2421
2421
  const e = [], t = [];
2422
2422
  for (const s of i(this, k)) {
2423
2423
  const r = [], n = s.clone().reorder();
@@ -2532,13 +2532,13 @@ const Ge = class Ge {
2532
2532
  }
2533
2533
  };
2534
2534
  k = new WeakMap(), Ie = new WeakMap(), Bt = new WeakMap(), Rt = new WeakMap();
2535
- let Qt = Ge;
2536
- function Fi(o, e) {
2535
+ let Yt = Ge;
2536
+ function Vi(o, e) {
2537
2537
  return o.dimension === e.dimension && o.array.every(
2538
2538
  (t, s) => e.array[s].isEqual(t)
2539
2539
  );
2540
2540
  }
2541
- function ji(o, e) {
2541
+ function Fi(o, e) {
2542
2542
  if (o.dimension !== e.dimension)
2543
2543
  return !1;
2544
2544
  const t = e.array[0].value / o.array[0].value;
@@ -2546,13 +2546,13 @@ function ji(o, e) {
2546
2546
  (s, r) => e.array[r].value === s.value * t
2547
2547
  );
2548
2548
  }
2549
- function Ui(o, e) {
2549
+ function ji(o, e) {
2550
2550
  return o.dimension !== e.dimension ? new c().invalid() : o.array.reduce(
2551
2551
  (t, s, r) => t.add(s.clone().multiply(e.array[r])),
2552
2552
  new c(0)
2553
2553
  );
2554
2554
  }
2555
- function Gi(...o) {
2555
+ function Ui(...o) {
2556
2556
  return o.some((e) => e.dimension !== o[0].dimension) ? new c().invalid() : o[0].dimension === 2 && o.length !== 2 ? new c().invalid() : o[0].dimension === 3 && o.length !== 3 ? new c().invalid() : o[0].dimension === 2 ? o[0].array[0].clone().multiply(o[1].array[1]).subtract(o[0].array[1].clone().multiply(o[1].array[0])) : o[0].array[0].clone().multiply(
2557
2557
  o[1].array[1].clone().multiply(o[2].array[2]).subtract(o[1].array[2].clone().multiply(o[2].array[1]))
2558
2558
  ).subtract(
@@ -2561,11 +2561,11 @@ function Gi(...o) {
2561
2561
  )
2562
2562
  ).add(o[0].array[2].clone().multiply(o[1].array[0].clone().multiply(o[2].array[1]).subtract(o[1].array[1].clone().multiply(o[2].array[0]))));
2563
2563
  }
2564
- var V, ze, zt;
2564
+ var V, ze;
2565
2565
  const Se = class Se {
2566
2566
  constructor(...e) {
2567
- f(this, V, []);
2568
- f(this, ze, !1);
2567
+ d(this, V, []);
2568
+ d(this, ze, !1);
2569
2569
  a(this, "zero", () => (i(this, V).forEach((e) => e.zero()), this));
2570
2570
  a(this, "one", () => (this.zero(), this.x.one(), this));
2571
2571
  a(this, "opposite", () => (i(this, V).forEach((e) => e.opposite()), this));
@@ -2575,15 +2575,15 @@ const Se = class Se {
2575
2575
  const e = this.norm;
2576
2576
  return e === 0 ? this : this.divideByScalar(e);
2577
2577
  });
2578
- a(this, "dot", (e) => Ui(this, e));
2578
+ a(this, "dot", (e) => ji(this, e));
2579
2579
  a(this, "normal", () => {
2580
2580
  if (this.dimension >= 3)
2581
2581
  throw new Error("Normal vector can only be determined in 2D");
2582
2582
  const e = this.x.clone().opposite(), t = this.y.clone();
2583
2583
  return i(this, V)[0] = t, i(this, V)[1] = e, this;
2584
2584
  });
2585
- a(this, "isEqual", (e) => Fi(this, e));
2586
- a(this, "isColinearTo", (e) => ji(this, e));
2585
+ a(this, "isEqual", (e) => Vi(this, e));
2586
+ a(this, "isColinearTo", (e) => Fi(this, e));
2587
2587
  a(this, "isNormalTo", (e) => this.dot(e).isZero());
2588
2588
  a(this, "multiplyByScalar", (e) => {
2589
2589
  const t = new c(e);
@@ -2601,7 +2601,7 @@ const Se = class Se {
2601
2601
  let r = this.dot(e).value;
2602
2602
  return t && (r = Math.abs(r)), (s ? 1 : 180 / Math.PI) * Math.acos(r / (this.norm * e.norm));
2603
2603
  });
2604
- f(this, zt, (e) => {
2604
+ a(this, "fromString", (e) => {
2605
2605
  e.startsWith("(") && (e = e.substring(1)), e.endsWith(")") && (e = e.substring(0, e.length - 1));
2606
2606
  const t = e.split(/[,;\s]/g).filter((s) => s.trim() !== "");
2607
2607
  return t.length < 2 ? this : (h(this, V, t.map((s) => new c(s))), this);
@@ -2692,7 +2692,7 @@ const Se = class Se {
2692
2692
  if (e[0] instanceof Se)
2693
2693
  return e[0].clone();
2694
2694
  if (typeof e[0] == "string")
2695
- return i(this, zt).call(this, e[0]);
2695
+ return this.fromString(e[0]);
2696
2696
  throw new Error("Invalid value");
2697
2697
  }
2698
2698
  if (e.length === 2) {
@@ -2746,9 +2746,9 @@ const Se = class Se {
2746
2746
  };
2747
2747
  }
2748
2748
  };
2749
- V = new WeakMap(), ze = new WeakMap(), zt = new WeakMap();
2749
+ V = new WeakMap(), ze = new WeakMap();
2750
2750
  let x = Se;
2751
- function gi(o = 0.5) {
2751
+ function mi(o = 0.5) {
2752
2752
  return Math.random() < o;
2753
2753
  }
2754
2754
  function de(o, e, t) {
@@ -2766,19 +2766,19 @@ function de(o, e, t) {
2766
2766
  return s;
2767
2767
  }
2768
2768
  function X(o, e) {
2769
- return e === !1 ? gi() ? de(1, o) : -de(1, o) : de(-o, o);
2769
+ return e === !1 ? mi() ? de(1, o) : -de(1, o) : de(-o, o);
2770
2770
  }
2771
- function Wi(o) {
2771
+ function Gi(o) {
2772
2772
  let e = G.primes();
2773
- return o !== void 0 && (e = e.filter((t) => t < o)), ti(e);
2773
+ return o !== void 0 && (e = e.filter((t) => t < o)), ei(e);
2774
2774
  }
2775
- function Hi(o, e) {
2776
- return e === void 0 && (e = 1), o.length <= 0 ? Object.values(o) : yi(o).slice(0, e);
2775
+ function Wi(o, e) {
2776
+ return e === void 0 && (e = 1), o.length <= 0 ? Object.values(o) : gi(o).slice(0, e);
2777
2777
  }
2778
- function ti(o) {
2778
+ function ei(o) {
2779
2779
  return o.length === 0 ? null : o[de(0, o.length - 1)];
2780
2780
  }
2781
- function yi(o) {
2781
+ function gi(o) {
2782
2782
  const e = Object.values(o);
2783
2783
  for (let t = e.length - 1; t > 0; t--) {
2784
2784
  const s = Math.floor(Math.random() * (t + 1)), r = e[t];
@@ -2786,20 +2786,16 @@ function yi(o) {
2786
2786
  }
2787
2787
  return e;
2788
2788
  }
2789
- class D extends x {
2789
+ class j extends x {
2790
2790
  constructor(...e) {
2791
2791
  super(), e.length > 0 && this.parse(...e);
2792
2792
  }
2793
2793
  parse(...e) {
2794
- if (this.asPoint = !0, e.length === 0) {
2794
+ if (this.asPoint = !0, e.length === 1) {
2795
2795
  if (e[0] instanceof x)
2796
2796
  return this.array = e[0].copy(), this;
2797
- if (typeof e[0] == "string") {
2798
- const t = e[0].replaceAll("(", "").replaceAll(")", "").split(",").map((s) => new c(s));
2799
- if (t.some((s) => s.isNaN()))
2800
- throw new Error("The value is not a valid point sting (a,b): " + e[0]);
2801
- this.array = t;
2802
- }
2797
+ if (typeof e[0] == "string")
2798
+ return this.fromString(e[0]), this;
2803
2799
  }
2804
2800
  if (e.length > 1) {
2805
2801
  if (e.some((s) => s instanceof x))
@@ -2812,11 +2808,11 @@ class D extends x {
2812
2808
  return this;
2813
2809
  }
2814
2810
  clone() {
2815
- const e = new D();
2811
+ const e = new j();
2816
2812
  return e.array = this.copy(), e.asPoint = !0, e;
2817
2813
  }
2818
2814
  }
2819
- var wi = /* @__PURE__ */ ((o) => (o.None = "none", o.Parallel = "parallel", o.Perpendicular = "perpendicular", o.Tangent = "tangent", o))(wi || {}), Ce, B, R, U, ne, Y, $e, ve;
2815
+ var yi = /* @__PURE__ */ ((o) => (o.None = "none", o.Parallel = "parallel", o.Perpendicular = "perpendicular", o.Tangent = "tangent", o))(yi || {}), Ce, B, R, U, ne, Y, $e, ve;
2820
2816
  const Le = class Le {
2821
2817
  /**
2822
2818
  * Value can be a mix of:
@@ -2824,15 +2820,15 @@ const Le = class Le {
2824
2820
  * @param values
2825
2821
  */
2826
2822
  constructor(...e) {
2827
- f(this, Ce);
2823
+ d(this, Ce);
2828
2824
  // ax + by + c = 0
2829
- f(this, B);
2830
- f(this, R);
2831
- f(this, U);
2832
- f(this, ne);
2833
- f(this, Y);
2834
- f(this, $e);
2835
- f(this, ve, "canonical");
2825
+ d(this, B);
2826
+ d(this, R);
2827
+ d(this, U);
2828
+ d(this, ne);
2829
+ d(this, Y);
2830
+ d(this, $e);
2831
+ d(this, ve, "canonical");
2836
2832
  a(this, "randomPoint", (e) => i(this, Y).clone().multiplyByScalar(X(e === void 0 || e <= 1 ? 3 : e, !1)).add(i(this, ne)));
2837
2833
  a(this, "randomNearPoint", (e) => {
2838
2834
  const t = this.randomPoint(e);
@@ -3121,14 +3117,14 @@ const Le = class Le {
3121
3117
  };
3122
3118
  Ce = new WeakMap(), B = new WeakMap(), R = new WeakMap(), U = new WeakMap(), ne = new WeakMap(), Y = new WeakMap(), $e = new WeakMap(), ve = new WeakMap(), // A line is defined as the canonical form
3123
3119
  a(Le, "PERPENDICULAR", "perpendicular"), a(Le, "PARALLEL", "parallel");
3124
- let j = Le;
3125
- var oe, F, qe, kt, Lt, Dt, he, vi, mt, bi, xi, Ei, Kt;
3126
- const Zt = class Zt {
3120
+ let D = Le;
3121
+ var oe, F, qe, zt, kt, Lt, he, wi, mt, vi, bi, xi, Qt;
3122
+ const Dt = class Dt {
3127
3123
  constructor(...e) {
3128
- f(this, he);
3129
- f(this, oe);
3130
- f(this, F);
3131
- f(this, qe);
3124
+ d(this, he);
3125
+ d(this, oe);
3126
+ d(this, F);
3127
+ d(this, qe);
3132
3128
  /**
3133
3129
  * Get the relative position between circle and line. It corresponds to the number of intersection.
3134
3130
  * @param {Line} L
@@ -3147,7 +3143,7 @@ const Zt = class Zt {
3147
3143
  const s = i(this, qe).clone(), r = e.getEquation().clone().isolate("x"), n = e.getEquation().clone().isolate("y");
3148
3144
  return r instanceof H && n instanceof H && (s.replaceBy("y", n.right).simplify(), s.solve()), t;
3149
3145
  });
3150
- a(this, "tangents", (e) => e instanceof c ? i(this, Dt).call(this, e) : this.isPointOnCircle(e) ? i(this, kt).call(this, e) : i(this, oe) !== void 0 && i(this, oe).distanceTo(e).value > this.radius.value ? (i(this, Lt).call(this, e), []) : (console.log("No tangents as the point is inside !"), []));
3146
+ a(this, "tangents", (e) => e instanceof c ? i(this, Lt).call(this, e) : this.isPointOnCircle(e) ? i(this, zt).call(this, e) : i(this, oe) !== void 0 && i(this, oe).distanceTo(e).value > this.radius.value ? i(this, kt).call(this, e) : (console.log("No tangents as the point is inside !"), []));
3151
3147
  a(this, "isPointOnCircle", (e) => {
3152
3148
  var t;
3153
3149
  return ((t = i(this, qe)) == null ? void 0 : t.test({ x: e.x, y: e.y })) ?? !1;
@@ -3157,29 +3153,33 @@ const Zt = class Zt {
3157
3153
  return t.forEach((r) => {
3158
3154
  for (const n of [[1, 1], [-1, 1], [-1, -1], [1, -1]])
3159
3155
  s.push(
3160
- new D(
3156
+ new j(
3161
3157
  this.center.x.clone().add(n[0] * r[0]),
3162
3158
  this.center.y.clone().add(n[1] * r[1])
3163
3159
  )
3164
3160
  );
3165
3161
  }), s;
3166
3162
  });
3167
- f(this, kt, (e) => {
3168
- const t = new D(this.center, e);
3169
- return [new j(e, t, wi.Perpendicular)];
3163
+ d(this, zt, (e) => {
3164
+ const t = new x(this.center, e);
3165
+ return [new D(e, t, yi.Perpendicular)];
3170
3166
  });
3171
- f(this, Lt, (e) => {
3167
+ d(this, kt, (e) => {
3172
3168
  const t = this.center.x.clone().subtract(e.x), s = this.center.y.clone().subtract(e.y), r = new T("x"), n = new T("x^2+1");
3173
- r.multiply(t).subtract(s).pow(2), n.multiply(this.squareRadius), new H(r, n).moveLeft().simplify().solve();
3169
+ return r.multiply(t).subtract(s).pow(2), n.multiply(this.squareRadius), new H(r, n).solve().map((f) => {
3170
+ let p;
3171
+ const g = new H("y", "x");
3172
+ return f.exact instanceof c ? (p = e.x.clone().opposite().multiply(f.exact).add(e.y), g.right.multiply(f.exact).add(p)) : (p = e.x.clone().opposite().multiply(f.value).add(e.y), g.right.multiply(f.value).add(p)), new D(g);
3173
+ });
3174
3174
  });
3175
- f(this, Dt, (e) => {
3176
- const t = e.numerator, s = -e.denominator, r = this.center.x.clone(), n = this.center.y.clone(), l = this.squareRadius.clone().multiply(e.numerator ** 2 + e.denominator ** 2), u = r.clone().multiply(t).opposite().subtract(n.clone().multiply(s)).add(l.clone().sqrt()), p = r.clone().multiply(t).opposite().subtract(n.clone().multiply(s)).subtract(l.clone().sqrt());
3177
- return [new j(t, s, u), new j(t, s, p)];
3175
+ d(this, Lt, (e) => {
3176
+ const t = e.numerator, s = -e.denominator, r = this.center.x.clone(), n = this.center.y.clone(), l = this.squareRadius.clone().multiply(e.numerator ** 2 + e.denominator ** 2), u = r.clone().multiply(t).opposite().subtract(n.clone().multiply(s)).add(l.clone().sqrt()), f = r.clone().multiply(t).opposite().subtract(n.clone().multiply(s)).subtract(l.clone().sqrt());
3177
+ return [new D(t, s, u), new D(t, s, f)];
3178
3178
  });
3179
3179
  e.length > 0 && this.parse(...e);
3180
3180
  }
3181
3181
  get center() {
3182
- return i(this, oe) ?? new D();
3182
+ return i(this, oe) ?? new j();
3183
3183
  }
3184
3184
  get squareRadius() {
3185
3185
  return i(this, F) ?? new c(0);
@@ -3212,7 +3212,7 @@ const Zt = class Zt {
3212
3212
  return this.center.x.isZero() ? e = "x^2" : e = `(x${this.center.x.isNegative() ? "+" : "-"}${this.center.x.clone().abs().tex})^2`, this.center.y.isZero() ? t = "y^2" : t = `(y${this.center.y.isNegative() ? "+" : "-"}${this.center.y.clone().abs().tex})^2`, `${e}+${t}=${this.squareRadius.display}`;
3213
3213
  }
3214
3214
  clone() {
3215
- return new Zt(
3215
+ return new Dt(
3216
3216
  this.center.clone(),
3217
3217
  this.squareRadius.clone(),
3218
3218
  !0
@@ -3222,7 +3222,7 @@ const Zt = class Zt {
3222
3222
  return t ? h(this, F, new c(e)) : h(this, F, new c(e).pow(2)), M(this, he, mt).call(this), this;
3223
3223
  }
3224
3224
  parse(...e) {
3225
- return M(this, he, vi).call(this), typeof e[0] == "string" ? M(this, he, Kt).call(this, new H(e[0])) : e[0] instanceof H ? M(this, he, Kt).call(this, e[0]) : e[0] instanceof Zt ? M(this, he, bi).call(this, e[0]) : e[0] instanceof D && e.length > 1 && (e[1] instanceof D ? e[2] instanceof D || M(this, he, Ei).call(this, e[0], e[1]) : (e[1] instanceof c || typeof e[1] == "number") && M(this, he, xi).call(this, e[0], e[1], typeof e[2] == "boolean" ? e[2] : !1)), M(this, he, mt).call(this), this;
3225
+ return M(this, he, wi).call(this), typeof e[0] == "string" ? M(this, he, Qt).call(this, new H(e[0])) : e[0] instanceof H ? M(this, he, Qt).call(this, e[0]) : e[0] instanceof Dt ? M(this, he, vi).call(this, e[0]) : e[0] instanceof j && e.length > 1 && (e[1] instanceof j ? e[2] instanceof j || M(this, he, xi).call(this, e[0], e[1]) : (e[1] instanceof c || typeof e[1] == "number") && M(this, he, bi).call(this, e[0], e[1], typeof e[2] == "boolean" ? e[2] : !1)), M(this, he, mt).call(this), this;
3226
3226
  }
3227
3227
  // private _parseThroughtThreePoints(A: Point, B: Point, C: Point): this {
3228
3228
  // const T = new Triangle(A, B, C), mAB = T.remarquables.mediators.AB.clone(),
@@ -3231,37 +3231,37 @@ const Zt = class Zt {
3231
3231
  // return this
3232
3232
  // }
3233
3233
  };
3234
- oe = new WeakMap(), F = new WeakMap(), qe = new WeakMap(), kt = new WeakMap(), Lt = new WeakMap(), Dt = new WeakMap(), he = new WeakSet(), vi = function() {
3234
+ oe = new WeakMap(), F = new WeakMap(), qe = new WeakMap(), zt = new WeakMap(), kt = new WeakMap(), Lt = new WeakMap(), he = new WeakSet(), wi = function() {
3235
3235
  return h(this, oe, void 0), h(this, F, void 0), h(this, qe, void 0), this;
3236
3236
  }, mt = function() {
3237
3237
  h(this, qe, new H(
3238
3238
  new T(`(x-(${this.center.x.display}))^2+(y-(${this.center.y.display}))^2`),
3239
3239
  new T(this.squareRadius.display)
3240
3240
  ).moveLeft());
3241
- }, bi = function(e) {
3241
+ }, vi = function(e) {
3242
3242
  return h(this, oe, e.center.clone()), h(this, F, e.squareRadius.clone()), M(this, he, mt).call(this), this;
3243
- }, xi = function(e, t, s) {
3243
+ }, bi = function(e, t, s) {
3244
3244
  return h(this, oe, e.clone()), s ? h(this, F, new c(t)) : h(this, F, new c(t).pow(2)), this;
3245
- }, Ei = function(e, t) {
3245
+ }, xi = function(e, t) {
3246
3246
  return h(this, oe, e.clone()), h(this, F, new x(i(this, oe), t).normSquare), this;
3247
- }, Kt = function(e) {
3247
+ }, Qt = function(e) {
3248
3248
  if (e.moveLeft(), e.degree("x").value === 2 && e.degree("y").value === 2) {
3249
3249
  const t = e.left.monomByDegree(2, "x"), s = e.left.monomByDegree(2, "y");
3250
3250
  let r, n, l;
3251
- t.coefficient.isEqual(s.coefficient) ? (e.divide(t.coefficient), r = e.left.monomByDegree(1, "x"), n = e.left.monomByDegree(1, "y"), l = e.left.monomByDegree(0), h(this, oe, new D(r.coefficient.clone().divide(2).opposite(), n.coefficient.clone().divide(2).opposite())), h(this, F, l.coefficient.clone().opposite().add(i(this, oe).x.clone().pow(2)).add(i(this, oe).y.clone().pow(2)))) : (h(this, oe, void 0), h(this, F, void 0));
3251
+ t.coefficient.isEqual(s.coefficient) ? (e.divide(t.coefficient), r = e.left.monomByDegree(1, "x"), n = e.left.monomByDegree(1, "y"), l = e.left.monomByDegree(0), h(this, oe, new j(r.coefficient.clone().divide(2).opposite(), n.coefficient.clone().divide(2).opposite())), h(this, F, l.coefficient.clone().opposite().add(i(this, oe).x.clone().pow(2)).add(i(this, oe).y.clone().pow(2)))) : (h(this, oe, void 0), h(this, F, void 0));
3252
3252
  }
3253
3253
  return this;
3254
3254
  };
3255
- let yt = Zt;
3256
- var Q, _, ee, Je, Te, ct, Vt, ut, Pe, Ft, _e;
3257
- const jt = class jt {
3255
+ let yt = Dt;
3256
+ var Q, _, ee, Je, Te, ct, Zt, ut, Pe, Vt, _e;
3257
+ const Ft = class Ft {
3258
3258
  constructor(...e) {
3259
- f(this, Q);
3260
- f(this, _);
3261
- f(this, ee);
3262
- f(this, Je);
3263
- f(this, Te);
3264
- f(this, ct);
3259
+ d(this, Q);
3260
+ d(this, _);
3261
+ d(this, ee);
3262
+ d(this, Je);
3263
+ d(this, Te);
3264
+ d(this, ct);
3265
3265
  // ------------------------------------------
3266
3266
  // Creation / parsing functions
3267
3267
  // ------------------------------------------
@@ -3284,8 +3284,8 @@ const jt = class jt {
3284
3284
  );
3285
3285
  } else if (e.length === 3) {
3286
3286
  if (e.every((t) => typeof t == "string"))
3287
- return this.parse(...e.map((t) => new j(t)));
3288
- if (e.every((t) => t instanceof j)) {
3287
+ return this.parse(...e.map((t) => new D(t)));
3288
+ if (e.every((t) => t instanceof D)) {
3289
3289
  const t = e[0].clone(), s = e[1].clone(), r = e[2].clone();
3290
3290
  h(this, Je, { AB: t, BC: s, AC: r });
3291
3291
  let n = t.intersection(s);
@@ -3301,19 +3301,19 @@ const jt = class jt {
3301
3301
  h(this, Q, n.point.clone());
3302
3302
  else
3303
3303
  throw new Error("Lines do not intersect !");
3304
- } else e.every((t) => t instanceof D) && (h(this, Q, e[0].clone()), h(this, _, e[1].clone()), h(this, ee, e[2].clone()), h(this, Je, {
3305
- AB: new j(i(this, Q), i(this, _)),
3306
- BC: new j(i(this, _), i(this, ee)),
3307
- AC: new j(i(this, Q), i(this, ee))
3304
+ } else e.every((t) => t instanceof j) && (h(this, Q, e[0].clone()), h(this, _, e[1].clone()), h(this, ee, e[2].clone()), h(this, Je, {
3305
+ AB: new D(i(this, Q), i(this, _)),
3306
+ BC: new D(i(this, _), i(this, ee)),
3307
+ AC: new D(i(this, Q), i(this, ee))
3308
3308
  }));
3309
- } else if (e.length === 1 && e[0] instanceof jt)
3309
+ } else if (e.length === 1 && e[0] instanceof Ft)
3310
3310
  return e[0].clone();
3311
- return i(this, Vt).call(this), this;
3311
+ return i(this, Zt).call(this), this;
3312
3312
  });
3313
3313
  /**
3314
3314
  * Clone the Triangle class
3315
3315
  */
3316
- a(this, "clone", () => new jt(
3316
+ a(this, "clone", () => new Ft(
3317
3317
  i(this, Q).clone(),
3318
3318
  i(this, _).clone(),
3319
3319
  i(this, ee).clone()
@@ -3324,18 +3324,18 @@ const jt = class jt {
3324
3324
  /**
3325
3325
  * Generate the Line object for the three segments of the triangle
3326
3326
  */
3327
- f(this, Vt, () => {
3327
+ d(this, Zt, () => {
3328
3328
  h(this, Te, {
3329
- AB: new D().middleOf(i(this, Q), i(this, _)),
3330
- AC: new D().middleOf(i(this, Q), i(this, ee)),
3331
- BC: new D().middleOf(i(this, _), i(this, ee))
3332
- }), h(this, ct, i(this, Ft).call(this));
3329
+ AB: new j().middleOf(i(this, Q), i(this, _)),
3330
+ AC: new j().middleOf(i(this, Q), i(this, ee)),
3331
+ BC: new j().middleOf(i(this, _), i(this, ee))
3332
+ }), h(this, ct, i(this, Vt).call(this));
3333
3333
  });
3334
3334
  /**
3335
3335
  * Get the Vector2D class for the given name
3336
3336
  * @param ptName
3337
3337
  */
3338
- f(this, ut, (e) => {
3338
+ d(this, ut, (e) => {
3339
3339
  switch (e.toUpperCase()) {
3340
3340
  case "A":
3341
3341
  return i(this, Q);
@@ -3351,52 +3351,52 @@ const jt = class jt {
3351
3351
  * @param ptName1
3352
3352
  * @param ptName2
3353
3353
  */
3354
- f(this, Pe, (e, t) => new x(
3354
+ d(this, Pe, (e, t) => new x(
3355
3355
  i(this, ut).call(this, e),
3356
3356
  i(this, ut).call(this, t)
3357
3357
  ));
3358
- f(this, Ft, () => {
3358
+ d(this, Vt, () => {
3359
3359
  const e = {
3360
- A: new j(i(this, Q), i(this, Te).BC),
3361
- B: new j(i(this, _), i(this, Te).AC),
3362
- C: new j(i(this, ee), i(this, Te).AB),
3360
+ A: new D(i(this, Q), i(this, Te).BC),
3361
+ B: new D(i(this, _), i(this, Te).AC),
3362
+ C: new D(i(this, ee), i(this, Te).AB),
3363
3363
  intersection: null
3364
3364
  }, t = {
3365
- AB: new j(i(this, Te).AB, new x(i(this, Q), i(this, _)).normal()),
3366
- AC: new j(i(this, Te).AC, new x(i(this, Q), i(this, ee)).normal()),
3367
- BC: new j(i(this, Te).BC, new x(i(this, _), i(this, ee)).normal()),
3365
+ AB: new D(i(this, Te).AB, new x(i(this, Q), i(this, _)).normal()),
3366
+ AC: new D(i(this, Te).AC, new x(i(this, Q), i(this, ee)).normal()),
3367
+ BC: new D(i(this, Te).BC, new x(i(this, _), i(this, ee)).normal()),
3368
3368
  intersection: null
3369
3369
  }, s = {
3370
- A: new j(i(this, Q), new x(i(this, _), i(this, ee)).normal()),
3371
- B: new j(i(this, _), new x(i(this, Q), i(this, ee)).normal()),
3372
- C: new j(i(this, ee), new x(i(this, Q), i(this, _)).normal()),
3370
+ A: new D(i(this, Q), new x(i(this, _), i(this, ee)).normal()),
3371
+ B: new D(i(this, _), new x(i(this, Q), i(this, ee)).normal()),
3372
+ C: new D(i(this, ee), new x(i(this, Q), i(this, _)).normal()),
3373
3373
  intersection: null
3374
3374
  }, r = i(this, _e).call(this, "A"), n = i(this, _e).call(this, "B"), l = i(this, _e).call(this, "C"), u = {
3375
3375
  A: r.internal,
3376
3376
  B: n.internal,
3377
3377
  C: n.internal,
3378
3378
  intersection: null
3379
- }, p = {
3379
+ }, f = {
3380
3380
  A: r.external,
3381
3381
  B: n.external,
3382
3382
  C: l.external,
3383
3383
  intersection: null
3384
- }, m = {
3384
+ }, p = {
3385
3385
  medians: e,
3386
3386
  mediators: t,
3387
3387
  heights: s,
3388
3388
  bisectors: u,
3389
- externalBisectors: p
3389
+ externalBisectors: f
3390
3390
  };
3391
- return m.medians.intersection = m.medians.A.intersection(m.medians.B).point, m.mediators.intersection = m.mediators.AB.intersection(m.mediators.BC).point, m.heights.intersection = m.heights.A.intersection(m.heights.B).point, m.bisectors.intersection = m.bisectors.A.intersection(m.bisectors.B).point, m;
3391
+ return p.medians.intersection = p.medians.A.intersection(p.medians.B).point, p.mediators.intersection = p.mediators.AB.intersection(p.mediators.BC).point, p.heights.intersection = p.heights.A.intersection(p.heights.B).point, p.bisectors.intersection = p.bisectors.A.intersection(p.bisectors.B).point, p;
3392
3392
  });
3393
- f(this, _e, (e) => {
3393
+ d(this, _e, (e) => {
3394
3394
  const t = this.lines;
3395
3395
  let s, r;
3396
3396
  if (e === "A" ? (s = t.AB, r = t.AC) : e === "B" ? (s = t.AB, r = t.BC) : e === "C" && (s = t.BC, r = t.AC), s === void 0 || r === void 0)
3397
3397
  throw new Error(`The point ${e} does not exist`);
3398
- const n = s.n.simplify().norm, l = r.n.simplify().norm, u = s.getEquation().multiply(l), p = r.getEquation().multiply(n), m = new j(u.clone().subtract(p).simplify()), g = new j(p.clone().subtract(u).simplify());
3399
- return e === "A" ? m.hitSegment(this.B, this.C) ? { internal: m, external: g } : { internal: g, external: m } : e === "B" ? m.hitSegment(this.A, this.C) ? { internal: m, external: g } : { internal: g, external: m } : e === "C" ? m.hitSegment(this.B, this.A) ? { internal: m, external: g } : { internal: g, external: m } : { internal: m, external: g };
3398
+ const n = s.n.simplify().norm, l = r.n.simplify().norm, u = s.getEquation().multiply(l), f = r.getEquation().multiply(n), p = new D(u.clone().subtract(f).simplify()), g = new D(f.clone().subtract(u).simplify());
3399
+ return e === "A" ? p.hitSegment(this.B, this.C) ? { internal: p, external: g } : { internal: g, external: p } : e === "B" ? p.hitSegment(this.A, this.C) ? { internal: p, external: g } : { internal: g, external: p } : e === "C" ? p.hitSegment(this.B, this.A) ? { internal: p, external: g } : { internal: g, external: p } : { internal: p, external: g };
3400
3400
  });
3401
3401
  return e.length > 0 && this.parse(...e), this;
3402
3402
  }
@@ -3446,14 +3446,14 @@ const jt = class jt {
3446
3446
  return i(this, ct);
3447
3447
  }
3448
3448
  };
3449
- Q = new WeakMap(), _ = new WeakMap(), ee = new WeakMap(), Je = new WeakMap(), Te = new WeakMap(), ct = new WeakMap(), Vt = new WeakMap(), ut = new WeakMap(), Pe = new WeakMap(), Ft = new WeakMap(), _e = new WeakMap();
3450
- let Jt = jt;
3449
+ Q = new WeakMap(), _ = new WeakMap(), ee = new WeakMap(), Je = new WeakMap(), Te = new WeakMap(), ct = new WeakMap(), Zt = new WeakMap(), ut = new WeakMap(), Pe = new WeakMap(), Vt = new WeakMap(), _e = new WeakMap();
3450
+ let Kt = Ft;
3451
3451
  var z, W;
3452
3452
  const nt = class nt {
3453
3453
  constructor(e, t) {
3454
3454
  // ax + by + c = 0
3455
- f(this, z, new D());
3456
- f(this, W, new x());
3455
+ d(this, z, new j());
3456
+ d(this, W, new x());
3457
3457
  a(this, "clone", () => (h(this, W, i(this, W).clone()), h(this, z, i(this, z).clone()), this));
3458
3458
  // ------------------------------------------
3459
3459
  // Mathematical operations
@@ -3495,7 +3495,7 @@ const nt = class nt {
3495
3495
  // }
3496
3496
  a(this, "randomPoint", (e = 5) => {
3497
3497
  const t = i(this, z).clone(), s = new c(X(e, !1));
3498
- return new D(
3498
+ return new j(
3499
3499
  t.x.clone().add(i(this, W).x.clone().multiply(s)),
3500
3500
  t.y.clone().add(i(this, W).y.clone().multiply(s)),
3501
3501
  t.z.clone().add(i(this, W).z.clone().multiply(s))
@@ -3559,10 +3559,10 @@ z = new WeakMap(), W = new WeakMap(), // A line is defined as the canonical form
3559
3559
  a(nt, "PERPENDICULAR", "perpendicular"), a(nt, "PARALLEL", "parallel");
3560
3560
  let wt = nt;
3561
3561
  var Ae, Fe;
3562
- const si = class si {
3562
+ const ii = class ii {
3563
3563
  constructor(e) {
3564
- f(this, Ae, new x(0, 0, 1));
3565
- f(this, Fe, new D(0, 0, 0));
3564
+ d(this, Ae, new x(0, 0, 1));
3565
+ d(this, Fe, new j(0, 0, 0));
3566
3566
  return e && this.parse(e), this;
3567
3567
  }
3568
3568
  get normal() {
@@ -3608,23 +3608,23 @@ const si = class si {
3608
3608
  return;
3609
3609
  }
3610
3610
  if (e.equation) {
3611
- const n = e.equation.moveLeft().reduce().left, l = n.monomByLetter("x").coefficient, u = n.monomByLetter("y").coefficient, p = n.monomByLetter("z").coefficient, m = n.monomByDegree(0).coefficient;
3612
- this.normal = new x(l, u, p), l.isNotZero() ? this.point = new D(m.clone().divide(l).opposite(), 0, 0) : u.isNotZero() ? this.point = new D(0, m.clone().divide(u).opposite(), 0) : this.point = new D(0, 0, m.clone().divide(p).opposite());
3611
+ const n = e.equation.moveLeft().reduce().left, l = n.monomByLetter("x").coefficient, u = n.monomByLetter("y").coefficient, f = n.monomByLetter("z").coefficient, p = n.monomByDegree(0).coefficient;
3612
+ this.normal = new x(l, u, f), l.isNotZero() ? this.point = new j(p.clone().divide(l).opposite(), 0, 0) : u.isNotZero() ? this.point = new j(0, p.clone().divide(u).opposite(), 0) : this.point = new j(0, 0, p.clone().divide(f).opposite());
3613
3613
  return;
3614
3614
  }
3615
3615
  if (((s = e.points) == null ? void 0 : s.length) === 3 && e.points.every((n) => n instanceof x)) {
3616
- const n = e.points[0], l = e.points[1], u = e.points[2], p = new x(n, l), m = new x(n, u);
3617
- this.normal = p.cross(m), this.point = n;
3616
+ const n = e.points[0], l = e.points[1], u = e.points[2], f = new x(n, l), p = new x(n, u);
3617
+ this.normal = f.cross(p), this.point = n;
3618
3618
  return;
3619
3619
  }
3620
3620
  if (((r = e.coefficients) == null ? void 0 : r.length) === 4) {
3621
- const [n, l, u, p] = e.coefficients;
3622
- this.normal = new x(n, l, u), this.point = new D(0, 0, -p);
3621
+ const [n, l, u, f] = e.coefficients;
3622
+ this.normal = new x(n, l, u), this.point = new j(0, 0, -f);
3623
3623
  return;
3624
3624
  }
3625
3625
  }
3626
3626
  angle(e, t, s) {
3627
- if (e instanceof si)
3627
+ if (e instanceof ii)
3628
3628
  return this.normal.angle(e.normal, t, s);
3629
3629
  let r;
3630
3630
  if (e instanceof x) {
@@ -3643,18 +3643,18 @@ const si = class si {
3643
3643
  return t.clone().add(s.clone().multiplyByScalar(r));
3644
3644
  }
3645
3645
  intersectWithPlane(e) {
3646
- throw this.normal.cross(e.normal), new D(0, 0, 0), new Error("Intersection with plane not yet implemented !");
3646
+ throw this.normal.cross(e.normal), new j(0, 0, 0), new Error("Intersection with plane not yet implemented !");
3647
3647
  }
3648
3648
  isPointOnPlane(e) {
3649
3649
  return this.normal.dot(e).add(this.d).isZero();
3650
3650
  }
3651
3651
  };
3652
3652
  Ae = new WeakMap(), Fe = new WeakMap();
3653
- let _t = si;
3653
+ let Jt = ii;
3654
3654
  var Me;
3655
- class Xi {
3655
+ class Hi {
3656
3656
  constructor(...e) {
3657
- f(this, Me, []);
3657
+ d(this, Me, []);
3658
3658
  return h(this, Me, e), this;
3659
3659
  }
3660
3660
  get values() {
@@ -3672,7 +3672,7 @@ class Xi {
3672
3672
  determinant() {
3673
3673
  if (!this.isSquare())
3674
3674
  throw new Error("Matrix is not square");
3675
- return Gi(...this.values);
3675
+ return Ui(...this.values);
3676
3676
  }
3677
3677
  }
3678
3678
  Me = new WeakMap();
@@ -3696,7 +3696,7 @@ function vt(o) {
3696
3696
  }
3697
3697
  return e.reduced ? t.reduce() : t;
3698
3698
  }
3699
- function Ni(o) {
3699
+ function Ei(o) {
3700
3700
  const e = Object.assign(
3701
3701
  {
3702
3702
  letters: "x",
@@ -3714,14 +3714,14 @@ function Ni(o) {
3714
3714
  for (const s of e.letters.split(""))
3715
3715
  t.setLetter(s, 0);
3716
3716
  for (let s = 0; s < e.degree; s++) {
3717
- const r = ti(e.letters.split(""));
3717
+ const r = ei(e.letters.split(""));
3718
3718
  t.setLetter(r, t.degree(r).clone().add(1));
3719
3719
  }
3720
3720
  } else
3721
3721
  t.setLetter(e.letters, e.degree);
3722
3722
  return t;
3723
3723
  }
3724
- const Yi = {
3724
+ const Xi = {
3725
3725
  letters: "x",
3726
3726
  degree: 2,
3727
3727
  fraction: !1,
@@ -3732,14 +3732,14 @@ const Yi = {
3732
3732
  numberOfMonoms: 0,
3733
3733
  positive: !0
3734
3734
  };
3735
- function Oi(o) {
3735
+ function Ni(o) {
3736
3736
  const e = Object.assign(
3737
- Yi,
3737
+ Xi,
3738
3738
  o
3739
3739
  ), t = new T().empty();
3740
3740
  let s;
3741
3741
  for (let r = e.degree; r >= 0; r--)
3742
- s = Ni({
3742
+ s = Ei({
3743
3743
  letters: e.letters,
3744
3744
  degree: r,
3745
3745
  fraction: e.fraction,
@@ -3752,7 +3752,7 @@ function Oi(o) {
3752
3752
  }
3753
3753
  return t;
3754
3754
  }
3755
- function Qi(o) {
3755
+ function Yi(o) {
3756
3756
  const e = Object.assign(
3757
3757
  {
3758
3758
  letters: "x",
@@ -3774,7 +3774,7 @@ function Qi(o) {
3774
3774
  o
3775
3775
  ), t = new T().one();
3776
3776
  for (let s = 0; s < e.degree; s++) {
3777
- const r = Oi({
3777
+ const r = Ni({
3778
3778
  degree: 1,
3779
3779
  unit: e.unit,
3780
3780
  fraction: e.fraction,
@@ -3785,7 +3785,7 @@ function Qi(o) {
3785
3785
  }
3786
3786
  return new H(t, 0);
3787
3787
  }
3788
- function qi(o) {
3788
+ function Oi(o) {
3789
3789
  const e = Object.assign(
3790
3790
  {
3791
3791
  axis: !0,
@@ -3795,9 +3795,9 @@ function qi(o) {
3795
3795
  },
3796
3796
  o
3797
3797
  ), t = e.axis === "x", s = e.axis === "y", r = e.fraction ? vt({ max: e.max, zero: t }) : new c(X(e.max, t)), n = e.fraction ? vt({ max: e.max, zero: s }) : new c(X(e.max, s));
3798
- return Number(e.quadrant) === 1 && (r.abs(), n.abs()), Number(e.quadrant) === 2 && (r.isPositive() && r.opposite(), n.isNegative() && n.opposite()), Number(e.quadrant) === 3 && (r.isPositive() && r.opposite(), n.isPositive() && n.opposite()), Number(e.quadrant) === 4 && (r.isNegative() && r.opposite(), n.isPositive() && n.opposite()), new D(r, n);
3798
+ return Number(e.quadrant) === 1 && (r.abs(), n.abs()), Number(e.quadrant) === 2 && (r.isPositive() && r.opposite(), n.isNegative() && n.opposite()), Number(e.quadrant) === 3 && (r.isPositive() && r.opposite(), n.isPositive() && n.opposite()), Number(e.quadrant) === 4 && (r.isNegative() && r.opposite(), n.isPositive() && n.opposite()), new j(r, n);
3799
3799
  }
3800
- function Ki(o) {
3800
+ function Qi(o) {
3801
3801
  const e = Object.assign(
3802
3802
  {
3803
3803
  center: {
@@ -3807,11 +3807,11 @@ function Ki(o) {
3807
3807
  pointsOnCircle: 8
3808
3808
  },
3809
3809
  o
3810
- ), t = qi(e.center);
3810
+ ), t = Oi(e.center);
3811
3811
  let s, r;
3812
3812
  return e.pointsOnCircle === 8 ? (s = de(1, 3), r = s ** 2 + (s + 1) ** 2) : r = de(1, 20), new yt(t, r, !0);
3813
3813
  }
3814
- function Ji(o) {
3814
+ function Ki(o) {
3815
3815
  const e = Object.assign(
3816
3816
  {
3817
3817
  A: {
@@ -3826,9 +3826,9 @@ function Ji(o) {
3826
3826
  );
3827
3827
  for (; t.isNull; )
3828
3828
  t.x = X(10), t.y = X(10);
3829
- return e.slope === 1 ? t.x.sign() !== t.y.sign() && t.y.opposite() : e.slope === -1 && t.x.sign() !== t.y.sign() && t.y.opposite(), new j(new x(e.A.x, e.A.y), t);
3829
+ return e.slope === 1 ? t.x.sign() !== t.y.sign() && t.y.opposite() : e.slope === -1 && t.x.sign() !== t.y.sign() && t.y.opposite(), new D(new x(e.A.x, e.A.y), t);
3830
3830
  }
3831
- function _i(o) {
3831
+ function Ji(o) {
3832
3832
  const e = Object.assign(
3833
3833
  {
3834
3834
  A: {
@@ -3843,48 +3843,48 @@ function _i(o) {
3843
3843
  }
3844
3844
  },
3845
3845
  o
3846
- ), t = new D(e.A.x, e.A.y, e.A.z), s = new x(e.direction.x, e.direction.y, e.direction.z);
3846
+ ), t = new j(e.A.x, e.A.y, e.A.z), s = new x(e.direction.x, e.direction.y, e.direction.z);
3847
3847
  return new wt(t, s);
3848
3848
  }
3849
- const es = {
3850
- equation: (o) => Qi(o),
3851
- polynom: (o) => Oi(o),
3852
- monom: (o) => Ni(o),
3849
+ const _i = {
3850
+ equation: (o) => Yi(o),
3851
+ polynom: (o) => Ni(o),
3852
+ monom: (o) => Ei(o),
3853
3853
  fraction: (o) => vt(o),
3854
3854
  number: (o, e, t) => de(o, e, t),
3855
3855
  numberSym: (o, e) => X(o, e),
3856
- prime: (o) => Wi(o),
3857
- bool: (o) => gi(o),
3858
- array: (o, e) => Hi(o, e),
3859
- item: (o) => ti(o),
3860
- shuffle: (o) => yi(o),
3861
- line: (o) => Ji(o),
3862
- line3: (o) => _i(o),
3863
- point: (o) => qi(o),
3864
- circle: (o) => Ki(o)
3865
- }, ts = {
3856
+ prime: (o) => Gi(o),
3857
+ bool: (o) => mi(o),
3858
+ array: (o, e) => Wi(o, e),
3859
+ item: (o) => ei(o),
3860
+ shuffle: (o) => gi(o),
3861
+ line: (o) => Ki(o),
3862
+ line3: (o) => Ji(o),
3863
+ point: (o) => Oi(o),
3864
+ circle: (o) => Qi(o)
3865
+ }, es = {
3866
3866
  Vector: x,
3867
- Point: D,
3868
- Line: j,
3869
- Triangle: Jt,
3867
+ Point: j,
3868
+ Line: D,
3869
+ Triangle: Kt,
3870
3870
  Circle: yt,
3871
3871
  Line3: wt,
3872
- Plane3: _t
3873
- }, ss = {
3872
+ Plane3: Jt
3873
+ }, is = {
3874
3874
  Numeric: G,
3875
3875
  Fraction: c,
3876
3876
  Root: ft,
3877
3877
  Monom: I,
3878
3878
  Polynom: T,
3879
3879
  Equation: H,
3880
- Matrix: Xi,
3881
- LinearSystem: Qt,
3880
+ Matrix: Hi,
3881
+ LinearSystem: Yt,
3882
3882
  Factor: fe,
3883
- PolyFactor: Xt,
3883
+ PolyFactor: Ht,
3884
3884
  // LogicalSet,
3885
- Random: es,
3886
- Geometry: ts
3885
+ Random: _i,
3886
+ Geometry: es
3887
3887
  };
3888
3888
  export {
3889
- ss as default
3889
+ is as default
3890
3890
  };