pimath 0.1.3 → 0.1.4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/pimath.js +188 -185
- package/package.json +1 -1
- package/types/algebra/polyFactor.d.ts +1 -0
- package/types/algebra/polyFactor.d.ts.map +1 -1
package/dist/pimath.js
CHANGED
|
@@ -1933,191 +1933,7 @@ const we = class we {
|
|
|
1933
1933
|
};
|
|
1934
1934
|
Ee = new WeakMap(), Qe = new WeakMap(), Ne = new WeakMap(), Oe = new WeakMap();
|
|
1935
1935
|
let fe = we;
|
|
1936
|
-
var Ue = /* @__PURE__ */ ((o) => (o[o.ROOT = 0] = "ROOT", o[o.POWER = 1] = "POWER", o))(Ue || {}),
|
|
1937
|
-
const me = class me {
|
|
1938
|
-
// #endregion Class fields (1)
|
|
1939
|
-
// #region Constructors (1)
|
|
1940
|
-
constructor(...e) {
|
|
1941
|
-
// #region Class fields (1)
|
|
1942
|
-
f(this, N, []);
|
|
1943
|
-
f(this, Ve, Ue.POWER);
|
|
1944
|
-
return this.parse(...e), this;
|
|
1945
|
-
}
|
|
1946
|
-
// #endregion Constructors (1)
|
|
1947
|
-
// #region Properties and methods (25)
|
|
1948
|
-
parse(...e) {
|
|
1949
|
-
return e.length === 0 ? this : (h(this, N, []), e.forEach((t) => {
|
|
1950
|
-
if (typeof t == "string") {
|
|
1951
|
-
const s = t.split(")(").join(")*(").split("*");
|
|
1952
|
-
i(this, N).push(...s.map((r) => new fe(r)));
|
|
1953
|
-
} else t instanceof me ? i(this, N).push(...t.factors.map((s) => s.clone())) : i(this, N).push(new fe(t));
|
|
1954
|
-
}), this);
|
|
1955
|
-
}
|
|
1956
|
-
clone() {
|
|
1957
|
-
return new me(...i(this, N).map((e) => e.clone()));
|
|
1958
|
-
}
|
|
1959
|
-
add(...e) {
|
|
1960
|
-
let t = [this, ...e];
|
|
1961
|
-
const s = me.gcd(...t);
|
|
1962
|
-
t = t.map((n) => n.divide(s).reduce());
|
|
1963
|
-
const r = new T("0");
|
|
1964
|
-
return t.forEach((n) => r.add(n.develop())), h(this, N, [
|
|
1965
|
-
...s.factors,
|
|
1966
|
-
new fe(r)
|
|
1967
|
-
]), this;
|
|
1968
|
-
}
|
|
1969
|
-
degree(e) {
|
|
1970
|
-
return i(this, N).reduce((t, s) => t.add(s.degree(e)), new c("0"));
|
|
1971
|
-
}
|
|
1972
|
-
derivative() {
|
|
1973
|
-
const e = [], t = i(this, N).length;
|
|
1974
|
-
for (let r = 0; r < t; r++) {
|
|
1975
|
-
const n = i(this, N).slice(), l = n.splice(r, 1)[0];
|
|
1976
|
-
e.push(new me(...n).multiply(new me(...l.derivative())));
|
|
1977
|
-
}
|
|
1978
|
-
e.forEach((r) => r.reduce());
|
|
1979
|
-
const s = e.shift();
|
|
1980
|
-
return s !== void 0 && h(this, N, s.factors), this.add(...e);
|
|
1981
|
-
}
|
|
1982
|
-
develop() {
|
|
1983
|
-
const e = new T("1");
|
|
1984
|
-
return i(this, N).forEach((t) => {
|
|
1985
|
-
e.multiply(t.develop());
|
|
1986
|
-
}), e;
|
|
1987
|
-
}
|
|
1988
|
-
divide(e) {
|
|
1989
|
-
return h(this, N, i(this, N).concat(e.clone().factors.map((t) => t.inverse()))), this;
|
|
1990
|
-
}
|
|
1991
|
-
evaluate(e, t) {
|
|
1992
|
-
return t ? i(this, N).reduce((s, r) => s * r.evaluate(e, t), 1) : i(this, N).reduce((s, r) => s.multiply(r.evaluate(e)), new c("1"));
|
|
1993
|
-
}
|
|
1994
|
-
hasVariable(e) {
|
|
1995
|
-
return i(this, N).some((t) => t.hasVariable(e));
|
|
1996
|
-
}
|
|
1997
|
-
inverse() {
|
|
1998
|
-
return h(this, N, i(this, N).map((e) => e.inverse())), this;
|
|
1999
|
-
}
|
|
2000
|
-
isEqual(e) {
|
|
2001
|
-
const t = me.gcd(this, e), s = this.clone().divide(t).reduce(), r = e.clone().divide(t).reduce();
|
|
2002
|
-
return s.isOne() && r.isOne();
|
|
2003
|
-
}
|
|
2004
|
-
isOne() {
|
|
2005
|
-
return i(this, N).every((e) => e.isOne());
|
|
2006
|
-
}
|
|
2007
|
-
isZero() {
|
|
2008
|
-
return i(this, N).every((e) => e.isZero());
|
|
2009
|
-
}
|
|
2010
|
-
multiply(...e) {
|
|
2011
|
-
return e.forEach((t) => {
|
|
2012
|
-
h(this, N, i(this, N).concat(t.clone().factors));
|
|
2013
|
-
}), this;
|
|
2014
|
-
}
|
|
2015
|
-
one() {
|
|
2016
|
-
return h(this, N, [new fe("1", "1")]), this;
|
|
2017
|
-
}
|
|
2018
|
-
opposite() {
|
|
2019
|
-
const e = i(this, N).findIndex((t) => t.display === "(-1)");
|
|
2020
|
-
return e >= 0 ? i(this, N).splice(e, 1) : i(this, N).push(new fe("-1", "1")), this;
|
|
2021
|
-
}
|
|
2022
|
-
pow(e) {
|
|
2023
|
-
return h(this, N, i(this, N).map((t) => t.pow(e))), this;
|
|
2024
|
-
}
|
|
2025
|
-
primitive() {
|
|
2026
|
-
throw new Error("Method not implemented.");
|
|
2027
|
-
}
|
|
2028
|
-
reduce() {
|
|
2029
|
-
const e = Wt(this);
|
|
2030
|
-
return h(this, N, Object.values(e).map((t) => {
|
|
2031
|
-
const s = t[0].polynom, r = t.reduce((n, l) => n.add(l.power), new c("0"));
|
|
2032
|
-
return new fe(s, r.reduce());
|
|
2033
|
-
}).filter((t) => !t.power.isZero())), this;
|
|
2034
|
-
}
|
|
2035
|
-
root(e) {
|
|
2036
|
-
return h(this, N, i(this, N).map((t) => t.root(e))), this;
|
|
2037
|
-
}
|
|
2038
|
-
sort() {
|
|
2039
|
-
return h(this, N, i(this, N).sort((e, t) => e.degree().isLeq(t.degree()) ? -1 : 1)), this;
|
|
2040
|
-
}
|
|
2041
|
-
sqrt() {
|
|
2042
|
-
return h(this, N, i(this, N).map((e) => e.sqrt())), this;
|
|
2043
|
-
}
|
|
2044
|
-
subtract(...e) {
|
|
2045
|
-
return this.add(...e.map((t) => t.opposite()));
|
|
2046
|
-
}
|
|
2047
|
-
zero() {
|
|
2048
|
-
return h(this, N, [new fe("0", "1")]), this;
|
|
2049
|
-
}
|
|
2050
|
-
static gcd(...e) {
|
|
2051
|
-
var s;
|
|
2052
|
-
if (e.length === 0)
|
|
2053
|
-
return new me().one();
|
|
2054
|
-
if (e.length === 1)
|
|
2055
|
-
return e[0];
|
|
2056
|
-
if (e.length === 2)
|
|
2057
|
-
return M(s = me, lt, Yt).call(s, e[0], e[1]);
|
|
2058
|
-
let t = e[0];
|
|
2059
|
-
return e.shift(), e.forEach((r) => {
|
|
2060
|
-
var n;
|
|
2061
|
-
return t = M(n = me, lt, Yt).call(n, t, r);
|
|
2062
|
-
}), t;
|
|
2063
|
-
}
|
|
2064
|
-
// #endregion Properties and methods (25)
|
|
2065
|
-
// #region Getters And Setters (5)
|
|
2066
|
-
get factors() {
|
|
2067
|
-
return i(this, N);
|
|
2068
|
-
}
|
|
2069
|
-
set factors(e) {
|
|
2070
|
-
h(this, N, e);
|
|
2071
|
-
}
|
|
2072
|
-
get variables() {
|
|
2073
|
-
return i(this, N).reduce((e, t) => e.concat(t.variables), []);
|
|
2074
|
-
}
|
|
2075
|
-
get asRoot() {
|
|
2076
|
-
return h(this, Ve, Ue.ROOT), this;
|
|
2077
|
-
}
|
|
2078
|
-
get asPower() {
|
|
2079
|
-
return h(this, Ve, Ue.POWER), this;
|
|
2080
|
-
}
|
|
2081
|
-
get numerator() {
|
|
2082
|
-
return i(this, N).filter((e) => e.power.isPositive());
|
|
2083
|
-
}
|
|
2084
|
-
get denominator() {
|
|
2085
|
-
return i(this, N).filter((e) => e.power.isNegative());
|
|
2086
|
-
}
|
|
2087
|
-
get display() {
|
|
2088
|
-
let e = [], t = [];
|
|
2089
|
-
if (i(this, Ve) === Ue.ROOT ? (e = this.numerator, t = this.denominator.map((n) => n.clone().inverse())) : e = i(this, N), e.length === 0 && (e = [new fe("1")]), t.length === 0)
|
|
2090
|
-
return e.length === 1 ? e[0].asSingle.display : e.map((n) => n.display).join("");
|
|
2091
|
-
const s = e.length === 1 ? e[0].asSingle.display : e.map((n) => n.display).join(""), r = t.length === 1 ? t[0].asSingle.display : t.map((n) => n.display).join("");
|
|
2092
|
-
return `(${s})/(${r})`;
|
|
2093
|
-
}
|
|
2094
|
-
get tex() {
|
|
2095
|
-
let e = [], t = [];
|
|
2096
|
-
if (i(this, Ve) === Ue.ROOT ? (e = this.numerator, t = this.denominator.map((n) => n.clone().inverse())) : e = i(this, N), e.length === 0 && (e = [new fe("1")]), t.length === 0)
|
|
2097
|
-
return e.length === 1 ? e[0].asSingle.tex : e.map((n) => n.tex).join("");
|
|
2098
|
-
const s = e.length === 1 ? e[0].asSingle.tex : e.map((n) => n.tex).join(""), r = t.length === 1 ? t[0].asSingle.tex : t.map((n) => n.tex).join("");
|
|
2099
|
-
return `\\frac{ ${s} }{ ${r} }`;
|
|
2100
|
-
}
|
|
2101
|
-
// #endregion Private methods (1)
|
|
2102
|
-
};
|
|
2103
|
-
N = new WeakMap(), Ve = new WeakMap(), lt = new WeakSet(), Yt = function(e, t) {
|
|
2104
|
-
const s = Wt(e), r = Wt(t), l = Object.keys(s).filter((u) => Object.hasOwn(r, u)).map((u) => {
|
|
2105
|
-
const p = s[u].reduce((g, E) => g.add(E.power), new c("0")), m = r[u].reduce((g, E) => g.add(E.power), new c("0"));
|
|
2106
|
-
return new fe(u, c.min(p, m));
|
|
2107
|
-
});
|
|
2108
|
-
return new me(...l);
|
|
2109
|
-
}, f(me, lt);
|
|
2110
|
-
let Xt = me;
|
|
2111
|
-
function Wt(o) {
|
|
2112
|
-
const e = new c().one(), t = o.factors.reduce((s, r) => {
|
|
2113
|
-
if (r.polynom.degree().isZero())
|
|
2114
|
-
return r.polynom.monoms.length > 0 && e.multiply(r.polynom.monoms[0].coefficient), s;
|
|
2115
|
-
const n = r.polynom.display;
|
|
2116
|
-
return Object.hasOwn(s, n) ? s[n].push(r) : s[n] = [r], s;
|
|
2117
|
-
}, {});
|
|
2118
|
-
return e.isOne() || (t[e.display] = [new fe(e.display, 1)]), t;
|
|
2119
|
-
}
|
|
2120
|
-
var q, A, re, Pt, Ke, St;
|
|
1936
|
+
var Ue = /* @__PURE__ */ ((o) => (o[o.ROOT = 0] = "ROOT", o[o.POWER = 1] = "POWER", o))(Ue || {}), q, A, re, Pt, Ke, St;
|
|
2121
1937
|
const xe = class xe {
|
|
2122
1938
|
constructor(e, t, s) {
|
|
2123
1939
|
// Left part of the equation
|
|
@@ -2357,6 +2173,193 @@ const xe = class xe {
|
|
|
2357
2173
|
};
|
|
2358
2174
|
q = new WeakMap(), A = new WeakMap(), re = new WeakMap(), Pt = new WeakMap(), Ke = new WeakMap(), St = new WeakMap();
|
|
2359
2175
|
let H = xe;
|
|
2176
|
+
var N, Ve, lt, Yt;
|
|
2177
|
+
const me = class me {
|
|
2178
|
+
// #endregion Class fields (1)
|
|
2179
|
+
// #region Constructors (1)
|
|
2180
|
+
constructor(...e) {
|
|
2181
|
+
// #region Class fields (1)
|
|
2182
|
+
f(this, N, []);
|
|
2183
|
+
f(this, Ve, Ue.POWER);
|
|
2184
|
+
return this.parse(...e), this;
|
|
2185
|
+
}
|
|
2186
|
+
// #endregion Constructors (1)
|
|
2187
|
+
// #region Properties and methods (25)
|
|
2188
|
+
parse(...e) {
|
|
2189
|
+
return e.length === 0 ? this : (h(this, N, []), e.forEach((t) => {
|
|
2190
|
+
if (typeof t == "string") {
|
|
2191
|
+
const s = t.split(")(").join(")*(").split("*");
|
|
2192
|
+
i(this, N).push(...s.map((r) => new fe(r)));
|
|
2193
|
+
} else t instanceof me ? i(this, N).push(...t.factors.map((s) => s.clone())) : i(this, N).push(new fe(t));
|
|
2194
|
+
}), this);
|
|
2195
|
+
}
|
|
2196
|
+
fromPolynom(e, t) {
|
|
2197
|
+
return h(this, N, new T(e).factorize(t).map((s) => new fe(s))), this;
|
|
2198
|
+
}
|
|
2199
|
+
clone() {
|
|
2200
|
+
return new me(...i(this, N).map((e) => e.clone()));
|
|
2201
|
+
}
|
|
2202
|
+
add(...e) {
|
|
2203
|
+
let t = [this, ...e];
|
|
2204
|
+
const s = me.gcd(...t);
|
|
2205
|
+
t = t.map((n) => n.divide(s).reduce());
|
|
2206
|
+
const r = new T("0");
|
|
2207
|
+
return t.forEach((n) => r.add(n.develop())), h(this, N, [
|
|
2208
|
+
...s.factors,
|
|
2209
|
+
new fe(r)
|
|
2210
|
+
]), this;
|
|
2211
|
+
}
|
|
2212
|
+
degree(e) {
|
|
2213
|
+
return i(this, N).reduce((t, s) => t.add(s.degree(e)), new c("0"));
|
|
2214
|
+
}
|
|
2215
|
+
derivative() {
|
|
2216
|
+
const e = [], t = i(this, N).length;
|
|
2217
|
+
for (let r = 0; r < t; r++) {
|
|
2218
|
+
const n = i(this, N).slice(), l = n.splice(r, 1)[0];
|
|
2219
|
+
e.push(new me(...n).multiply(new me(...l.derivative())));
|
|
2220
|
+
}
|
|
2221
|
+
e.forEach((r) => r.reduce());
|
|
2222
|
+
const s = e.shift();
|
|
2223
|
+
return s !== void 0 && h(this, N, s.factors), this.add(...e);
|
|
2224
|
+
}
|
|
2225
|
+
develop() {
|
|
2226
|
+
const e = new T("1");
|
|
2227
|
+
return i(this, N).forEach((t) => {
|
|
2228
|
+
e.multiply(t.develop());
|
|
2229
|
+
}), e;
|
|
2230
|
+
}
|
|
2231
|
+
divide(e) {
|
|
2232
|
+
return h(this, N, i(this, N).concat(e.clone().factors.map((t) => t.inverse()))), this;
|
|
2233
|
+
}
|
|
2234
|
+
evaluate(e, t) {
|
|
2235
|
+
return t ? i(this, N).reduce((s, r) => s * r.evaluate(e, t), 1) : i(this, N).reduce((s, r) => s.multiply(r.evaluate(e)), new c("1"));
|
|
2236
|
+
}
|
|
2237
|
+
hasVariable(e) {
|
|
2238
|
+
return i(this, N).some((t) => t.hasVariable(e));
|
|
2239
|
+
}
|
|
2240
|
+
inverse() {
|
|
2241
|
+
return h(this, N, i(this, N).map((e) => e.inverse())), this;
|
|
2242
|
+
}
|
|
2243
|
+
isEqual(e) {
|
|
2244
|
+
const t = me.gcd(this, e), s = this.clone().divide(t).reduce(), r = e.clone().divide(t).reduce();
|
|
2245
|
+
return s.isOne() && r.isOne();
|
|
2246
|
+
}
|
|
2247
|
+
isOne() {
|
|
2248
|
+
return i(this, N).every((e) => e.isOne());
|
|
2249
|
+
}
|
|
2250
|
+
isZero() {
|
|
2251
|
+
return i(this, N).every((e) => e.isZero());
|
|
2252
|
+
}
|
|
2253
|
+
multiply(...e) {
|
|
2254
|
+
return e.forEach((t) => {
|
|
2255
|
+
h(this, N, i(this, N).concat(t.clone().factors));
|
|
2256
|
+
}), this;
|
|
2257
|
+
}
|
|
2258
|
+
one() {
|
|
2259
|
+
return h(this, N, [new fe("1", "1")]), this;
|
|
2260
|
+
}
|
|
2261
|
+
opposite() {
|
|
2262
|
+
const e = i(this, N).findIndex((t) => t.display === "(-1)");
|
|
2263
|
+
return e >= 0 ? i(this, N).splice(e, 1) : i(this, N).push(new fe("-1", "1")), this;
|
|
2264
|
+
}
|
|
2265
|
+
pow(e) {
|
|
2266
|
+
return h(this, N, i(this, N).map((t) => t.pow(e))), this;
|
|
2267
|
+
}
|
|
2268
|
+
primitive() {
|
|
2269
|
+
throw new Error("Method not implemented.");
|
|
2270
|
+
}
|
|
2271
|
+
reduce() {
|
|
2272
|
+
const e = Wt(this);
|
|
2273
|
+
return h(this, N, Object.values(e).map((t) => {
|
|
2274
|
+
const s = t[0].polynom, r = t.reduce((n, l) => n.add(l.power), new c("0"));
|
|
2275
|
+
return new fe(s, r.reduce());
|
|
2276
|
+
}).filter((t) => !t.power.isZero())), this;
|
|
2277
|
+
}
|
|
2278
|
+
root(e) {
|
|
2279
|
+
return h(this, N, i(this, N).map((t) => t.root(e))), this;
|
|
2280
|
+
}
|
|
2281
|
+
sort() {
|
|
2282
|
+
return h(this, N, i(this, N).sort((e, t) => e.degree().isLeq(t.degree()) ? -1 : 1)), this;
|
|
2283
|
+
}
|
|
2284
|
+
sqrt() {
|
|
2285
|
+
return h(this, N, i(this, N).map((e) => e.sqrt())), this;
|
|
2286
|
+
}
|
|
2287
|
+
subtract(...e) {
|
|
2288
|
+
return this.add(...e.map((t) => t.opposite()));
|
|
2289
|
+
}
|
|
2290
|
+
zero() {
|
|
2291
|
+
return h(this, N, [new fe("0", "1")]), this;
|
|
2292
|
+
}
|
|
2293
|
+
static gcd(...e) {
|
|
2294
|
+
var s;
|
|
2295
|
+
if (e.length === 0)
|
|
2296
|
+
return new me().one();
|
|
2297
|
+
if (e.length === 1)
|
|
2298
|
+
return e[0];
|
|
2299
|
+
if (e.length === 2)
|
|
2300
|
+
return M(s = me, lt, Yt).call(s, e[0], e[1]);
|
|
2301
|
+
let t = e[0];
|
|
2302
|
+
return e.shift(), e.forEach((r) => {
|
|
2303
|
+
var n;
|
|
2304
|
+
return t = M(n = me, lt, Yt).call(n, t, r);
|
|
2305
|
+
}), t;
|
|
2306
|
+
}
|
|
2307
|
+
// #endregion Properties and methods (25)
|
|
2308
|
+
// #region Getters And Setters (5)
|
|
2309
|
+
get factors() {
|
|
2310
|
+
return i(this, N);
|
|
2311
|
+
}
|
|
2312
|
+
set factors(e) {
|
|
2313
|
+
h(this, N, e);
|
|
2314
|
+
}
|
|
2315
|
+
get variables() {
|
|
2316
|
+
return i(this, N).reduce((e, t) => e.concat(t.variables), []);
|
|
2317
|
+
}
|
|
2318
|
+
get asRoot() {
|
|
2319
|
+
return h(this, Ve, Ue.ROOT), this;
|
|
2320
|
+
}
|
|
2321
|
+
get asPower() {
|
|
2322
|
+
return h(this, Ve, Ue.POWER), this;
|
|
2323
|
+
}
|
|
2324
|
+
get numerator() {
|
|
2325
|
+
return i(this, N).filter((e) => e.power.isPositive());
|
|
2326
|
+
}
|
|
2327
|
+
get denominator() {
|
|
2328
|
+
return i(this, N).filter((e) => e.power.isNegative());
|
|
2329
|
+
}
|
|
2330
|
+
get display() {
|
|
2331
|
+
let e = [], t = [];
|
|
2332
|
+
if (i(this, Ve) === Ue.ROOT ? (e = this.numerator, t = this.denominator.map((n) => n.clone().inverse())) : e = i(this, N), e.length === 0 && (e = [new fe("1")]), t.length === 0)
|
|
2333
|
+
return e.length === 1 ? e[0].asSingle.display : e.map((n) => n.display).join("");
|
|
2334
|
+
const s = e.length === 1 ? e[0].asSingle.display : e.map((n) => n.display).join(""), r = t.length === 1 ? t[0].asSingle.display : t.map((n) => n.display).join("");
|
|
2335
|
+
return `(${s})/(${r})`;
|
|
2336
|
+
}
|
|
2337
|
+
get tex() {
|
|
2338
|
+
let e = [], t = [];
|
|
2339
|
+
if (i(this, Ve) === Ue.ROOT ? (e = this.numerator, t = this.denominator.map((n) => n.clone().inverse())) : e = i(this, N), e.length === 0 && (e = [new fe("1")]), t.length === 0)
|
|
2340
|
+
return e.length === 1 ? e[0].asSingle.tex : e.map((n) => n.tex).join("");
|
|
2341
|
+
const s = e.length === 1 ? e[0].asSingle.tex : e.map((n) => n.tex).join(""), r = t.length === 1 ? t[0].asSingle.tex : t.map((n) => n.tex).join("");
|
|
2342
|
+
return `\\frac{ ${s} }{ ${r} }`;
|
|
2343
|
+
}
|
|
2344
|
+
// #endregion Private methods (1)
|
|
2345
|
+
};
|
|
2346
|
+
N = new WeakMap(), Ve = new WeakMap(), lt = new WeakSet(), Yt = function(e, t) {
|
|
2347
|
+
const s = Wt(e), r = Wt(t), l = Object.keys(s).filter((u) => Object.hasOwn(r, u)).map((u) => {
|
|
2348
|
+
const p = s[u].reduce((g, E) => g.add(E.power), new c("0")), m = r[u].reduce((g, E) => g.add(E.power), new c("0"));
|
|
2349
|
+
return new fe(u, c.min(p, m));
|
|
2350
|
+
});
|
|
2351
|
+
return new me(...l);
|
|
2352
|
+
}, f(me, lt);
|
|
2353
|
+
let Xt = me;
|
|
2354
|
+
function Wt(o) {
|
|
2355
|
+
const e = new c().one(), t = o.factors.reduce((s, r) => {
|
|
2356
|
+
if (r.polynom.degree().isZero())
|
|
2357
|
+
return r.polynom.monoms.length > 0 && e.multiply(r.polynom.monoms[0].coefficient), s;
|
|
2358
|
+
const n = r.polynom.display;
|
|
2359
|
+
return Object.hasOwn(s, n) ? s[n].push(r) : s[n] = [r], s;
|
|
2360
|
+
}, {});
|
|
2361
|
+
return e.isOne() || (t[e.display] = [new fe(e.display, 1)]), t;
|
|
2362
|
+
}
|
|
2360
2363
|
var k, Ie, Bt, Rt;
|
|
2361
2364
|
const Ge = class Ge {
|
|
2362
2365
|
constructor(...e) {
|
package/package.json
CHANGED
|
@@ -7,6 +7,7 @@ export declare class PolyFactor implements IPiMathObject<PolyFactor>, IExpressio
|
|
|
7
7
|
#private;
|
|
8
8
|
constructor(...values: (Factor | InputAlgebra<Polynom> | PolyFactor)[]);
|
|
9
9
|
parse(...values: (Factor | InputAlgebra<Polynom> | PolyFactor)[]): this;
|
|
10
|
+
fromPolynom(polynom: InputAlgebra<Polynom>, letter?: string): this;
|
|
10
11
|
clone(): PolyFactor;
|
|
11
12
|
add(...values: PolyFactor[]): this;
|
|
12
13
|
degree(letter?: string): Fraction;
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"polyFactor.d.ts","sourceRoot":"","sources":["../../src/algebra/polyFactor.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,QAAQ,EAAE,WAAW,EAAE,YAAY,EAAE,UAAU,EAAE,aAAa,EAAE,WAAW,EAAE,MAAM,qBAAqB,CAAA;AACtH,OAAO,EAAE,QAAQ,EAAE,MAAM,0BAA0B,CAAA;AACnD,OAAO,EAAE,MAAM,EAAkB,MAAM,UAAU,CAAA;AACjD,OAAO,EAAE,OAAO,EAAE,MAAM,WAAW,CAAA;
|
|
1
|
+
{"version":3,"file":"polyFactor.d.ts","sourceRoot":"","sources":["../../src/algebra/polyFactor.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,QAAQ,EAAE,WAAW,EAAE,YAAY,EAAE,UAAU,EAAE,aAAa,EAAE,WAAW,EAAE,MAAM,qBAAqB,CAAA;AACtH,OAAO,EAAE,QAAQ,EAAE,MAAM,0BAA0B,CAAA;AACnD,OAAO,EAAE,MAAM,EAAkB,MAAM,UAAU,CAAA;AACjD,OAAO,EAAE,OAAO,EAAE,MAAM,WAAW,CAAA;AAMnC,qBAAa,UAAW,YACpB,aAAa,CAAC,UAAU,CAAC,EACzB,WAAW,CAAC,UAAU,CAAC,EACvB,QAAQ,CAAC,UAAU,CAAC;;gBAUR,GAAG,MAAM,EAAE,CAAC,MAAM,GAAG,YAAY,CAAC,OAAO,CAAC,GAAG,UAAU,CAAC,EAAE;IAQ/D,KAAK,CAAC,GAAG,MAAM,EAAE,CAAC,MAAM,GAAG,YAAY,CAAC,OAAO,CAAC,GAAG,UAAU,CAAC,EAAE,GAAG,IAAI;IAmBvE,WAAW,CAAC,OAAO,EAAE,YAAY,CAAC,OAAO,CAAC,EAAE,MAAM,CAAC,EAAE,MAAM,GAAE,IAAI;IAKjE,KAAK,IAAI,UAAU;IAInB,GAAG,CAAC,GAAG,MAAM,EAAE,UAAU,EAAE,GAAG,IAAI;IAuBlC,MAAM,CAAC,MAAM,CAAC,EAAE,MAAM,GAAG,QAAQ;IAIjC,UAAU,IAAI,IAAI;IAsBlB,OAAO,IAAI,OAAO;IAWlB,MAAM,CAAC,KAAK,EAAE,UAAU,GAAG,IAAI;IAK/B,QAAQ,CAAC,MAAM,EAAE,UAAU,CAAC,QAAQ,CAAC,GAAG,WAAW,CAAC,MAAM,GAAG,QAAQ,CAAC,EAAE,SAAS,CAAC,EAAE,OAAO,GAAG,MAAM,GAAG,QAAQ;IAU/G,WAAW,CAAC,MAAM,EAAE,MAAM,GAAG,OAAO;IAIpC,OAAO,IAAI,IAAI;IAKf,OAAO,CAAC,KAAK,EAAE,UAAU,GAAG,OAAO;IASnC,KAAK,IAAI,OAAO;IAIhB,MAAM,IAAI,OAAO;IAIjB,QAAQ,CAAC,GAAG,MAAM,EAAE,UAAU,EAAE,GAAG,IAAI;IAQvC,GAAG,IAAI,IAAI;IAKX,QAAQ,IAAI,IAAI;IAUhB,GAAG,CAAC,KAAK,EAAE,MAAM,GAAG,QAAQ,GAAG,IAAI;IAKnC,SAAS,IAAI,UAAU;IAIvB,MAAM,IAAI,IAAI;IAgBd,IAAI,CAAC,KAAK,EAAE,MAAM,GAAG,IAAI;IAKzB,IAAI,IAAI,IAAI;IAMZ,IAAI,IAAI,IAAI;IAKZ,QAAQ,CAAC,GAAG,MAAM,EAAE,UAAU,EAAE,GAAG,IAAI;IAIvC,IAAI,IAAI,IAAI;WAKL,GAAG,CAAC,GAAG,MAAM,EAAE,UAAU,EAAE,GAAG,UAAU;IAiBtD,IAAW,OAAO,IAAI,MAAM,EAAE,CAE7B;IAED,IAAW,OAAO,CAAC,KAAK,EAAE,MAAM,EAAE,EAEjC;IAED,IAAW,SAAS,IAAI,MAAM,EAAE,CAG/B;IAED,IAAI,MAAM,IAAI,IAAI,CAGjB;IACD,IAAI,OAAO,IAAI,IAAI,CAGlB;IAED,IAAI,SAAS,IAAI,MAAM,EAAE,CAExB;IACD,IAAI,WAAW,IAAI,MAAM,EAAE,CAE1B;IAED,IAAW,OAAO,IAAI,MAAM,CA+B3B;IAED,IAAW,GAAG,IAAI,MAAM,CA+BvB;CA0BJ"}
|