pimath 0.1.4 → 0.1.5

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/pimath.js CHANGED
@@ -1,22 +1,22 @@
1
- var Ti = Object.defineProperty;
2
- var ri = (o) => {
1
+ var qi = Object.defineProperty;
2
+ var si = (o) => {
3
3
  throw TypeError(o);
4
4
  };
5
- var Ai = (o, e, t) => e in o ? Ti(o, e, { enumerable: !0, configurable: !0, writable: !0, value: t }) : o[e] = t;
6
- var a = (o, e, t) => Ai(o, typeof e != "symbol" ? e + "" : e, t), Gt = (o, e, t) => e.has(o) || ri("Cannot " + t);
7
- var i = (o, e, t) => (Gt(o, e, "read from private field"), t ? t.call(o) : e.get(o)), f = (o, e, t) => e.has(o) ? ri("Cannot add the same private member more than once") : e instanceof WeakSet ? e.add(o) : e.set(o, t), h = (o, e, t, s) => (Gt(o, e, "write to private field"), s ? s.call(o, t) : e.set(o, t), t), M = (o, e, t) => (Gt(o, e, "access private method"), t);
8
- function Mi(o) {
9
- const e = oi(o), t = [];
5
+ var Ti = (o, e, t) => e in o ? qi(o, e, { enumerable: !0, configurable: !0, writable: !0, value: t }) : o[e] = t;
6
+ var a = (o, e, t) => Ti(o, typeof e != "symbol" ? e + "" : e, t), Ut = (o, e, t) => e.has(o) || si("Cannot " + t);
7
+ var i = (o, e, t) => (Ut(o, e, "read from private field"), t ? t.call(o) : e.get(o)), f = (o, e, t) => e.has(o) ? si("Cannot add the same private member more than once") : e instanceof WeakSet ? e.add(o) : e.set(o, t), h = (o, e, t, s) => (Ut(o, e, "write to private field"), s ? s.call(o, t) : e.set(o, t), t), M = (o, e, t) => (Ut(o, e, "access private method"), t);
8
+ function Ai(o) {
9
+ const e = ni(o), t = [];
10
10
  let s, r;
11
11
  for (; e.length > 0; )
12
12
  s = e.shift() ?? 1, r = (e.length > 0 ? e.pop() : +s) ?? 1, t.push([s, r]);
13
13
  return t;
14
14
  }
15
- function Ii(...o) {
16
- const e = ei(...o);
15
+ function Mi(...o) {
16
+ const e = _t(...o);
17
17
  return o.map((t) => t / e);
18
18
  }
19
- function oi(o) {
19
+ function ni(o) {
20
20
  const e = Math.abs(o), t = Math.sqrt(e), s = [];
21
21
  for (let r = 1; r <= t; r++)
22
22
  o % r === 0 && (s.push(r), s.push(e / r));
@@ -24,7 +24,7 @@ function oi(o) {
24
24
  return r - n;
25
25
  }), [...new Set(s)];
26
26
  }
27
- function ei(...o) {
27
+ function _t(...o) {
28
28
  const e = function(r, n) {
29
29
  return n === 0 ? r : e(n, r % n);
30
30
  };
@@ -39,44 +39,44 @@ function ei(...o) {
39
39
  ;
40
40
  return Math.abs(t);
41
41
  }
42
- function Ci(...o) {
42
+ function Ii(...o) {
43
43
  return o.reduce(function(e, t) {
44
- return Math.abs(e * t / ei(e, t));
44
+ return Math.abs(e * t / _t(e, t));
45
45
  });
46
46
  }
47
- function $i(o, e = 3) {
47
+ function Ci(o, e = 3) {
48
48
  return +o.toFixed(e);
49
49
  }
50
- function Pi(o) {
50
+ function $i(o) {
51
51
  if (Number.isSafeInteger(o) || o.toString().split(".")[0].length < 10)
52
52
  return 0;
53
53
  throw new Error("Periodic value: Not implemented yet");
54
54
  }
55
- function Si(o) {
55
+ function Pi(o) {
56
56
  const e = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973];
57
57
  return o === void 0 ? e : e.slice(0, Math.min(e.length, o));
58
58
  }
59
- function Bi(o, e) {
59
+ function Si(o, e) {
60
60
  const t = [], s = e === !0 ? +o : o ** 2;
61
61
  for (let r = 0; r <= o; r++)
62
62
  for (let n = 0; n <= o; n++)
63
63
  r ** 2 + n ** 2 === s && t.push([r, n, o]);
64
64
  return t;
65
65
  }
66
- function Ri(o, e = 2) {
66
+ function Bi(o, e = 2) {
67
67
  return +`${Math.round(+`${o}e${e}`)}e-${e}`;
68
68
  }
69
69
  const G = {
70
- decompose: Mi,
71
- dividers: oi,
72
- divideNumbersByGCD: Ii,
73
- gcd: ei,
74
- lcm: Ci,
75
- numberCorrection: $i,
76
- periodic: Pi,
77
- primes: Si,
78
- pythagoreanTripletsWithTarget: Bi,
79
- round: Ri
70
+ decompose: Ai,
71
+ dividers: ni,
72
+ divideNumbersByGCD: Mi,
73
+ gcd: _t,
74
+ lcm: Ii,
75
+ numberCorrection: Ci,
76
+ periodic: $i,
77
+ primes: Pi,
78
+ pythagoreanTripletsWithTarget: Si,
79
+ round: Bi
80
80
  };
81
81
  var w, b, ot, Be;
82
82
  const $ = class $ {
@@ -394,20 +394,20 @@ class ft {
394
394
  }
395
395
  }
396
396
  Z = new WeakMap(), J = new WeakMap(), se = new WeakMap(), We = new WeakMap();
397
- var hi = (o) => {
397
+ var oi = (o) => {
398
398
  throw TypeError(o);
399
- }, ai = (o, e, t) => e.has(o) || hi("Cannot " + t), K = (o, e, t) => (ai(o, e, "read from private field"), t ? t.call(o) : e.get(o)), tt = (o, e, t) => e.has(o) ? hi("Cannot add the same private member more than once") : e instanceof WeakSet ? e.add(o) : e.set(o, t), be = (o, e, t, s) => (ai(o, e, "write to private field"), e.set(o, t), t);
400
- const li = {
399
+ }, hi = (o, e, t) => e.has(o) || oi("Cannot " + t), K = (o, e, t) => (hi(o, e, "read from private field"), t ? t.call(o) : e.get(o)), tt = (o, e, t) => e.has(o) ? oi("Cannot add the same private member more than once") : e instanceof WeakSet ? e.add(o) : e.set(o, t), be = (o, e, t, s) => (hi(o, e, "write to private field"), e.set(o, t), t);
400
+ const ai = {
401
401
  pi: Math.PI,
402
402
  e: Math.exp(1)
403
403
  };
404
404
  var d = /* @__PURE__ */ ((o) => (o.VARIABLE = "variable", o.COEFFICIENT = "coefficient", o.OPERATION = "operation", o.CONSTANT = "constant", o.FUNCTION = "function", o.FUNCTION_ARGUMENT = "function-argument", o.MONOM = "monom", o.LEFT_PARENTHESIS = "(", o.RIGHT_PARENTHESIS = ")", o))(d || {}), it = /* @__PURE__ */ ((o) => (o.EXPRESSION = "expression", o.POLYNOM = "polynom", o.SET = "set", o.NUMERIC = "numeric", o))(it || {});
405
- function zi(o, e) {
405
+ function Ri(o, e) {
406
406
  if (o.length <= 1)
407
407
  return o;
408
408
  const t = Object.keys(e).filter((E) => e[E].type === d.FUNCTION).map((E) => E);
409
409
  t.sort((E, L) => L.length - E.length);
410
- const s = new RegExp(`^(${t.join("|")})\\(`), r = Object.keys(li);
410
+ const s = new RegExp(`^(${t.join("|")})\\(`), r = Object.keys(ai);
411
411
  r.sort((E, L) => L.length - E.length);
412
412
  const n = new RegExp(`^(${r.join("|")})`), l = /^(\d+(\.\d+)?)/;
413
413
  let u = "", p, m, g;
@@ -444,20 +444,20 @@ function zi(o, e) {
444
444
  }
445
445
  if (g === void 0 || m === void 0)
446
446
  throw new Error("The token is undefined");
447
- u += ki(p, m), u += g;
447
+ u += zi(p, m), u += g;
448
448
  }
449
449
  return u;
450
450
  }
451
- function ki(o, e) {
451
+ function zi(o, e) {
452
452
  return o === void 0 || o === d.OPERATION || e === d.OPERATION || o === d.LEFT_PARENTHESIS || o === d.FUNCTION || o === d.FUNCTION_ARGUMENT || e === d.RIGHT_PARENTHESIS || e === d.FUNCTION_ARGUMENT ? "" : "*";
453
453
  }
454
- const Li = {
454
+ const ki = {
455
455
  "^": { precedence: 4, associative: "right", type: d.OPERATION },
456
456
  "*": { precedence: 3, associative: "left", type: d.OPERATION },
457
457
  "/": { precedence: 3, associative: "left", type: d.OPERATION },
458
458
  "+": { precedence: 2, associative: "left", type: d.OPERATION },
459
459
  "-": { precedence: 2, associative: "left", type: d.OPERATION }
460
- }, Di = {
460
+ }, Li = {
461
461
  "^": { precedence: 4, associative: "right", type: d.OPERATION },
462
462
  "*": { precedence: 3, associative: "left", type: d.OPERATION },
463
463
  "/": { precedence: 3, associative: "left", type: d.OPERATION },
@@ -470,7 +470,7 @@ const Li = {
470
470
  sqrt: { precedence: 4, associative: "right", type: d.FUNCTION },
471
471
  nthrt: { precedence: 4, associative: "right", type: d.FUNCTION },
472
472
  ",": { precedence: 2, associative: "left", type: d.FUNCTION_ARGUMENT }
473
- }, Zi = {
473
+ }, Di = {
474
474
  "^": { precedence: 4, associative: "right", type: d.OPERATION },
475
475
  "*": { precedence: 3, associative: "left", type: d.OPERATION },
476
476
  "/": { precedence: 3, associative: "left", type: d.OPERATION },
@@ -484,14 +484,14 @@ const Li = {
484
484
  nthrt: { precedence: 4, associative: "right", type: d.FUNCTION },
485
485
  ln: { precedence: 4, associative: "right", type: d.FUNCTION },
486
486
  log: { precedence: 4, associative: "right", type: d.FUNCTION }
487
- }, Vi = {
487
+ }, Zi = {
488
488
  "&": { precedence: 3, associative: "left", type: d.OPERATION },
489
489
  "|": { precedence: 3, associative: "left", type: d.OPERATION },
490
490
  "!": { precedence: 4, associative: "right", type: d.OPERATION },
491
491
  "-": { precedence: 2, associative: "left", type: d.OPERATION }
492
492
  };
493
493
  var je, st, ie, dt, ke;
494
- class ci {
494
+ class li {
495
495
  constructor(e) {
496
496
  tt(this, je), tt(this, st, []), tt(this, ie, {}), tt(this, dt, []), tt(this, ke), be(this, je, typeof e > "u" ? it.POLYNOM : e), this.tokenConfigInitialization();
497
497
  }
@@ -503,7 +503,7 @@ class ci {
503
503
  return K(this, st).map((e) => e.token);
504
504
  }
505
505
  tokenConfigInitialization() {
506
- return K(this, je) === it.SET ? (be(this, ie, Vi), be(this, ke, !1)) : K(this, je) === it.NUMERIC ? (be(this, ie, Zi), be(this, ke, !0)) : K(this, je) === it.EXPRESSION ? (be(this, ie, Di), be(this, ke, !0)) : (be(this, ie, Li), be(this, ke, !0)), be(this, dt, Object.keys(K(this, ie)).sort((e, t) => t.length - e.length)), K(this, ie);
506
+ return K(this, je) === it.SET ? (be(this, ie, Zi), be(this, ke, !1)) : K(this, je) === it.NUMERIC ? (be(this, ie, Di), be(this, ke, !0)) : K(this, je) === it.EXPRESSION ? (be(this, ie, Li), be(this, ke, !0)) : (be(this, ie, ki), be(this, ke, !0)), be(this, dt, Object.keys(K(this, ie)).sort((e, t) => t.length - e.length)), K(this, ie);
507
507
  }
508
508
  /**
509
509
  * Get the next token to analyse.
@@ -524,7 +524,7 @@ class ci {
524
524
  s += n, r = K(this, ie)[n].type;
525
525
  break;
526
526
  }
527
- for (const n in li)
527
+ for (const n in ai)
528
528
  if (e.substring(t, t + n.length) === n) {
529
529
  s += n, r = d.CONSTANT;
530
530
  break;
@@ -552,7 +552,7 @@ class ci {
552
552
  parse(e, t) {
553
553
  const s = [], r = [];
554
554
  let n = "", l = 0, u;
555
- (t ?? K(this, ke)) && (e = zi(e, K(this, ie)));
555
+ (t ?? K(this, ke)) && (e = Ri(e, K(this, ie)));
556
556
  const p = 50;
557
557
  let m = 50, g;
558
558
  for (; l < e.length; ) {
@@ -878,7 +878,7 @@ const P = class P {
878
878
  return t;
879
879
  });
880
880
  f(this, bt, (e) => {
881
- const s = new ci().parse(e).rpn, r = [];
881
+ const s = new li().parse(e).rpn, r = [];
882
882
  if (s.length === 0)
883
883
  return this.zero(), this;
884
884
  if (s.length === 1) {
@@ -1097,8 +1097,8 @@ a(P, "xMultiply", (...e) => {
1097
1097
  return t;
1098
1098
  });
1099
1099
  let I = P;
1100
- var ue, De, S, ye, rt, ui, fi, di, Ht, pi;
1101
- const ii = class ii {
1100
+ var ue, De, S, ye, rt, ci, ui, fi, Wt, di;
1101
+ const ti = class ti {
1102
1102
  constructor(e, t, s = "x") {
1103
1103
  f(this, S);
1104
1104
  f(this, ue);
@@ -1111,20 +1111,20 @@ const ii = class ii {
1111
1111
  }
1112
1112
  solve() {
1113
1113
  if (i(this, ue).degree().isOne())
1114
- return M(this, S, ui).call(this);
1114
+ return M(this, S, ci).call(this);
1115
1115
  if (i(this, ue).degree().value === 2)
1116
- return M(this, S, fi).call(this);
1117
- const e = M(this, S, pi).call(this);
1116
+ return M(this, S, ui).call(this);
1117
+ const e = M(this, S, di).call(this);
1118
1118
  if (e.length > 0)
1119
1119
  return e;
1120
1120
  if (i(this, ue).degree().value === 3)
1121
- return M(this, S, Ht).call(this);
1121
+ return M(this, S, Wt).call(this);
1122
1122
  throw new Error("The equation degree is too high.");
1123
1123
  }
1124
1124
  solveAsCardan() {
1125
1125
  if (i(this, ue).degree().value !== 3)
1126
1126
  throw new Error("The equation is not cubic.");
1127
- return M(this, S, Ht).call(this);
1127
+ return M(this, S, Wt).call(this);
1128
1128
  }
1129
1129
  };
1130
1130
  ue = new WeakMap(), De = new WeakMap(), S = new WeakSet(), ye = function(e) {
@@ -1146,12 +1146,12 @@ ue = new WeakMap(), De = new WeakMap(), S = new WeakSet(), ye = function(e) {
1146
1146
  tex: (t == null ? void 0 : t.tex) ?? "",
1147
1147
  display: (t == null ? void 0 : t.display) ?? ""
1148
1148
  };
1149
- }, ui = function() {
1149
+ }, ci = function() {
1150
1150
  const e = i(this, ue).monomByDegree(0).coefficient.clone().opposite().divide(i(this, ue).monomByDegree(1).coefficient);
1151
1151
  return [
1152
1152
  M(this, S, ye).call(this, e)
1153
1153
  ];
1154
- }, fi = function() {
1154
+ }, ui = function() {
1155
1155
  const e = i(this, ue), t = e.monomByDegree(2).coefficient, s = e.monomByDegree(1).coefficient, r = e.monomByDegree(0).coefficient, n = s.clone().pow(2).subtract(t.clone().multiply(r).multiply(4));
1156
1156
  if (n.isNegative())
1157
1157
  return [];
@@ -1162,14 +1162,14 @@ ue = new WeakMap(), De = new WeakMap(), S = new WeakSet(), ye = function(e) {
1162
1162
  M(this, S, ye).call(this, p)
1163
1163
  ].sort((m, g) => m.value - g.value);
1164
1164
  }
1165
- return M(this, S, di).call(this, t, s, n);
1166
- }, di = function(e, t, s) {
1165
+ return M(this, S, fi).call(this, t, s, n);
1166
+ }, fi = function(e, t, s) {
1167
1167
  const r = G.dividers(s.value).filter((pe) => Math.sqrt(pe) % 1 === 0).map((pe) => Math.sqrt(pe)).pop() ?? 1, n = G.gcd(2 * e.value, t.value, r) * (e.isNegative() ? -1 : 1), l = t.clone().divide(n).opposite(), u = e.clone().divide(n).multiply(2), p = s.clone().divide(r ** 2), m = Math.abs(r / n), g = r === 1 ? "-" : `-${m} `, E = r === 1 ? "+" : `+${m} `;
1168
- function L(pe, ce, et, Ut) {
1169
- return `\\frac{ ${ce} ${et}\\sqrt{ ${Ut} } }{ ${pe} }`;
1168
+ function L(pe, ce, et, jt) {
1169
+ return `\\frac{ ${ce} ${et}\\sqrt{ ${jt} } }{ ${pe} }`;
1170
1170
  }
1171
- function te(pe, ce, et, Ut) {
1172
- return `(${ce}${et}sqrt(${Ut}))/${pe}`;
1171
+ function te(pe, ce, et, jt) {
1172
+ return `(${ce}${et}sqrt(${jt}))/${pe}`;
1173
1173
  }
1174
1174
  const ae = s.value ** 0.5, le = (-t.value - ae) / (2 * e.value), ge = (-t.value + ae) / (2 * e.value);
1175
1175
  return [
@@ -1182,7 +1182,7 @@ ue = new WeakMap(), De = new WeakMap(), S = new WeakSet(), ye = function(e) {
1182
1182
  display: te(u.display, l.display, E.toString(), p.display)
1183
1183
  })
1184
1184
  ].sort((pe, ce) => pe.value - ce.value);
1185
- }, Ht = function() {
1185
+ }, Wt = function() {
1186
1186
  const e = i(this, ue), t = e.monomByDegree(3).coefficient, s = e.monomByDegree(2).coefficient, r = e.monomByDegree(1).coefficient, n = e.monomByDegree(0).coefficient, l = s.clone().divide(t), u = r.clone().divide(t), p = n.clone().divide(t), m = u.clone().subtract(l.clone().pow(2).divide(3)), g = p.clone().subtract(l.clone().multiply(u).divide(3)).add(l.clone().pow(3).multiply(2).divide(27)), E = g.clone().opposite(), L = m.clone().opposite().pow(3).divide(27), te = E.clone().pow(2).subtract(L.clone().multiply(4)).opposite();
1187
1187
  if (te.isNegative()) {
1188
1188
  const ae = g.clone().opposite().add(te.clone().opposite().sqrt()).divide(2).root(3), le = g.clone().opposite().subtract(te.clone().opposite().sqrt()).divide(2).root(3), ge = ae.clone().add(le).subtract(l.clone().divide(3));
@@ -1202,7 +1202,7 @@ ue = new WeakMap(), De = new WeakMap(), S = new WeakSet(), ye = function(e) {
1202
1202
  return ae.map((ce) => M(this, S, rt).call(this, ce)).sort((ce, et) => ce.value - et.value);
1203
1203
  }
1204
1204
  return [];
1205
- }, pi = function() {
1205
+ }, di = function() {
1206
1206
  let e = i(this, ue).clone(), t = [];
1207
1207
  const s = e.lcmDenominator();
1208
1208
  s !== 1 && e.multiply(s);
@@ -1229,11 +1229,11 @@ ue = new WeakMap(), De = new WeakMap(), S = new WeakSet(), ye = function(e) {
1229
1229
  return [];
1230
1230
  const p = e.clone().parse("0");
1231
1231
  console.log(e.display), console.log(p.display);
1232
- const m = new ii(e, e.clone().parse("0"), i(this, De));
1232
+ const m = new ti(e, e.clone().parse("0"), i(this, De));
1233
1233
  return t = t.concat(m.solve()), t.sort((g, E) => g.value - E.value);
1234
1234
  };
1235
- let gt = ii;
1236
- var Ze, y, Xe, ht, Et, Nt, Ot, qt, at, Tt, At, Mt, It, mi, Ct, Ye, $t;
1235
+ let gt = ti;
1236
+ var Ze, y, Xe, ht, Et, Nt, Ot, qt, at, Tt, At, Mt, It, pi, Ct, Ye, $t;
1237
1237
  const C = class C {
1238
1238
  constructor(e, ...t) {
1239
1239
  f(this, It);
@@ -1249,7 +1249,7 @@ const C = class C {
1249
1249
  */
1250
1250
  a(this, "parse", (e, ...t) => {
1251
1251
  if (h(this, y, []), h(this, Ze, []), typeof e == "string")
1252
- return M(this, It, mi).call(this, e, ...t);
1252
+ return M(this, It, pi).call(this, e, ...t);
1253
1253
  if ((typeof e == "number" || e instanceof c || e instanceof I) && t.length === 0)
1254
1254
  i(this, y).push(new I(e));
1255
1255
  else if (e instanceof I && t.length > 0)
@@ -1693,7 +1693,7 @@ const C = class C {
1693
1693
  * @param inputStr
1694
1694
  */
1695
1695
  f(this, $t, (e) => {
1696
- const s = new ci().parse(e).rpn;
1696
+ const s = new li().parse(e).rpn;
1697
1697
  this.zero();
1698
1698
  const r = [];
1699
1699
  for (const n of s)
@@ -1758,7 +1758,7 @@ const C = class C {
1758
1758
  }
1759
1759
  // #endregion Private methods (15)
1760
1760
  };
1761
- Ze = new WeakMap(), y = new WeakMap(), Xe = new WeakMap(), ht = new WeakMap(), Et = new WeakMap(), Nt = new WeakMap(), Ot = new WeakMap(), qt = new WeakMap(), at = new WeakMap(), Tt = new WeakMap(), At = new WeakMap(), Mt = new WeakMap(), It = new WeakSet(), mi = function(e, ...t) {
1761
+ Ze = new WeakMap(), y = new WeakMap(), Xe = new WeakMap(), ht = new WeakMap(), Et = new WeakMap(), Nt = new WeakMap(), Ot = new WeakMap(), qt = new WeakMap(), at = new WeakMap(), Tt = new WeakMap(), At = new WeakMap(), Mt = new WeakMap(), It = new WeakSet(), pi = function(e, ...t) {
1762
1762
  if (t.length === 0) {
1763
1763
  if (e = "" + e, e !== "" && !isNaN(Number(e))) {
1764
1764
  this.empty();
@@ -1788,7 +1788,7 @@ Ze = new WeakMap(), y = new WeakMap(), Xe = new WeakMap(), ht = new WeakMap(), E
1788
1788
  return this.zero();
1789
1789
  }, Ct = new WeakMap(), Ye = new WeakMap(), $t = new WeakMap();
1790
1790
  let T = C;
1791
- function ni(o, e = !0) {
1791
+ function ri(o, e = !0) {
1792
1792
  return e ? `\\left( ${o} \\right)` : `(${o})`;
1793
1793
  }
1794
1794
  var Ee, Qe, Ne, Oe;
@@ -1843,7 +1843,7 @@ const we = class we {
1843
1843
  get display() {
1844
1844
  const e = this.power.numerator, t = this.power.denominator;
1845
1845
  let s, r;
1846
- return i(this, Ee) === 0 && t > 1 ? (s = `${t === 2 ? "sqrt" : `root(${t})`}(${this.polynom.display})`, r = Math.abs(e) === 1 ? "" : `^(${Math.abs(e)})`) : (s = i(this, Qe) && this.power.isOne() ? this.polynom.display : ni(this.polynom.display, !1), r = t === 1 && Math.abs(e) === 1 ? "" : `^(${this.power.display})`), s = `${s}${r}`, i(this, Ee) === 0 && e < 0 && (s = `1/(${s})`), s;
1846
+ return i(this, Ee) === 0 && t > 1 ? (s = `${t === 2 ? "sqrt" : `root(${t})`}(${this.polynom.display})`, r = Math.abs(e) === 1 ? "" : `^(${Math.abs(e)})`) : (s = i(this, Qe) && this.power.isOne() ? this.polynom.display : ri(this.polynom.display, !1), r = t === 1 && Math.abs(e) === 1 ? "" : `^(${this.power.display})`), s = `${s}${r}`, i(this, Ee) === 0 && e < 0 && (s = `1/(${s})`), s;
1847
1847
  }
1848
1848
  divide(e) {
1849
1849
  if (e instanceof we && this.isSameAs(e))
@@ -1922,7 +1922,7 @@ const we = class we {
1922
1922
  get tex() {
1923
1923
  const e = this.power.numerator, t = this.power.denominator;
1924
1924
  let s, r;
1925
- return i(this, Ee) === 0 && t > 1 ? (s = `\\sqrt${t === 2 ? "" : `[ ${t} ]`}{ ${this.polynom.tex} }`, r = Math.abs(e) === 1 ? "" : `^{ ${Math.abs(e)} }`) : (s = i(this, Qe) && this.power.isOne() ? this.polynom.tex : ni(this.polynom.tex), r = t === 1 && Math.abs(e) === 1 ? "" : `^{ ${this.power.tex} }`), s = `${s}${r}`, i(this, Ee) === 0 && e < 0 && (s = `\\frac{ 1 }{ ${s} }`), s;
1925
+ return i(this, Ee) === 0 && t > 1 ? (s = `\\sqrt${t === 2 ? "" : `[ ${t} ]`}{ ${this.polynom.tex} }`, r = Math.abs(e) === 1 ? "" : `^{ ${Math.abs(e)} }`) : (s = i(this, Qe) && this.power.isOne() ? this.polynom.tex : ri(this.polynom.tex), r = t === 1 && Math.abs(e) === 1 ? "" : `^{ ${this.power.tex} }`), s = `${s}${r}`, i(this, Ee) === 0 && e < 0 && (s = `\\frac{ 1 }{ ${s} }`), s;
1926
1926
  }
1927
1927
  get variables() {
1928
1928
  return this.polynom.variables;
@@ -2173,7 +2173,7 @@ const xe = class xe {
2173
2173
  };
2174
2174
  q = new WeakMap(), A = new WeakMap(), re = new WeakMap(), Pt = new WeakMap(), Ke = new WeakMap(), St = new WeakMap();
2175
2175
  let H = xe;
2176
- var N, Ve, lt, Yt;
2176
+ var N, Ve, lt, Xt;
2177
2177
  const me = class me {
2178
2178
  // #endregion Class fields (1)
2179
2179
  // #region Constructors (1)
@@ -2269,7 +2269,7 @@ const me = class me {
2269
2269
  throw new Error("Method not implemented.");
2270
2270
  }
2271
2271
  reduce() {
2272
- const e = Wt(this);
2272
+ const e = Gt(this);
2273
2273
  return h(this, N, Object.values(e).map((t) => {
2274
2274
  const s = t[0].polynom, r = t.reduce((n, l) => n.add(l.power), new c("0"));
2275
2275
  return new fe(s, r.reduce());
@@ -2297,11 +2297,11 @@ const me = class me {
2297
2297
  if (e.length === 1)
2298
2298
  return e[0];
2299
2299
  if (e.length === 2)
2300
- return M(s = me, lt, Yt).call(s, e[0], e[1]);
2300
+ return M(s = me, lt, Xt).call(s, e[0], e[1]);
2301
2301
  let t = e[0];
2302
2302
  return e.shift(), e.forEach((r) => {
2303
2303
  var n;
2304
- return t = M(n = me, lt, Yt).call(n, t, r);
2304
+ return t = M(n = me, lt, Xt).call(n, t, r);
2305
2305
  }), t;
2306
2306
  }
2307
2307
  // #endregion Properties and methods (25)
@@ -2343,15 +2343,15 @@ const me = class me {
2343
2343
  }
2344
2344
  // #endregion Private methods (1)
2345
2345
  };
2346
- N = new WeakMap(), Ve = new WeakMap(), lt = new WeakSet(), Yt = function(e, t) {
2347
- const s = Wt(e), r = Wt(t), l = Object.keys(s).filter((u) => Object.hasOwn(r, u)).map((u) => {
2346
+ N = new WeakMap(), Ve = new WeakMap(), lt = new WeakSet(), Xt = function(e, t) {
2347
+ const s = Gt(e), r = Gt(t), l = Object.keys(s).filter((u) => Object.hasOwn(r, u)).map((u) => {
2348
2348
  const p = s[u].reduce((g, E) => g.add(E.power), new c("0")), m = r[u].reduce((g, E) => g.add(E.power), new c("0"));
2349
2349
  return new fe(u, c.min(p, m));
2350
2350
  });
2351
2351
  return new me(...l);
2352
2352
  }, f(me, lt);
2353
- let Xt = me;
2354
- function Wt(o) {
2353
+ let Ht = me;
2354
+ function Gt(o) {
2355
2355
  const e = new c().one(), t = o.factors.reduce((s, r) => {
2356
2356
  if (r.polynom.degree().isZero())
2357
2357
  return r.polynom.monoms.length > 0 && e.multiply(r.polynom.monoms[0].coefficient), s;
@@ -2532,13 +2532,13 @@ const Ge = class Ge {
2532
2532
  }
2533
2533
  };
2534
2534
  k = new WeakMap(), Ie = new WeakMap(), Bt = new WeakMap(), Rt = new WeakMap();
2535
- let Qt = Ge;
2536
- function Fi(o, e) {
2535
+ let Yt = Ge;
2536
+ function Vi(o, e) {
2537
2537
  return o.dimension === e.dimension && o.array.every(
2538
2538
  (t, s) => e.array[s].isEqual(t)
2539
2539
  );
2540
2540
  }
2541
- function ji(o, e) {
2541
+ function Fi(o, e) {
2542
2542
  if (o.dimension !== e.dimension)
2543
2543
  return !1;
2544
2544
  const t = e.array[0].value / o.array[0].value;
@@ -2546,13 +2546,13 @@ function ji(o, e) {
2546
2546
  (s, r) => e.array[r].value === s.value * t
2547
2547
  );
2548
2548
  }
2549
- function Ui(o, e) {
2549
+ function ji(o, e) {
2550
2550
  return o.dimension !== e.dimension ? new c().invalid() : o.array.reduce(
2551
2551
  (t, s, r) => t.add(s.clone().multiply(e.array[r])),
2552
2552
  new c(0)
2553
2553
  );
2554
2554
  }
2555
- function Gi(...o) {
2555
+ function Ui(...o) {
2556
2556
  return o.some((e) => e.dimension !== o[0].dimension) ? new c().invalid() : o[0].dimension === 2 && o.length !== 2 ? new c().invalid() : o[0].dimension === 3 && o.length !== 3 ? new c().invalid() : o[0].dimension === 2 ? o[0].array[0].clone().multiply(o[1].array[1]).subtract(o[0].array[1].clone().multiply(o[1].array[0])) : o[0].array[0].clone().multiply(
2557
2557
  o[1].array[1].clone().multiply(o[2].array[2]).subtract(o[1].array[2].clone().multiply(o[2].array[1]))
2558
2558
  ).subtract(
@@ -2561,7 +2561,7 @@ function Gi(...o) {
2561
2561
  )
2562
2562
  ).add(o[0].array[2].clone().multiply(o[1].array[0].clone().multiply(o[2].array[1]).subtract(o[1].array[1].clone().multiply(o[2].array[0]))));
2563
2563
  }
2564
- var V, ze, zt;
2564
+ var V, ze;
2565
2565
  const Se = class Se {
2566
2566
  constructor(...e) {
2567
2567
  f(this, V, []);
@@ -2575,15 +2575,15 @@ const Se = class Se {
2575
2575
  const e = this.norm;
2576
2576
  return e === 0 ? this : this.divideByScalar(e);
2577
2577
  });
2578
- a(this, "dot", (e) => Ui(this, e));
2578
+ a(this, "dot", (e) => ji(this, e));
2579
2579
  a(this, "normal", () => {
2580
2580
  if (this.dimension >= 3)
2581
2581
  throw new Error("Normal vector can only be determined in 2D");
2582
2582
  const e = this.x.clone().opposite(), t = this.y.clone();
2583
2583
  return i(this, V)[0] = t, i(this, V)[1] = e, this;
2584
2584
  });
2585
- a(this, "isEqual", (e) => Fi(this, e));
2586
- a(this, "isColinearTo", (e) => ji(this, e));
2585
+ a(this, "isEqual", (e) => Vi(this, e));
2586
+ a(this, "isColinearTo", (e) => Fi(this, e));
2587
2587
  a(this, "isNormalTo", (e) => this.dot(e).isZero());
2588
2588
  a(this, "multiplyByScalar", (e) => {
2589
2589
  const t = new c(e);
@@ -2601,7 +2601,7 @@ const Se = class Se {
2601
2601
  let r = this.dot(e).value;
2602
2602
  return t && (r = Math.abs(r)), (s ? 1 : 180 / Math.PI) * Math.acos(r / (this.norm * e.norm));
2603
2603
  });
2604
- f(this, zt, (e) => {
2604
+ a(this, "fromString", (e) => {
2605
2605
  e.startsWith("(") && (e = e.substring(1)), e.endsWith(")") && (e = e.substring(0, e.length - 1));
2606
2606
  const t = e.split(/[,;\s]/g).filter((s) => s.trim() !== "");
2607
2607
  return t.length < 2 ? this : (h(this, V, t.map((s) => new c(s))), this);
@@ -2692,7 +2692,7 @@ const Se = class Se {
2692
2692
  if (e[0] instanceof Se)
2693
2693
  return e[0].clone();
2694
2694
  if (typeof e[0] == "string")
2695
- return i(this, zt).call(this, e[0]);
2695
+ return this.fromString(e[0]);
2696
2696
  throw new Error("Invalid value");
2697
2697
  }
2698
2698
  if (e.length === 2) {
@@ -2746,9 +2746,9 @@ const Se = class Se {
2746
2746
  };
2747
2747
  }
2748
2748
  };
2749
- V = new WeakMap(), ze = new WeakMap(), zt = new WeakMap();
2749
+ V = new WeakMap(), ze = new WeakMap();
2750
2750
  let x = Se;
2751
- function gi(o = 0.5) {
2751
+ function mi(o = 0.5) {
2752
2752
  return Math.random() < o;
2753
2753
  }
2754
2754
  function de(o, e, t) {
@@ -2766,19 +2766,19 @@ function de(o, e, t) {
2766
2766
  return s;
2767
2767
  }
2768
2768
  function X(o, e) {
2769
- return e === !1 ? gi() ? de(1, o) : -de(1, o) : de(-o, o);
2769
+ return e === !1 ? mi() ? de(1, o) : -de(1, o) : de(-o, o);
2770
2770
  }
2771
- function Wi(o) {
2771
+ function Gi(o) {
2772
2772
  let e = G.primes();
2773
- return o !== void 0 && (e = e.filter((t) => t < o)), ti(e);
2773
+ return o !== void 0 && (e = e.filter((t) => t < o)), ei(e);
2774
2774
  }
2775
- function Hi(o, e) {
2776
- return e === void 0 && (e = 1), o.length <= 0 ? Object.values(o) : yi(o).slice(0, e);
2775
+ function Wi(o, e) {
2776
+ return e === void 0 && (e = 1), o.length <= 0 ? Object.values(o) : gi(o).slice(0, e);
2777
2777
  }
2778
- function ti(o) {
2778
+ function ei(o) {
2779
2779
  return o.length === 0 ? null : o[de(0, o.length - 1)];
2780
2780
  }
2781
- function yi(o) {
2781
+ function gi(o) {
2782
2782
  const e = Object.values(o);
2783
2783
  for (let t = e.length - 1; t > 0; t--) {
2784
2784
  const s = Math.floor(Math.random() * (t + 1)), r = e[t];
@@ -2791,15 +2791,11 @@ class D extends x {
2791
2791
  super(), e.length > 0 && this.parse(...e);
2792
2792
  }
2793
2793
  parse(...e) {
2794
- if (this.asPoint = !0, e.length === 0) {
2794
+ if (this.asPoint = !0, e.length === 1) {
2795
2795
  if (e[0] instanceof x)
2796
2796
  return this.array = e[0].copy(), this;
2797
- if (typeof e[0] == "string") {
2798
- const t = e[0].replaceAll("(", "").replaceAll(")", "").split(",").map((s) => new c(s));
2799
- if (t.some((s) => s.isNaN()))
2800
- throw new Error("The value is not a valid point sting (a,b): " + e[0]);
2801
- this.array = t;
2802
- }
2797
+ if (typeof e[0] == "string")
2798
+ return this.fromString(e[0]), this;
2803
2799
  }
2804
2800
  if (e.length > 1) {
2805
2801
  if (e.some((s) => s instanceof x))
@@ -2816,7 +2812,7 @@ class D extends x {
2816
2812
  return e.array = this.copy(), e.asPoint = !0, e;
2817
2813
  }
2818
2814
  }
2819
- var wi = /* @__PURE__ */ ((o) => (o.None = "none", o.Parallel = "parallel", o.Perpendicular = "perpendicular", o.Tangent = "tangent", o))(wi || {}), Ce, B, R, U, ne, Y, $e, ve;
2815
+ var yi = /* @__PURE__ */ ((o) => (o.None = "none", o.Parallel = "parallel", o.Perpendicular = "perpendicular", o.Tangent = "tangent", o))(yi || {}), Ce, B, R, U, ne, Y, $e, ve;
2820
2816
  const Le = class Le {
2821
2817
  /**
2822
2818
  * Value can be a mix of:
@@ -3122,8 +3118,8 @@ const Le = class Le {
3122
3118
  Ce = new WeakMap(), B = new WeakMap(), R = new WeakMap(), U = new WeakMap(), ne = new WeakMap(), Y = new WeakMap(), $e = new WeakMap(), ve = new WeakMap(), // A line is defined as the canonical form
3123
3119
  a(Le, "PERPENDICULAR", "perpendicular"), a(Le, "PARALLEL", "parallel");
3124
3120
  let j = Le;
3125
- var oe, F, qe, kt, Lt, Dt, he, vi, mt, bi, xi, Ei, Kt;
3126
- const Zt = class Zt {
3121
+ var oe, F, qe, zt, kt, Lt, he, wi, mt, vi, bi, xi, Qt;
3122
+ const Dt = class Dt {
3127
3123
  constructor(...e) {
3128
3124
  f(this, he);
3129
3125
  f(this, oe);
@@ -3147,7 +3143,7 @@ const Zt = class Zt {
3147
3143
  const s = i(this, qe).clone(), r = e.getEquation().clone().isolate("x"), n = e.getEquation().clone().isolate("y");
3148
3144
  return r instanceof H && n instanceof H && (s.replaceBy("y", n.right).simplify(), s.solve()), t;
3149
3145
  });
3150
- a(this, "tangents", (e) => e instanceof c ? i(this, Dt).call(this, e) : this.isPointOnCircle(e) ? i(this, kt).call(this, e) : i(this, oe) !== void 0 && i(this, oe).distanceTo(e).value > this.radius.value ? (i(this, Lt).call(this, e), []) : (console.log("No tangents as the point is inside !"), []));
3146
+ a(this, "tangents", (e) => e instanceof c ? i(this, Lt).call(this, e) : this.isPointOnCircle(e) ? i(this, zt).call(this, e) : i(this, oe) !== void 0 && i(this, oe).distanceTo(e).value > this.radius.value ? (i(this, kt).call(this, e), []) : (console.log("No tangents as the point is inside !"), []));
3151
3147
  a(this, "isPointOnCircle", (e) => {
3152
3148
  var t;
3153
3149
  return ((t = i(this, qe)) == null ? void 0 : t.test({ x: e.x, y: e.y })) ?? !1;
@@ -3164,15 +3160,15 @@ const Zt = class Zt {
3164
3160
  );
3165
3161
  }), s;
3166
3162
  });
3167
- f(this, kt, (e) => {
3163
+ f(this, zt, (e) => {
3168
3164
  const t = new D(this.center, e);
3169
- return [new j(e, t, wi.Perpendicular)];
3165
+ return [new j(e, t, yi.Perpendicular)];
3170
3166
  });
3171
- f(this, Lt, (e) => {
3167
+ f(this, kt, (e) => {
3172
3168
  const t = this.center.x.clone().subtract(e.x), s = this.center.y.clone().subtract(e.y), r = new T("x"), n = new T("x^2+1");
3173
3169
  r.multiply(t).subtract(s).pow(2), n.multiply(this.squareRadius), new H(r, n).moveLeft().simplify().solve();
3174
3170
  });
3175
- f(this, Dt, (e) => {
3171
+ f(this, Lt, (e) => {
3176
3172
  const t = e.numerator, s = -e.denominator, r = this.center.x.clone(), n = this.center.y.clone(), l = this.squareRadius.clone().multiply(e.numerator ** 2 + e.denominator ** 2), u = r.clone().multiply(t).opposite().subtract(n.clone().multiply(s)).add(l.clone().sqrt()), p = r.clone().multiply(t).opposite().subtract(n.clone().multiply(s)).subtract(l.clone().sqrt());
3177
3173
  return [new j(t, s, u), new j(t, s, p)];
3178
3174
  });
@@ -3212,7 +3208,7 @@ const Zt = class Zt {
3212
3208
  return this.center.x.isZero() ? e = "x^2" : e = `(x${this.center.x.isNegative() ? "+" : "-"}${this.center.x.clone().abs().tex})^2`, this.center.y.isZero() ? t = "y^2" : t = `(y${this.center.y.isNegative() ? "+" : "-"}${this.center.y.clone().abs().tex})^2`, `${e}+${t}=${this.squareRadius.display}`;
3213
3209
  }
3214
3210
  clone() {
3215
- return new Zt(
3211
+ return new Dt(
3216
3212
  this.center.clone(),
3217
3213
  this.squareRadius.clone(),
3218
3214
  !0
@@ -3222,7 +3218,7 @@ const Zt = class Zt {
3222
3218
  return t ? h(this, F, new c(e)) : h(this, F, new c(e).pow(2)), M(this, he, mt).call(this), this;
3223
3219
  }
3224
3220
  parse(...e) {
3225
- return M(this, he, vi).call(this), typeof e[0] == "string" ? M(this, he, Kt).call(this, new H(e[0])) : e[0] instanceof H ? M(this, he, Kt).call(this, e[0]) : e[0] instanceof Zt ? M(this, he, bi).call(this, e[0]) : e[0] instanceof D && e.length > 1 && (e[1] instanceof D ? e[2] instanceof D || M(this, he, Ei).call(this, e[0], e[1]) : (e[1] instanceof c || typeof e[1] == "number") && M(this, he, xi).call(this, e[0], e[1], typeof e[2] == "boolean" ? e[2] : !1)), M(this, he, mt).call(this), this;
3221
+ return M(this, he, wi).call(this), typeof e[0] == "string" ? M(this, he, Qt).call(this, new H(e[0])) : e[0] instanceof H ? M(this, he, Qt).call(this, e[0]) : e[0] instanceof Dt ? M(this, he, vi).call(this, e[0]) : e[0] instanceof D && e.length > 1 && (e[1] instanceof D ? e[2] instanceof D || M(this, he, xi).call(this, e[0], e[1]) : (e[1] instanceof c || typeof e[1] == "number") && M(this, he, bi).call(this, e[0], e[1], typeof e[2] == "boolean" ? e[2] : !1)), M(this, he, mt).call(this), this;
3226
3222
  }
3227
3223
  // private _parseThroughtThreePoints(A: Point, B: Point, C: Point): this {
3228
3224
  // const T = new Triangle(A, B, C), mAB = T.remarquables.mediators.AB.clone(),
@@ -3231,20 +3227,20 @@ const Zt = class Zt {
3231
3227
  // return this
3232
3228
  // }
3233
3229
  };
3234
- oe = new WeakMap(), F = new WeakMap(), qe = new WeakMap(), kt = new WeakMap(), Lt = new WeakMap(), Dt = new WeakMap(), he = new WeakSet(), vi = function() {
3230
+ oe = new WeakMap(), F = new WeakMap(), qe = new WeakMap(), zt = new WeakMap(), kt = new WeakMap(), Lt = new WeakMap(), he = new WeakSet(), wi = function() {
3235
3231
  return h(this, oe, void 0), h(this, F, void 0), h(this, qe, void 0), this;
3236
3232
  }, mt = function() {
3237
3233
  h(this, qe, new H(
3238
3234
  new T(`(x-(${this.center.x.display}))^2+(y-(${this.center.y.display}))^2`),
3239
3235
  new T(this.squareRadius.display)
3240
3236
  ).moveLeft());
3241
- }, bi = function(e) {
3237
+ }, vi = function(e) {
3242
3238
  return h(this, oe, e.center.clone()), h(this, F, e.squareRadius.clone()), M(this, he, mt).call(this), this;
3243
- }, xi = function(e, t, s) {
3239
+ }, bi = function(e, t, s) {
3244
3240
  return h(this, oe, e.clone()), s ? h(this, F, new c(t)) : h(this, F, new c(t).pow(2)), this;
3245
- }, Ei = function(e, t) {
3241
+ }, xi = function(e, t) {
3246
3242
  return h(this, oe, e.clone()), h(this, F, new x(i(this, oe), t).normSquare), this;
3247
- }, Kt = function(e) {
3243
+ }, Qt = function(e) {
3248
3244
  if (e.moveLeft(), e.degree("x").value === 2 && e.degree("y").value === 2) {
3249
3245
  const t = e.left.monomByDegree(2, "x"), s = e.left.monomByDegree(2, "y");
3250
3246
  let r, n, l;
@@ -3252,9 +3248,9 @@ oe = new WeakMap(), F = new WeakMap(), qe = new WeakMap(), kt = new WeakMap(), L
3252
3248
  }
3253
3249
  return this;
3254
3250
  };
3255
- let yt = Zt;
3256
- var Q, _, ee, Je, Te, ct, Vt, ut, Pe, Ft, _e;
3257
- const jt = class jt {
3251
+ let yt = Dt;
3252
+ var Q, _, ee, Je, Te, ct, Zt, ut, Pe, Vt, _e;
3253
+ const Ft = class Ft {
3258
3254
  constructor(...e) {
3259
3255
  f(this, Q);
3260
3256
  f(this, _);
@@ -3306,14 +3302,14 @@ const jt = class jt {
3306
3302
  BC: new j(i(this, _), i(this, ee)),
3307
3303
  AC: new j(i(this, Q), i(this, ee))
3308
3304
  }));
3309
- } else if (e.length === 1 && e[0] instanceof jt)
3305
+ } else if (e.length === 1 && e[0] instanceof Ft)
3310
3306
  return e[0].clone();
3311
- return i(this, Vt).call(this), this;
3307
+ return i(this, Zt).call(this), this;
3312
3308
  });
3313
3309
  /**
3314
3310
  * Clone the Triangle class
3315
3311
  */
3316
- a(this, "clone", () => new jt(
3312
+ a(this, "clone", () => new Ft(
3317
3313
  i(this, Q).clone(),
3318
3314
  i(this, _).clone(),
3319
3315
  i(this, ee).clone()
@@ -3324,12 +3320,12 @@ const jt = class jt {
3324
3320
  /**
3325
3321
  * Generate the Line object for the three segments of the triangle
3326
3322
  */
3327
- f(this, Vt, () => {
3323
+ f(this, Zt, () => {
3328
3324
  h(this, Te, {
3329
3325
  AB: new D().middleOf(i(this, Q), i(this, _)),
3330
3326
  AC: new D().middleOf(i(this, Q), i(this, ee)),
3331
3327
  BC: new D().middleOf(i(this, _), i(this, ee))
3332
- }), h(this, ct, i(this, Ft).call(this));
3328
+ }), h(this, ct, i(this, Vt).call(this));
3333
3329
  });
3334
3330
  /**
3335
3331
  * Get the Vector2D class for the given name
@@ -3355,7 +3351,7 @@ const jt = class jt {
3355
3351
  i(this, ut).call(this, e),
3356
3352
  i(this, ut).call(this, t)
3357
3353
  ));
3358
- f(this, Ft, () => {
3354
+ f(this, Vt, () => {
3359
3355
  const e = {
3360
3356
  A: new j(i(this, Q), i(this, Te).BC),
3361
3357
  B: new j(i(this, _), i(this, Te).AC),
@@ -3446,8 +3442,8 @@ const jt = class jt {
3446
3442
  return i(this, ct);
3447
3443
  }
3448
3444
  };
3449
- Q = new WeakMap(), _ = new WeakMap(), ee = new WeakMap(), Je = new WeakMap(), Te = new WeakMap(), ct = new WeakMap(), Vt = new WeakMap(), ut = new WeakMap(), Pe = new WeakMap(), Ft = new WeakMap(), _e = new WeakMap();
3450
- let Jt = jt;
3445
+ Q = new WeakMap(), _ = new WeakMap(), ee = new WeakMap(), Je = new WeakMap(), Te = new WeakMap(), ct = new WeakMap(), Zt = new WeakMap(), ut = new WeakMap(), Pe = new WeakMap(), Vt = new WeakMap(), _e = new WeakMap();
3446
+ let Kt = Ft;
3451
3447
  var z, W;
3452
3448
  const nt = class nt {
3453
3449
  constructor(e, t) {
@@ -3559,7 +3555,7 @@ z = new WeakMap(), W = new WeakMap(), // A line is defined as the canonical form
3559
3555
  a(nt, "PERPENDICULAR", "perpendicular"), a(nt, "PARALLEL", "parallel");
3560
3556
  let wt = nt;
3561
3557
  var Ae, Fe;
3562
- const si = class si {
3558
+ const ii = class ii {
3563
3559
  constructor(e) {
3564
3560
  f(this, Ae, new x(0, 0, 1));
3565
3561
  f(this, Fe, new D(0, 0, 0));
@@ -3624,7 +3620,7 @@ const si = class si {
3624
3620
  }
3625
3621
  }
3626
3622
  angle(e, t, s) {
3627
- if (e instanceof si)
3623
+ if (e instanceof ii)
3628
3624
  return this.normal.angle(e.normal, t, s);
3629
3625
  let r;
3630
3626
  if (e instanceof x) {
@@ -3650,9 +3646,9 @@ const si = class si {
3650
3646
  }
3651
3647
  };
3652
3648
  Ae = new WeakMap(), Fe = new WeakMap();
3653
- let _t = si;
3649
+ let Jt = ii;
3654
3650
  var Me;
3655
- class Xi {
3651
+ class Hi {
3656
3652
  constructor(...e) {
3657
3653
  f(this, Me, []);
3658
3654
  return h(this, Me, e), this;
@@ -3672,7 +3668,7 @@ class Xi {
3672
3668
  determinant() {
3673
3669
  if (!this.isSquare())
3674
3670
  throw new Error("Matrix is not square");
3675
- return Gi(...this.values);
3671
+ return Ui(...this.values);
3676
3672
  }
3677
3673
  }
3678
3674
  Me = new WeakMap();
@@ -3696,7 +3692,7 @@ function vt(o) {
3696
3692
  }
3697
3693
  return e.reduced ? t.reduce() : t;
3698
3694
  }
3699
- function Ni(o) {
3695
+ function Ei(o) {
3700
3696
  const e = Object.assign(
3701
3697
  {
3702
3698
  letters: "x",
@@ -3714,14 +3710,14 @@ function Ni(o) {
3714
3710
  for (const s of e.letters.split(""))
3715
3711
  t.setLetter(s, 0);
3716
3712
  for (let s = 0; s < e.degree; s++) {
3717
- const r = ti(e.letters.split(""));
3713
+ const r = ei(e.letters.split(""));
3718
3714
  t.setLetter(r, t.degree(r).clone().add(1));
3719
3715
  }
3720
3716
  } else
3721
3717
  t.setLetter(e.letters, e.degree);
3722
3718
  return t;
3723
3719
  }
3724
- const Yi = {
3720
+ const Xi = {
3725
3721
  letters: "x",
3726
3722
  degree: 2,
3727
3723
  fraction: !1,
@@ -3732,14 +3728,14 @@ const Yi = {
3732
3728
  numberOfMonoms: 0,
3733
3729
  positive: !0
3734
3730
  };
3735
- function Oi(o) {
3731
+ function Ni(o) {
3736
3732
  const e = Object.assign(
3737
- Yi,
3733
+ Xi,
3738
3734
  o
3739
3735
  ), t = new T().empty();
3740
3736
  let s;
3741
3737
  for (let r = e.degree; r >= 0; r--)
3742
- s = Ni({
3738
+ s = Ei({
3743
3739
  letters: e.letters,
3744
3740
  degree: r,
3745
3741
  fraction: e.fraction,
@@ -3752,7 +3748,7 @@ function Oi(o) {
3752
3748
  }
3753
3749
  return t;
3754
3750
  }
3755
- function Qi(o) {
3751
+ function Yi(o) {
3756
3752
  const e = Object.assign(
3757
3753
  {
3758
3754
  letters: "x",
@@ -3774,7 +3770,7 @@ function Qi(o) {
3774
3770
  o
3775
3771
  ), t = new T().one();
3776
3772
  for (let s = 0; s < e.degree; s++) {
3777
- const r = Oi({
3773
+ const r = Ni({
3778
3774
  degree: 1,
3779
3775
  unit: e.unit,
3780
3776
  fraction: e.fraction,
@@ -3785,7 +3781,7 @@ function Qi(o) {
3785
3781
  }
3786
3782
  return new H(t, 0);
3787
3783
  }
3788
- function qi(o) {
3784
+ function Oi(o) {
3789
3785
  const e = Object.assign(
3790
3786
  {
3791
3787
  axis: !0,
@@ -3797,7 +3793,7 @@ function qi(o) {
3797
3793
  ), t = e.axis === "x", s = e.axis === "y", r = e.fraction ? vt({ max: e.max, zero: t }) : new c(X(e.max, t)), n = e.fraction ? vt({ max: e.max, zero: s }) : new c(X(e.max, s));
3798
3794
  return Number(e.quadrant) === 1 && (r.abs(), n.abs()), Number(e.quadrant) === 2 && (r.isPositive() && r.opposite(), n.isNegative() && n.opposite()), Number(e.quadrant) === 3 && (r.isPositive() && r.opposite(), n.isPositive() && n.opposite()), Number(e.quadrant) === 4 && (r.isNegative() && r.opposite(), n.isPositive() && n.opposite()), new D(r, n);
3799
3795
  }
3800
- function Ki(o) {
3796
+ function Qi(o) {
3801
3797
  const e = Object.assign(
3802
3798
  {
3803
3799
  center: {
@@ -3807,11 +3803,11 @@ function Ki(o) {
3807
3803
  pointsOnCircle: 8
3808
3804
  },
3809
3805
  o
3810
- ), t = qi(e.center);
3806
+ ), t = Oi(e.center);
3811
3807
  let s, r;
3812
3808
  return e.pointsOnCircle === 8 ? (s = de(1, 3), r = s ** 2 + (s + 1) ** 2) : r = de(1, 20), new yt(t, r, !0);
3813
3809
  }
3814
- function Ji(o) {
3810
+ function Ki(o) {
3815
3811
  const e = Object.assign(
3816
3812
  {
3817
3813
  A: {
@@ -3828,7 +3824,7 @@ function Ji(o) {
3828
3824
  t.x = X(10), t.y = X(10);
3829
3825
  return e.slope === 1 ? t.x.sign() !== t.y.sign() && t.y.opposite() : e.slope === -1 && t.x.sign() !== t.y.sign() && t.y.opposite(), new j(new x(e.A.x, e.A.y), t);
3830
3826
  }
3831
- function _i(o) {
3827
+ function Ji(o) {
3832
3828
  const e = Object.assign(
3833
3829
  {
3834
3830
  A: {
@@ -3846,45 +3842,45 @@ function _i(o) {
3846
3842
  ), t = new D(e.A.x, e.A.y, e.A.z), s = new x(e.direction.x, e.direction.y, e.direction.z);
3847
3843
  return new wt(t, s);
3848
3844
  }
3849
- const es = {
3850
- equation: (o) => Qi(o),
3851
- polynom: (o) => Oi(o),
3852
- monom: (o) => Ni(o),
3845
+ const _i = {
3846
+ equation: (o) => Yi(o),
3847
+ polynom: (o) => Ni(o),
3848
+ monom: (o) => Ei(o),
3853
3849
  fraction: (o) => vt(o),
3854
3850
  number: (o, e, t) => de(o, e, t),
3855
3851
  numberSym: (o, e) => X(o, e),
3856
- prime: (o) => Wi(o),
3857
- bool: (o) => gi(o),
3858
- array: (o, e) => Hi(o, e),
3859
- item: (o) => ti(o),
3860
- shuffle: (o) => yi(o),
3861
- line: (o) => Ji(o),
3862
- line3: (o) => _i(o),
3863
- point: (o) => qi(o),
3864
- circle: (o) => Ki(o)
3865
- }, ts = {
3852
+ prime: (o) => Gi(o),
3853
+ bool: (o) => mi(o),
3854
+ array: (o, e) => Wi(o, e),
3855
+ item: (o) => ei(o),
3856
+ shuffle: (o) => gi(o),
3857
+ line: (o) => Ki(o),
3858
+ line3: (o) => Ji(o),
3859
+ point: (o) => Oi(o),
3860
+ circle: (o) => Qi(o)
3861
+ }, es = {
3866
3862
  Vector: x,
3867
3863
  Point: D,
3868
3864
  Line: j,
3869
- Triangle: Jt,
3865
+ Triangle: Kt,
3870
3866
  Circle: yt,
3871
3867
  Line3: wt,
3872
- Plane3: _t
3873
- }, ss = {
3868
+ Plane3: Jt
3869
+ }, is = {
3874
3870
  Numeric: G,
3875
3871
  Fraction: c,
3876
3872
  Root: ft,
3877
3873
  Monom: I,
3878
3874
  Polynom: T,
3879
3875
  Equation: H,
3880
- Matrix: Xi,
3881
- LinearSystem: Qt,
3876
+ Matrix: Hi,
3877
+ LinearSystem: Yt,
3882
3878
  Factor: fe,
3883
- PolyFactor: Xt,
3879
+ PolyFactor: Ht,
3884
3880
  // LogicalSet,
3885
- Random: es,
3886
- Geometry: ts
3881
+ Random: _i,
3882
+ Geometry: es
3887
3883
  };
3888
3884
  export {
3889
- ss as default
3885
+ is as default
3890
3886
  };
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "pimath",
3
- "version": "0.1.4",
3
+ "version": "0.1.5",
4
4
  "description": "A math library for teacher :)",
5
5
  "type": "module",
6
6
  "main": "dist/index.js",
@@ -1 +1 @@
1
- {"version":3,"file":"point.d.ts","sourceRoot":"","sources":["../../src/geometry/point.ts"],"names":[],"mappings":"AAKA,OAAO,EAAE,QAAQ,EAAE,MAAM,0BAA0B,CAAA;AACnD,OAAO,KAAK,EAAE,UAAU,EAAE,MAAM,qBAAqB,CAAA;AACrD,OAAO,EAAE,MAAM,EAAE,MAAM,UAAU,CAAA;AAEjC,qBAAa,KAAM,SAAQ,MAAM;;gBAGjB,KAAK,EAAE,MAAM;gBACb,KAAK,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM;gBAC1B,GAAG,MAAM,EAAE,UAAU,CAAC,QAAQ,CAAC,EAAE;IAU7B,KAAK,CAAC,GAAG,MAAM,EAAE,MAAM,EAAE,GAAG,UAAU,CAAC,QAAQ,CAAC,EAAE,GAAG,IAAI;IAyCzD,KAAK,IAAI,KAAK;CAOjC"}
1
+ {"version":3,"file":"point.d.ts","sourceRoot":"","sources":["../../src/geometry/point.ts"],"names":[],"mappings":"AAKA,OAAO,EAAE,QAAQ,EAAE,MAAM,0BAA0B,CAAA;AACnD,OAAO,KAAK,EAAE,UAAU,EAAE,MAAM,qBAAqB,CAAA;AACrD,OAAO,EAAE,MAAM,EAAE,MAAM,UAAU,CAAA;AAEjC,qBAAa,KAAM,SAAQ,MAAM;;gBAGjB,KAAK,EAAE,MAAM;gBACb,KAAK,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM;gBAC1B,GAAG,MAAM,EAAE,UAAU,CAAC,QAAQ,CAAC,EAAE;IAU7B,KAAK,CAAC,GAAG,MAAM,EAAE,MAAM,EAAE,GAAG,UAAU,CAAC,QAAQ,CAAC,EAAE,GAAG,IAAI;IAkCzD,KAAK,IAAI,KAAK;CAOjC"}
@@ -47,6 +47,7 @@ export declare class Vector implements IPiMathObject<Vector> {
47
47
  divideByScalar: (k: InputValue<Fraction>) => this;
48
48
  simplify: () => this;
49
49
  angle: (V: Vector, sharp?: boolean, radian?: boolean) => number;
50
+ fromString: (value: string) => this;
50
51
  distanceTo(item: Vector): {
51
52
  value: number;
52
53
  fraction: Fraction;
@@ -1 +1 @@
1
- {"version":3,"file":"vector.d.ts","sourceRoot":"","sources":["../../src/geometry/vector.ts"],"names":[],"mappings":"AAIA,OAAO,KAAK,EAAE,UAAU,EAAE,aAAa,EAAE,MAAM,qBAAqB,CAAA;AACpE,OAAO,EAAE,QAAQ,EAAE,MAAM,0BAA0B,CAAA;AAInD,qBAAa,MAAO,YAChB,aAAa,CAAC,MAAM,CAAC;;gBAIT,GAAG,MAAM,EAAE,MAAM,EAAE,GAAG,UAAU,CAAC,QAAQ,CAAC,EAAE;IASxD,IAAI,KAAK,IAAI,QAAQ,EAAE,CAEtB;IAED,IAAI,KAAK,CAAC,KAAK,EAAE,QAAQ,EAAE,EAE1B;IAED,IAAI,CAAC,IAAI,QAAQ,CAEhB;IAED,IAAI,CAAC,CAAC,KAAK,EAAE,QAAQ,GAAG,MAAM,GAAG,MAAM,EAEtC;IAED,IAAI,CAAC,IAAI,QAAQ,CAEhB;IAED,IAAI,CAAC,CAAC,KAAK,EAAE,QAAQ,GAAG,MAAM,GAAG,MAAM,EAEtC;IAED,IAAI,CAAC,IAAI,QAAQ,CAGhB;IAED,IAAI,CAAC,CAAC,KAAK,EAAE,QAAQ,GAAG,MAAM,GAAG,MAAM,EAGtC;IAED,IAAI,OAAO,IAAI,OAAO,CAErB;IAED,IAAI,OAAO,CAAC,KAAK,EAAE,OAAO,EAEzB;IAGD,IAAI,UAAU,IAAI,QAAQ,CAGzB;IAED,IAAI,IAAI,IAAI,MAAM,CAEjB;IAED,IAAI,GAAG,IAAI,MAAM,CAMhB;IAED,IAAI,OAAO,IAAI,MAAM,CAMpB;IAED,YAAY,CAAC,KAAK,SAAI,GAAG,IAAI;IAe7B,IAAI,SAAS,IAAI,MAAM,CAEtB;IAKD,IAAI,MAAM,IAAI,OAAO,CAEpB;IAED,MAAM,CAAC,KAAK,CAAC,GAAG,MAAM,EAAE,MAAM,EAAE,GAAG,MAAM;IAGzC,MAAM,CAAC,SAAS,CAAC,GAAG,MAAM,EAAE,MAAM,EAAE,GAAG,MAAM;IAItC,aAAa,CAAC,KAAK,CAAC,EAAE,OAAO,GAAG,IAAI;IAIpC,KAAK,CAAC,GAAG,MAAM,EAAE,MAAM,EAAE,GAAG,UAAU,CAAC,QAAQ,CAAC,EAAE,GAAG,IAAI;IAkCzD,KAAK,IAAI,MAAM;IAOf,IAAI,IAAI,QAAQ,EAAE;IAIzB,IAAI,QAAO,IAAI,CAGd;IAED,GAAG,QAAO,IAAI,CAIb;IAED,QAAQ,QAAO,IAAI,CAGlB;IAED,GAAG,MAAO,MAAM,KAAG,IAAI,CAGtB;IAED,QAAQ,MAAO,MAAM,KAAG,IAAI,CAE3B;IAED,IAAI,QAAO,IAAI,CAOd;IAED,QAAQ,CAAC,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,GAAG,IAAI;IAWtC,SAAS,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,GAAG,IAAI;IAMtC,GAAG,MAAO,MAAM,KAAG,QAAQ,CAE1B;IAED,KAAK,CAAC,KAAK,EAAE,MAAM,GAAG,MAAM;IAY5B,MAAM,QAAO,IAAI,CAQhB;IAED,MAAM,IAAI,OAAO;IAGjB,KAAK,IAAI,OAAO;IAIhB,OAAO,MAAO,MAAM,KAAG,OAAO,CAE7B;IAED,YAAY,MAAO,MAAM,KAAG,OAAO,CAElC;IAED,UAAU,MAAO,MAAM,KAAG,OAAO,CAEhC;IAED,gBAAgB,MAAO,WAAW,QAAQ,CAAC,KAAG,IAAI,CAIjD;IAED,cAAc,MAAO,WAAW,QAAQ,CAAC,KAAG,IAAI,CAE/C;IAED,QAAQ,QAAO,IAAI,CAYlB;IAED,KAAK,MAAO,MAAM,UAAU,OAAO,WAAW,OAAO,KAAG,MAAM,CAU7D;IA0BD,UAAU,CAAC,IAAI,EAAE,MAAM,GAAG;QAAE,KAAK,EAAE,MAAM,CAAC;QAAC,QAAQ,EAAE,QAAQ,CAAC;QAAC,GAAG,EAAE,MAAM,CAAA;KAAE;CAS/E"}
1
+ {"version":3,"file":"vector.d.ts","sourceRoot":"","sources":["../../src/geometry/vector.ts"],"names":[],"mappings":"AAIA,OAAO,KAAK,EAAE,UAAU,EAAE,aAAa,EAAE,MAAM,qBAAqB,CAAA;AACpE,OAAO,EAAE,QAAQ,EAAE,MAAM,0BAA0B,CAAA;AAInD,qBAAa,MAAO,YAChB,aAAa,CAAC,MAAM,CAAC;;gBAIT,GAAG,MAAM,EAAE,MAAM,EAAE,GAAG,UAAU,CAAC,QAAQ,CAAC,EAAE;IASxD,IAAI,KAAK,IAAI,QAAQ,EAAE,CAEtB;IAED,IAAI,KAAK,CAAC,KAAK,EAAE,QAAQ,EAAE,EAE1B;IAED,IAAI,CAAC,IAAI,QAAQ,CAEhB;IAED,IAAI,CAAC,CAAC,KAAK,EAAE,QAAQ,GAAG,MAAM,GAAG,MAAM,EAEtC;IAED,IAAI,CAAC,IAAI,QAAQ,CAEhB;IAED,IAAI,CAAC,CAAC,KAAK,EAAE,QAAQ,GAAG,MAAM,GAAG,MAAM,EAEtC;IAED,IAAI,CAAC,IAAI,QAAQ,CAGhB;IAED,IAAI,CAAC,CAAC,KAAK,EAAE,QAAQ,GAAG,MAAM,GAAG,MAAM,EAGtC;IAED,IAAI,OAAO,IAAI,OAAO,CAErB;IAED,IAAI,OAAO,CAAC,KAAK,EAAE,OAAO,EAEzB;IAGD,IAAI,UAAU,IAAI,QAAQ,CAGzB;IAED,IAAI,IAAI,IAAI,MAAM,CAEjB;IAED,IAAI,GAAG,IAAI,MAAM,CAMhB;IAED,IAAI,OAAO,IAAI,MAAM,CAMpB;IAED,YAAY,CAAC,KAAK,SAAI,GAAG,IAAI;IAe7B,IAAI,SAAS,IAAI,MAAM,CAEtB;IAKD,IAAI,MAAM,IAAI,OAAO,CAEpB;IAED,MAAM,CAAC,KAAK,CAAC,GAAG,MAAM,EAAE,MAAM,EAAE,GAAG,MAAM;IAGzC,MAAM,CAAC,SAAS,CAAC,GAAG,MAAM,EAAE,MAAM,EAAE,GAAG,MAAM;IAItC,aAAa,CAAC,KAAK,CAAC,EAAE,OAAO,GAAG,IAAI;IAIpC,KAAK,CAAC,GAAG,MAAM,EAAE,MAAM,EAAE,GAAG,UAAU,CAAC,QAAQ,CAAC,EAAE,GAAG,IAAI;IAkCzD,KAAK,IAAI,MAAM;IAOf,IAAI,IAAI,QAAQ,EAAE;IAIzB,IAAI,QAAO,IAAI,CAGd;IAED,GAAG,QAAO,IAAI,CAIb;IAED,QAAQ,QAAO,IAAI,CAGlB;IAED,GAAG,MAAO,MAAM,KAAG,IAAI,CAGtB;IAED,QAAQ,MAAO,MAAM,KAAG,IAAI,CAE3B;IAED,IAAI,QAAO,IAAI,CAOd;IAED,QAAQ,CAAC,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,GAAG,IAAI;IAWtC,SAAS,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,GAAG,IAAI;IAMtC,GAAG,MAAO,MAAM,KAAG,QAAQ,CAE1B;IAED,KAAK,CAAC,KAAK,EAAE,MAAM,GAAG,MAAM;IAY5B,MAAM,QAAO,IAAI,CAQhB;IAED,MAAM,IAAI,OAAO;IAGjB,KAAK,IAAI,OAAO;IAIhB,OAAO,MAAO,MAAM,KAAG,OAAO,CAE7B;IAED,YAAY,MAAO,MAAM,KAAG,OAAO,CAElC;IAED,UAAU,MAAO,MAAM,KAAG,OAAO,CAEhC;IAED,gBAAgB,MAAO,WAAW,QAAQ,CAAC,KAAG,IAAI,CAIjD;IAED,cAAc,MAAO,WAAW,QAAQ,CAAC,KAAG,IAAI,CAE/C;IAED,QAAQ,QAAO,IAAI,CAYlB;IAED,KAAK,MAAO,MAAM,UAAU,OAAO,WAAW,OAAO,KAAG,MAAM,CAU7D;IAGD,UAAU,UAAW,MAAM,KAAG,IAAI,CAuBjC;IAED,UAAU,CAAC,IAAI,EAAE,MAAM,GAAG;QAAE,KAAK,EAAE,MAAM,CAAC;QAAC,QAAQ,EAAE,QAAQ,CAAC;QAAC,GAAG,EAAE,MAAM,CAAA;KAAE;CAS/E"}