pimath 0.1.25 → 0.1.26

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/pimath.js CHANGED
@@ -324,17 +324,17 @@ a(P, "unique", (e) => {
324
324
  return t;
325
325
  });
326
326
  let u = P;
327
- var Z, ie, ne, Ye;
327
+ var Z, ie, re, Ye;
328
328
  class vt {
329
329
  constructor(...e) {
330
330
  m(this, Z);
331
331
  m(this, ie);
332
- m(this, ne);
332
+ m(this, re);
333
333
  m(this, Ye);
334
334
  // ------------------------------------------
335
335
  // Creation / parsing functions
336
336
  // ------------------------------------------
337
- a(this, "parse", (e, t, i) => (h(this, ne, i ?? 1), h(this, ie, t ?? 2), h(this, Z, e), s(this, ie) % 2 === 0 && s(this, Z) < 0 && h(this, Ye, !1), this));
337
+ a(this, "parse", (e, t, i) => (h(this, re, i ?? 1), h(this, ie, t ?? 2), h(this, Z, e), s(this, ie) % 2 === 0 && s(this, Z) < 0 && h(this, Ye, !1), this));
338
338
  // ------------------------------------------
339
339
  // Mathematical operations
340
340
  // ------------------------------------------
@@ -342,7 +342,7 @@ class vt {
342
342
  let e = Math.floor(Math.pow(s(this, Z), 1 / s(this, ie)));
343
343
  for (; e > 1; ) {
344
344
  if (s(this, Z) % Math.pow(e, s(this, ie)) === 0) {
345
- h(this, ne, s(this, ne) * e), h(this, Z, s(this, Z) / Math.pow(e, s(this, ie))), e = Math.floor(Math.pow(s(this, Z), 1 / s(this, ie)));
345
+ h(this, re, s(this, re) * e), h(this, Z, s(this, Z) / Math.pow(e, s(this, ie))), e = Math.floor(Math.pow(s(this, Z), 1 / s(this, ie)));
346
346
  continue;
347
347
  }
348
348
  e--;
@@ -354,7 +354,7 @@ class vt {
354
354
  // Help functions
355
355
  // ------------------------------------------
356
356
  a(this, "hasRadical", () => !(s(this, Z) === 1 || s(this, Z) === 0 || !s(this, Ye)));
357
- h(this, Z, 1), h(this, ne, 1), h(this, ie, 2), h(this, Ye, !0), e.length > 0 && this.parse(e[0], e[1], e[2]);
357
+ h(this, Z, 1), h(this, re, 1), h(this, ie, 2), h(this, Ye, !0), e.length > 0 && this.parse(e[0], e[1], e[2]);
358
358
  }
359
359
  // ------------------------------------------
360
360
  // Getter and setter
@@ -372,24 +372,24 @@ class vt {
372
372
  Number.isSafeInteger(e) && e >= 2 ? h(this, ie, e) : (console.log("Error setting the nth root"), h(this, ie, 2));
373
373
  }
374
374
  get coefficient() {
375
- return s(this, ne);
375
+ return s(this, re);
376
376
  }
377
377
  set coefficient(e) {
378
- h(this, ne, e);
378
+ h(this, re, e);
379
379
  }
380
380
  get tex() {
381
381
  let e;
382
- return s(this, ne) === 1 ? e = "" : s(this, ne) === -1 ? e = "-" : e = s(this, ne).toString(), s(this, Z) === 1 ? `${s(this, ne)}` : s(this, ie) === 2 ? `${e}\\sqrt{${s(this, Z)}}` : `${e}\\sqrt[${s(this, ie)}]{${s(this, Z)}}`;
382
+ return s(this, re) === 1 ? e = "" : s(this, re) === -1 ? e = "-" : e = s(this, re).toString(), s(this, Z) === 1 ? `${s(this, re)}` : s(this, ie) === 2 ? `${e}\\sqrt{${s(this, Z)}}` : `${e}\\sqrt[${s(this, ie)}]{${s(this, Z)}}`;
383
383
  }
384
384
  get display() {
385
385
  let e;
386
- return s(this, ne) === 1 ? e = "" : s(this, ne) === -1 ? e = "-" : e = s(this, ne).toString(), s(this, Z) === 1 ? `${s(this, ne)}` : s(this, ie) === 2 ? `${e}sqrt{${s(this, Z)}}` : `${e}root(${s(this, ie)}){${s(this, Z)}}`;
386
+ return s(this, re) === 1 ? e = "" : s(this, re) === -1 ? e = "-" : e = s(this, re).toString(), s(this, Z) === 1 ? `${s(this, re)}` : s(this, ie) === 2 ? `${e}sqrt{${s(this, Z)}}` : `${e}root(${s(this, ie)}){${s(this, Z)}}`;
387
387
  }
388
388
  get value() {
389
- return s(this, ne) * Math.pow(s(this, Z), 1 / s(this, ie));
389
+ return s(this, re) * Math.pow(s(this, Z), 1 / s(this, ie));
390
390
  }
391
391
  }
392
- Z = new WeakMap(), ie = new WeakMap(), ne = new WeakMap(), Ye = new WeakMap();
392
+ Z = new WeakMap(), ie = new WeakMap(), re = new WeakMap(), Ye = new WeakMap();
393
393
  var K, Fe, C, Ge, ge, vi, bi, xi, Ei, Ni, Ai, Ti;
394
394
  const pi = class pi {
395
395
  constructor(e, t, i = "x") {
@@ -661,10 +661,10 @@ const Ji = {
661
661
  "!": { precedence: 4, associative: "right", type: g.OPERATION },
662
662
  "-": { precedence: 2, associative: "left", type: g.OPERATION }
663
663
  };
664
- var He, at, se, bt, Ve;
664
+ var He, at, ne, bt, Ve;
665
665
  class Kt {
666
666
  constructor(e) {
667
- ot(this, He), ot(this, at, []), ot(this, se, {}), ot(this, bt, []), ot(this, Ve), Ee(this, He, typeof e > "u" ? Ze.POLYNOM : e), this.tokenConfigInitialization();
667
+ ot(this, He), ot(this, at, []), ot(this, ne, {}), ot(this, bt, []), ot(this, Ve), Ee(this, He, typeof e > "u" ? Ze.POLYNOM : e), this.tokenConfigInitialization();
668
668
  }
669
669
  // Getter
670
670
  get rpn() {
@@ -674,7 +674,7 @@ class Kt {
674
674
  return te(this, at).map((e) => e.token);
675
675
  }
676
676
  tokenConfigInitialization() {
677
- return te(this, He) === Ze.SET ? (Ee(this, se, ts), Ee(this, Ve, !1)) : te(this, He) === Ze.NUMERIC ? (Ee(this, se, es), Ee(this, Ve, !0)) : te(this, He) === Ze.EXPRESSION ? (Ee(this, se, _i), Ee(this, Ve, !0)) : (Ee(this, se, Ji), Ee(this, Ve, !0)), Ee(this, bt, Object.keys(te(this, se)).sort((e, t) => t.length - e.length)), te(this, se);
677
+ return te(this, He) === Ze.SET ? (Ee(this, ne, ts), Ee(this, Ve, !1)) : te(this, He) === Ze.NUMERIC ? (Ee(this, ne, es), Ee(this, Ve, !0)) : te(this, He) === Ze.EXPRESSION ? (Ee(this, ne, _i), Ee(this, Ve, !0)) : (Ee(this, ne, Ji), Ee(this, Ve, !0)), Ee(this, bt, Object.keys(te(this, ne)).sort((e, t) => t.length - e.length)), te(this, ne);
678
678
  }
679
679
  /**
680
680
  * Get the next token to analyse.
@@ -692,7 +692,7 @@ class Kt {
692
692
  else {
693
693
  for (const r of te(this, bt))
694
694
  if (e.substring(t, t + r.length) === r) {
695
- i += r, n = te(this, se)[r].type;
695
+ i += r, n = te(this, ne)[r].type;
696
696
  break;
697
697
  }
698
698
  for (const r in fi)
@@ -723,7 +723,7 @@ class Kt {
723
723
  parse(e, t) {
724
724
  const i = [], n = [];
725
725
  let r = "", l = 0, c;
726
- (t ?? te(this, Ve)) && (e = Qi(e, te(this, se)));
726
+ (t ?? te(this, Ve)) && (e = Qi(e, te(this, ne)));
727
727
  const f = 50;
728
728
  let d = 50, p;
729
729
  for (; l < e.length; ) {
@@ -744,9 +744,9 @@ class Kt {
744
744
  case g.OPERATION:
745
745
  if (n.length > 0) {
746
746
  let w = n[n.length - 1];
747
- for (p = +f; w.token in te(this, se) && //either o1 is left-associative and its precedence is less than or equal to that of o2,
748
- (te(this, se)[r].associative === "left" && te(this, se)[r].precedence <= te(this, se)[w.token].precedence || //or o1 is right associative, and has precedence less than that of o2,
749
- te(this, se)[r].associative === "right" && te(this, se)[r].precedence < te(this, se)[w.token].precedence); ) {
747
+ for (p = +f; w.token in te(this, ne) && //either o1 is left-associative and its precedence is less than or equal to that of o2,
748
+ (te(this, ne)[r].associative === "left" && te(this, ne)[r].precedence <= te(this, ne)[w.token].precedence || //or o1 is right associative, and has precedence less than that of o2,
749
+ te(this, ne)[r].associative === "right" && te(this, ne)[r].precedence < te(this, ne)[w.token].precedence); ) {
750
750
  if (p--, p === 0) {
751
751
  console.log("SECURITY LEVEL 2 OPERATION EXIT");
752
752
  break;
@@ -790,7 +790,7 @@ class Kt {
790
790
  return Ee(this, at, i.concat(n.reverse())), this;
791
791
  }
792
792
  }
793
- He = /* @__PURE__ */ new WeakMap(), at = /* @__PURE__ */ new WeakMap(), se = /* @__PURE__ */ new WeakMap(), bt = /* @__PURE__ */ new WeakMap(), Ve = /* @__PURE__ */ new WeakMap();
793
+ He = /* @__PURE__ */ new WeakMap(), at = /* @__PURE__ */ new WeakMap(), ne = /* @__PURE__ */ new WeakMap(), bt = /* @__PURE__ */ new WeakMap(), Ve = /* @__PURE__ */ new WeakMap();
794
794
  class is {
795
795
  constructor(e, t) {
796
796
  ei(this, "_rpn"), ei(this, "_expression"), ei(this, "_isValid"), this._expression = e;
@@ -891,7 +891,7 @@ class is {
891
891
  return +e.toFixed(t);
892
892
  }
893
893
  }
894
- var T, b, Qe, xt, ze, Mt, kt;
894
+ var T, b, Qe, xt, ze, kt, Mt;
895
895
  const I = class I {
896
896
  constructor(e) {
897
897
  m(this, Qe);
@@ -1146,7 +1146,7 @@ const I = class I {
1146
1146
  }
1147
1147
  return t;
1148
1148
  });
1149
- m(this, Mt, (e) => {
1149
+ m(this, kt, (e) => {
1150
1150
  const i = new Kt().parse(e).rpn, n = [];
1151
1151
  if (i.length === 0)
1152
1152
  return this.zero(), this;
@@ -1155,10 +1155,10 @@ const I = class I {
1155
1155
  return this.one(), r.tokenType === g.COEFFICIENT ? this.coefficient = new u(r.token) : r.tokenType === g.VARIABLE && this.setLetter(r.token, 1), this;
1156
1156
  } else
1157
1157
  for (const r of i)
1158
- s(this, kt).call(this, n, r);
1158
+ s(this, Mt).call(this, n, r);
1159
1159
  return this.one(), this.multiply(n[0]), this;
1160
1160
  });
1161
- m(this, kt, (e, t) => {
1161
+ m(this, Mt, (e, t) => {
1162
1162
  var f;
1163
1163
  let i, n, r, l, c;
1164
1164
  if (t.tokenType === g.COEFFICIENT)
@@ -1191,7 +1191,7 @@ const I = class I {
1191
1191
  * @param inputStr
1192
1192
  */
1193
1193
  parse(e) {
1194
- return h(this, T, new u()), h(this, b, {}), typeof e == "string" ? s(this, Mt).call(this, e) : typeof e == "number" ? h(this, T, new u(e)) : e instanceof u ? h(this, T, e.clone()) : e instanceof I && (h(this, T, s(e, T).clone()), A(this, Qe, xt).call(this, e)), this;
1194
+ return h(this, T, new u()), h(this, b, {}), typeof e == "string" ? s(this, kt).call(this, e) : typeof e == "number" ? h(this, T, new u(e)) : e instanceof u ? h(this, T, e.clone()) : e instanceof I && (h(this, T, s(e, T).clone()), A(this, Qe, xt).call(this, e)), this;
1195
1195
  }
1196
1196
  /**
1197
1197
  * Get the coefficient \\(k\\) of the Monom \\(k\\cdot x^{n}\\)
@@ -1340,7 +1340,7 @@ const I = class I {
1340
1340
  T = new WeakMap(), b = new WeakMap(), Qe = new WeakSet(), xt = function(e) {
1341
1341
  for (const t in e.literal)
1342
1342
  s(this, b)[t] = e.literal[t].clone();
1343
- }, ze = new WeakMap(), Mt = new WeakMap(), kt = new WeakMap(), a(I, "gcd", (...e) => {
1343
+ }, ze = new WeakMap(), kt = new WeakMap(), Mt = new WeakMap(), a(I, "gcd", (...e) => {
1344
1344
  for (const r of e)
1345
1345
  if (r.containsRationalPower())
1346
1346
  return new I().zero();
@@ -1363,14 +1363,14 @@ a(I, "xMultiply", (...e) => {
1363
1363
  t.multiply(i);
1364
1364
  return t;
1365
1365
  });
1366
- let k = I;
1366
+ let M = I;
1367
1367
  function yi(o, e = !0) {
1368
1368
  return e ? `\\left( ${o} \\right)` : `(${o})`;
1369
1369
  }
1370
1370
  function Et(o, e, t, i, n) {
1371
1371
  return o.map((r, l) => r === e ? t : r);
1372
1372
  }
1373
- var je, y, Ke, ft, Je, dt, Ct, $t, Pt, _e, It, pt, Bt, St, Rt, zt, Mi, Lt, Vt;
1373
+ var je, y, Ke, ft, Je, dt, Ct, $t, Pt, _e, It, pt, St, Bt, Rt, zt, ki, Lt, Vt;
1374
1374
  const $ = class $ {
1375
1375
  constructor(e, ...t) {
1376
1376
  m(this, zt);
@@ -1385,12 +1385,12 @@ const $ = class $ {
1385
1385
  */
1386
1386
  a(this, "parse", (e, ...t) => {
1387
1387
  if (h(this, y, []), h(this, je, []), typeof e == "string")
1388
- return A(this, zt, Mi).call(this, e, ...t);
1389
- if ((typeof e == "number" || e instanceof u || e instanceof k) && t.length === 0)
1390
- s(this, y).push(new k(e));
1391
- else if (e instanceof k && t.length > 0)
1392
- s(this, y).push(new k(e)), t.forEach((i) => {
1393
- s(this, y).push(new k(i));
1388
+ return A(this, zt, ki).call(this, e, ...t);
1389
+ if ((typeof e == "number" || e instanceof u || e instanceof M) && t.length === 0)
1390
+ s(this, y).push(new M(e));
1391
+ else if (e instanceof M && t.length > 0)
1392
+ s(this, y).push(new M(e)), t.forEach((i) => {
1393
+ s(this, y).push(new M(i));
1394
1394
  });
1395
1395
  else if (e instanceof $)
1396
1396
  for (const i of e.monoms)
@@ -1408,11 +1408,11 @@ const $ = class $ {
1408
1408
  });
1409
1409
  a(this, "add", (...e) => {
1410
1410
  for (const t of e)
1411
- t instanceof $ ? h(this, y, s(this, y).concat(t.monoms)) : t instanceof k ? s(this, y).push(t.clone()) : typeof t == "number" && Number.isSafeInteger(t) ? s(this, y).push(new k(t.toString())) : s(this, y).push(new k(t));
1411
+ t instanceof $ ? h(this, y, s(this, y).concat(t.monoms)) : t instanceof M ? s(this, y).push(t.clone()) : typeof t == "number" && Number.isSafeInteger(t) ? s(this, y).push(new M(t.toString())) : s(this, y).push(new M(t));
1412
1412
  return this.reduce();
1413
1413
  });
1414
1414
  a(this, "commonMonom", () => {
1415
- const e = new k().one(), t = this.gcdNumerator(), i = this.gcdDenominator(), n = this.degree();
1415
+ const e = new M().one(), t = this.gcdNumerator(), i = this.gcdDenominator(), n = this.degree();
1416
1416
  e.coefficient = new u(t, i);
1417
1417
  for (const r of this.variables) {
1418
1418
  e.setLetter(r, n);
@@ -1439,7 +1439,7 @@ const $ = class $ {
1439
1439
  return s(this, dt).call(this, e);
1440
1440
  if (typeof e == "number" && Number.isSafeInteger(e))
1441
1441
  return s(this, Ct).call(this, e);
1442
- if (e instanceof k)
1442
+ if (e instanceof M)
1443
1443
  return this.divide(new $(e));
1444
1444
  if (e instanceof $) {
1445
1445
  if (e.monoms.length === 1 && e.variables.length === 0)
@@ -1595,7 +1595,7 @@ const $ = class $ {
1595
1595
  for (const n of s(i, y))
1596
1596
  if (n.degree(t).isEqual(e))
1597
1597
  return n.clone();
1598
- return new k().zero();
1598
+ return new M().zero();
1599
1599
  });
1600
1600
  // Used in LinearSystem.tex
1601
1601
  a(this, "monomByLetter", (e) => {
@@ -1603,7 +1603,7 @@ const $ = class $ {
1603
1603
  for (const i of s(t, y))
1604
1604
  if (i.hasVariable(e))
1605
1605
  return i.clone();
1606
- return new k().zero();
1606
+ return new M().zero();
1607
1607
  });
1608
1608
  a(this, "monomsByDegree", (e, t) => {
1609
1609
  if (e === void 0)
@@ -1613,8 +1613,8 @@ const $ = class $ {
1613
1613
  r.degree(t).isEqual(e) && i.push(r.clone());
1614
1614
  return i;
1615
1615
  });
1616
- a(this, "multiply", (e) => e instanceof $ ? s(this, Rt).call(this, e) : e instanceof u ? s(this, pt).call(this, e) : e instanceof k ? s(this, St).call(this, e) : Number.isSafeInteger(e) && typeof e == "number" ? s(this, Bt).call(this, e) : this);
1617
- a(this, "one", () => (h(this, y, []), s(this, y).push(new k().one()), this));
1616
+ a(this, "multiply", (e) => e instanceof $ ? s(this, Rt).call(this, e) : e instanceof u ? s(this, pt).call(this, e) : e instanceof M ? s(this, Bt).call(this, e) : Number.isSafeInteger(e) && typeof e == "number" ? s(this, St).call(this, e) : this);
1617
+ a(this, "one", () => (h(this, y, []), s(this, y).push(new M().one()), this));
1618
1618
  // ------------------------------------------
1619
1619
  a(this, "opposite", () => (h(this, y, s(this, y).map((e) => e.opposite())), this));
1620
1620
  a(this, "pow", (e) => {
@@ -1639,7 +1639,7 @@ const $ = class $ {
1639
1639
  let e = 0;
1640
1640
  for (; e < s(this, y).length; ) {
1641
1641
  for (let t = e + 1; t < s(this, y).length; t++)
1642
- s(this, y)[e].isSameAs(s(this, y)[t]) && (s(this, y)[e].add(s(this, y)[t]), s(this, y).splice(t, 1), s(this, y)[e].isZero() && (s(this, y)[e] = new k().zero()), t--);
1642
+ s(this, y)[e].isSameAs(s(this, y)[t]) && (s(this, y)[e].add(s(this, y)[t]), s(this, y).splice(t, 1), s(this, y)[e].isZero() && (s(this, y)[e] = new M().zero()), t--);
1643
1643
  e++;
1644
1644
  }
1645
1645
  h(this, y, s(this, y).filter((t) => !t.coefficient.isZero()));
@@ -1678,14 +1678,14 @@ const $ = class $ {
1678
1678
  });
1679
1679
  a(this, "subtract", (...e) => {
1680
1680
  for (const t of e)
1681
- t instanceof $ ? this.add(t.clone().opposite()) : t instanceof k ? s(this, y).push(t.clone().opposite()) : s(this, y).push(new k(t).opposite());
1681
+ t instanceof $ ? this.add(t.clone().opposite()) : t instanceof M ? s(this, y).push(t.clone().opposite()) : s(this, y).push(new M(t).opposite());
1682
1682
  return this.reduce();
1683
1683
  });
1684
1684
  /**
1685
1685
  * Set the polynom to zero.
1686
1686
  * @returns {this}
1687
1687
  */
1688
- a(this, "zero", () => (h(this, y, []), s(this, y).push(new k().zero()), this));
1688
+ a(this, "zero", () => (h(this, y, []), s(this, y).push(new M().zero()), this));
1689
1689
  m(this, Je, (e, t) => {
1690
1690
  t === void 0 && (t = "=");
1691
1691
  const i = this.clone().reduce().reorder(), n = e.clone().reduce().reorder();
@@ -1761,8 +1761,8 @@ const $ = class $ {
1761
1761
  t.coefficient.multiply(e);
1762
1762
  return this.reduce();
1763
1763
  });
1764
- m(this, Bt, (e) => s(this, pt).call(this, new u(e)));
1765
- m(this, St, (e) => {
1764
+ m(this, St, (e) => s(this, pt).call(this, new u(e)));
1765
+ m(this, Bt, (e) => {
1766
1766
  for (const t of s(this, y))
1767
1767
  t.multiply(e);
1768
1768
  return this.reduce();
@@ -1771,7 +1771,7 @@ const $ = class $ {
1771
1771
  const t = [];
1772
1772
  for (const i of s(this, y))
1773
1773
  for (const n of e.monoms)
1774
- t.push(k.xMultiply(i, n));
1774
+ t.push(M.xMultiply(i, n));
1775
1775
  return h(this, y, t), this.reduce();
1776
1776
  });
1777
1777
  /**
@@ -1792,7 +1792,7 @@ const $ = class $ {
1792
1792
  e.push(new $(t.token));
1793
1793
  break;
1794
1794
  case g.VARIABLE:
1795
- e.push(new $().add(new k(t.token)));
1795
+ e.push(new $().add(new M(t.token)));
1796
1796
  break;
1797
1797
  case g.CONSTANT:
1798
1798
  console.log("Actually, not supported - will be added later !");
@@ -1848,7 +1848,7 @@ const $ = class $ {
1848
1848
  h(this, y, []);
1849
1849
  const t = "x";
1850
1850
  return e.reverse().forEach((i, n) => {
1851
- const r = new k();
1851
+ const r = new M();
1852
1852
  r.coefficient = new u(i), r.setLetter(t, n), s(this, y).push(r);
1853
1853
  }), this;
1854
1854
  }
@@ -1930,11 +1930,11 @@ const $ = class $ {
1930
1930
  return this.getZeroes();
1931
1931
  }
1932
1932
  };
1933
- je = new WeakMap(), y = new WeakMap(), Ke = new WeakMap(), ft = new WeakMap(), Je = new WeakMap(), dt = new WeakMap(), Ct = new WeakMap(), $t = new WeakMap(), Pt = new WeakMap(), _e = new WeakMap(), It = new WeakMap(), pt = new WeakMap(), Bt = new WeakMap(), St = new WeakMap(), Rt = new WeakMap(), zt = new WeakSet(), Mi = function(e, ...t) {
1933
+ je = new WeakMap(), y = new WeakMap(), Ke = new WeakMap(), ft = new WeakMap(), Je = new WeakMap(), dt = new WeakMap(), Ct = new WeakMap(), $t = new WeakMap(), Pt = new WeakMap(), _e = new WeakMap(), It = new WeakMap(), pt = new WeakMap(), St = new WeakMap(), Bt = new WeakMap(), Rt = new WeakMap(), zt = new WeakSet(), ki = function(e, ...t) {
1934
1934
  if (t.length === 0) {
1935
1935
  if (e = "" + e, e !== "" && !isNaN(Number(e))) {
1936
1936
  this.empty();
1937
- const i = new k(e);
1937
+ const i = new M(e);
1938
1938
  return this.add(i), this;
1939
1939
  }
1940
1940
  return s(this, Lt).call(this, e);
@@ -1947,13 +1947,13 @@ je = new WeakMap(), y = new WeakMap(), Ke = new WeakMap(), ft = new WeakMap(), J
1947
1947
  throw new Error("Too many factors for too few variables !");
1948
1948
  let r = 0;
1949
1949
  for (const l of i) {
1950
- const c = new k();
1950
+ const c = new M();
1951
1951
  c.coefficient = l.clone(), c.literalStr = n[r] || "", this.add(c), r++;
1952
1952
  }
1953
1953
  } else {
1954
1954
  let n = i.length - 1;
1955
1955
  for (const r of i) {
1956
- const l = new k();
1956
+ const l = new M();
1957
1957
  l.coefficient = r.clone(), l.literalStr = `${e}^${n}`, this.add(l), n--;
1958
1958
  }
1959
1959
  }
@@ -1962,15 +1962,15 @@ je = new WeakMap(), y = new WeakMap(), Ke = new WeakMap(), ft = new WeakMap(), J
1962
1962
  return this.zero();
1963
1963
  }, Lt = new WeakMap(), Vt = new WeakMap();
1964
1964
  let O = $;
1965
- var q, M, re, Dt, et, Zt;
1965
+ var q, k, oe, Dt, et, Zt;
1966
1966
  const Ne = class Ne {
1967
1967
  constructor(e, t, i) {
1968
1968
  // Left part of the equation
1969
1969
  m(this, q);
1970
1970
  // Right part of the equation
1971
- m(this, M);
1971
+ m(this, k);
1972
1972
  // Signe of the equation
1973
- m(this, re);
1973
+ m(this, oe);
1974
1974
  // ------------------------------------------
1975
1975
  a(this, "parse", (e) => {
1976
1976
  const t = s(this, Dt).call(this, e);
@@ -1979,13 +1979,13 @@ const Ne = class Ne {
1979
1979
  const i = e.split(t);
1980
1980
  return this.create(new O(i[0]), new O(i[1]), s(this, et).call(this, t));
1981
1981
  });
1982
- a(this, "create", (e, t, i) => (h(this, q, e), h(this, M, t), h(this, re, s(this, et).call(this, i ?? "=")), this));
1983
- a(this, "clone", () => new Ne(s(this, q).clone(), s(this, M).clone(), s(this, re)));
1982
+ a(this, "create", (e, t, i) => (h(this, q, e), h(this, k, t), h(this, oe, s(this, et).call(this, i ?? "=")), this));
1983
+ a(this, "clone", () => new Ne(s(this, q).clone(), s(this, k).clone(), s(this, oe)));
1984
1984
  /**
1985
1985
  * Get the degree of the equation
1986
1986
  * @param letter
1987
1987
  */
1988
- a(this, "degree", (e) => u.max(s(this, q).degree(e), s(this, M).degree(e)));
1988
+ a(this, "degree", (e) => u.max(s(this, q).degree(e), s(this, k).degree(e)));
1989
1989
  /**
1990
1990
  * divide an equation by a given value (transformed as a fraction)
1991
1991
  *
@@ -2016,7 +2016,7 @@ const Ne = class Ne {
2016
2016
  /**
2017
2017
  * Determine if the equation contains more than one letter/variable.
2018
2018
  */
2019
- a(this, "isMultiVariable", () => s(this, q).isMultiVariable || s(this, M).isMultiVariable);
2019
+ a(this, "isMultiVariable", () => s(this, q).isMultiVariable || s(this, k).isMultiVariable);
2020
2020
  // -----------------------------------------------
2021
2021
  // Equations helpers
2022
2022
  a(this, "isEqualTo", (e) => {
@@ -2031,43 +2031,43 @@ const Ne = class Ne {
2031
2031
  if (!this.degree(e).isOne() || this.isMultiVariable())
2032
2032
  return !1;
2033
2033
  let t;
2034
- s(this, q).subtract(s(this, M)), s(this, M).zero();
2034
+ s(this, q).subtract(s(this, k)), s(this, k).zero();
2035
2035
  const i = [...s(this, q).monoms];
2036
2036
  for (const r of i)
2037
- r.hasVariable(e) || (t = r.clone(), s(this, q).subtract(t), s(this, M).subtract(t));
2037
+ r.hasVariable(e) || (t = r.clone(), s(this, q).subtract(t), s(this, k).subtract(t));
2038
2038
  if (s(this, q).length !== 1)
2039
2039
  return !1;
2040
2040
  const n = s(this, q).monoms[0].coefficient.clone();
2041
- return s(this, q).divide(n), s(this, M).divide(n), this;
2041
+ return s(this, q).divide(n), s(this, k).divide(n), this;
2042
2042
  });
2043
2043
  // -----------------------------------------------
2044
2044
  // Equations operations
2045
2045
  // -----------------------------------------------
2046
- a(this, "letters", () => [.../* @__PURE__ */ new Set([...s(this, q).letters(), ...s(this, M).letters()])]);
2046
+ a(this, "letters", () => [.../* @__PURE__ */ new Set([...s(this, q).letters(), ...s(this, k).letters()])]);
2047
2047
  // -----------------------------------------------
2048
2048
  /**
2049
2049
  * Reorder will move all monoms containing a letter on the left, all the other on the right.
2050
2050
  */
2051
- a(this, "moveLeft", () => (s(this, q).subtract(s(this, M)), s(this, M).zero(), this));
2051
+ a(this, "moveLeft", () => (s(this, q).subtract(s(this, k)), s(this, k).zero(), this));
2052
2052
  /**
2053
2053
  * Multiple an equation by a fraction value.
2054
2054
  * @param value
2055
2055
  */
2056
2056
  a(this, "multiply", (e) => {
2057
2057
  const t = new u(e);
2058
- return s(this, q).multiply(t), s(this, M).multiply(t), s(this, re) !== "=" && t.sign() === -1 && s(this, Zt).call(this), this;
2058
+ return s(this, q).multiply(t), s(this, k).multiply(t), s(this, oe) !== "=" && t.sign() === -1 && s(this, Zt).call(this), this;
2059
2059
  });
2060
- a(this, "opposite", () => (h(this, q, s(this, q).opposite()), h(this, M, s(this, M).opposite()), this));
2061
- a(this, "reorder", (e) => (s(this, q).subtract(s(this, M)), s(this, M).zero(), s(this, q).reorder(), e ? this : (s(this, q).monoms.filter((t) => t.degree().isZero()).forEach((t) => {
2060
+ a(this, "opposite", () => (h(this, q, s(this, q).opposite()), h(this, k, s(this, k).opposite()), this));
2061
+ a(this, "reorder", (e) => (s(this, q).subtract(s(this, k)), s(this, k).zero(), s(this, q).reorder(), e ? this : (s(this, q).monoms.filter((t) => t.degree().isZero()).forEach((t) => {
2062
2062
  const i = t.clone();
2063
- s(this, q).subtract(i), s(this, M).subtract(i);
2064
- }), s(this, q).reorder(), s(this, M).reorder(), this)));
2063
+ s(this, q).subtract(i), s(this, k).subtract(i);
2064
+ }), s(this, q).reorder(), s(this, k).reorder(), this)));
2065
2065
  // ------------------------------------------
2066
- a(this, "replaceBy", (e, t) => (s(this, q).replaceBy(e, t), s(this, M).replaceBy(e, t), this));
2066
+ a(this, "replaceBy", (e, t) => (s(this, q).replaceBy(e, t), s(this, k).replaceBy(e, t), this));
2067
2067
  /**
2068
2068
  * Multiply by the lcm denominator and divide by the gcm numerators.
2069
2069
  */
2070
- a(this, "simplify", () => (this.multiply(U.lcm(...s(this, q).getDenominators(), ...s(this, M).getDenominators())), this.divide(U.gcd(...s(this, q).getNumerators(), ...s(this, M).getNumerators())), this));
2070
+ a(this, "simplify", () => (this.multiply(U.lcm(...s(this, q).getDenominators(), ...s(this, k).getDenominators())), this.divide(U.gcd(...s(this, q).getNumerators(), ...s(this, k).getNumerators())), this));
2071
2071
  // -----------------------------------------------
2072
2072
  a(this, "solve", () => new At(this.clone()).solve());
2073
2073
  a(this, "test", (e) => this.left.evaluate(e).isEqual(this.right.evaluate(e)));
@@ -2095,8 +2095,8 @@ const Ne = class Ne {
2095
2095
  // -----------------------------------------------
2096
2096
  // Equations solving algorithms
2097
2097
  m(this, et, (e) => e === void 0 ? "=" : e.includes("geq") || e.includes(">=") || e.includes("=>") ? ">=" : e.includes(">") ? ">" : e.includes("leq") || e.includes("<=") || e.includes("=<") ? "<=" : e.includes("<") ? "<" : "=");
2098
- m(this, Zt, () => s(this, re) === "=" ? this : s(this, re).includes("<") ? (s(this, re).replace("<", ">"), this) : s(this, re).includes(">") ? (s(this, re).replace(">", "<"), this) : this);
2099
- if (h(this, q, new O().zero()), h(this, M, new O().zero()), h(this, re, "="), e !== void 0 && t === void 0) {
2098
+ m(this, Zt, () => s(this, oe) === "=" ? this : s(this, oe).includes("<") ? (s(this, oe).replace("<", ">"), this) : s(this, oe).includes(">") ? (s(this, oe).replace(">", "<"), this) : this);
2099
+ if (h(this, q, new O().zero()), h(this, k, new O().zero()), h(this, oe, "="), e !== void 0 && t === void 0) {
2100
2100
  if (e instanceof Ne)
2101
2101
  return e.clone();
2102
2102
  typeof e == "string" && this.parse(e);
@@ -2113,11 +2113,11 @@ const Ne = class Ne {
2113
2113
  */
2114
2114
  add(e) {
2115
2115
  if (e instanceof Ne)
2116
- return s(this, q).add(e.left), s(this, M).add(e.right), this;
2116
+ return s(this, q).add(e.left), s(this, k).add(e.right), this;
2117
2117
  if (typeof e == "string" && !Ne.isEquationString(e))
2118
2118
  return this.add(new Ne(e));
2119
2119
  const t = new O(e);
2120
- return s(this, q).add(t), s(this, M).add(t), this;
2120
+ return s(this, q).add(t), s(this, k).add(t), this;
2121
2121
  }
2122
2122
  /**
2123
2123
  * Create an Equation using two polynoms.
@@ -2126,29 +2126,29 @@ const Ne = class Ne {
2126
2126
  * @param asNumeric
2127
2127
  */
2128
2128
  evaluate(e, t) {
2129
- const i = s(this, q).evaluate(e, t), n = s(this, M).evaluate(e, t);
2129
+ const i = s(this, q).evaluate(e, t), n = s(this, k).evaluate(e, t);
2130
2130
  return t ? i === n : i.isEqual(n);
2131
2131
  }
2132
2132
  isEqual(e) {
2133
2133
  const t = new Ne(e);
2134
- return t.left.isEqual(s(this, q)) && t.right.isEqual(s(this, M));
2134
+ return t.left.isEqual(s(this, q)) && t.right.isEqual(s(this, k));
2135
2135
  }
2136
2136
  pow(e) {
2137
- return s(this, q).pow(e), s(this, M).pow(e), this;
2137
+ return s(this, q).pow(e), s(this, k).pow(e), this;
2138
2138
  }
2139
2139
  reduce() {
2140
2140
  return this.moveLeft(), s(this, q).reduce(), this.simplify(), s(this, q).monoms[0].coefficient.isNegative() && this.multiply(-1), this;
2141
2141
  }
2142
2142
  split() {
2143
- return [s(this, q).clone(), s(this, M).clone()];
2143
+ return [s(this, q).clone(), s(this, k).clone()];
2144
2144
  }
2145
2145
  subtract(e) {
2146
2146
  if (e instanceof Ne)
2147
- return s(this, q).subtract(e.left), s(this, M).subtract(e.right), this;
2147
+ return s(this, q).subtract(e.left), s(this, k).subtract(e.right), this;
2148
2148
  if (typeof e == "string" && !Ne.isEquationString(e))
2149
2149
  return this.subtract(new Ne(e));
2150
2150
  const t = new O(e);
2151
- return s(this, q).subtract(t), s(this, M).subtract(t), this;
2151
+ return s(this, q).subtract(t), s(this, k).subtract(t), this;
2152
2152
  }
2153
2153
  static isEquationString(e) {
2154
2154
  return e.includes("=") || e.includes("<") || e.includes(">") || e.includes("<=") || e.includes(">=");
@@ -2158,7 +2158,7 @@ const Ne = class Ne {
2158
2158
  return t === !0 && n.sort((r, l) => r.value - l.value), n;
2159
2159
  }
2160
2160
  get display() {
2161
- return `${s(this, q).display}${this.signAsTex}${s(this, M).display}`;
2161
+ return `${s(this, q).display}${this.signAsTex}${s(this, k).display}`;
2162
2162
  }
2163
2163
  // Getter and setter
2164
2164
  get left() {
@@ -2171,29 +2171,29 @@ const Ne = class Ne {
2171
2171
  return this.variables.length;
2172
2172
  }
2173
2173
  get right() {
2174
- return s(this, M);
2174
+ return s(this, k);
2175
2175
  }
2176
2176
  set right(e) {
2177
- h(this, M, e);
2177
+ h(this, k, e);
2178
2178
  }
2179
2179
  // ------------------------------------------
2180
2180
  get sign() {
2181
- return s(this, re);
2181
+ return s(this, oe);
2182
2182
  }
2183
2183
  set sign(e) {
2184
- h(this, re, s(this, et).call(this, e));
2184
+ h(this, oe, s(this, et).call(this, e));
2185
2185
  }
2186
2186
  get signAsTex() {
2187
- return s(this, re) === ">=" ? "\\geq" : s(this, re) === "<=" ? "\\leq" : s(this, re);
2187
+ return s(this, oe) === ">=" ? "\\geq" : s(this, oe) === "<=" ? "\\leq" : s(this, oe);
2188
2188
  }
2189
2189
  get tex() {
2190
- return `${s(this, q).tex}${this.signAsTex}${s(this, M).tex}`;
2190
+ return `${s(this, q).tex}${this.signAsTex}${s(this, k).tex}`;
2191
2191
  }
2192
2192
  get variables() {
2193
- return [...new Set(s(this, M).variables.concat(s(this, q).variables))];
2193
+ return [...new Set(s(this, k).variables.concat(s(this, q).variables))];
2194
2194
  }
2195
2195
  };
2196
- q = new WeakMap(), M = new WeakMap(), re = new WeakMap(), Dt = new WeakMap(), et = new WeakMap(), Zt = new WeakMap();
2196
+ q = new WeakMap(), k = new WeakMap(), oe = new WeakMap(), Dt = new WeakMap(), et = new WeakMap(), Zt = new WeakMap();
2197
2197
  let H = Ne;
2198
2198
  var Te, Ae, be, tt;
2199
2199
  const ve = class ve {
@@ -2336,7 +2336,7 @@ const ve = class ve {
2336
2336
  }
2337
2337
  };
2338
2338
  Te = new WeakMap(), Ae = new WeakMap(), be = new WeakMap(), tt = new WeakMap();
2339
- let ae = ve;
2339
+ let se = ve;
2340
2340
  var lt = /* @__PURE__ */ ((o) => (o[o.ROOT = 0] = "ROOT", o[o.POWER = 1] = "POWER", o))(lt || {}), D, $e, Ft, jt;
2341
2341
  const Xe = class Xe {
2342
2342
  constructor(...e) {
@@ -2653,7 +2653,7 @@ Oe = new WeakMap(), mt = new WeakSet(), ii = function(e, t) {
2653
2653
  }
2654
2654
  return [...i[0]].sort();
2655
2655
  };
2656
- var it, N, We, ni, ki, gt, ri;
2656
+ var it, N, We, ni, Mi, gt, ri;
2657
2657
  const X = class X {
2658
2658
  constructor(...e) {
2659
2659
  m(this, gt);
@@ -2663,7 +2663,7 @@ const X = class X {
2663
2663
  }
2664
2664
  parse(...e) {
2665
2665
  return h(this, N, []), e.length === 0 ? this : (e.forEach((t) => {
2666
- t instanceof X ? s(this, N).push(...t.factors.map((i) => i.clone())) : s(this, N).push(new ae(t));
2666
+ t instanceof X ? s(this, N).push(...t.factors.map((i) => i.clone())) : s(this, N).push(new se(t));
2667
2667
  }), this);
2668
2668
  }
2669
2669
  clone() {
@@ -2707,7 +2707,7 @@ const X = class X {
2707
2707
  let t = e[0];
2708
2708
  return e.shift(), e.forEach((i) => {
2709
2709
  var n;
2710
- return t = A(n = X, We, ki).call(n, t, i);
2710
+ return t = A(n = X, We, Mi).call(n, t, i);
2711
2711
  }), t;
2712
2712
  }
2713
2713
  add(...e) {
@@ -2724,7 +2724,7 @@ const X = class X {
2724
2724
  ).reduce();
2725
2725
  return h(this, N, [
2726
2726
  ...r.factors,
2727
- new ae(l)
2727
+ new se(l)
2728
2728
  ]), n && this.divide(n), h(this, N, s(this, N).filter((c) => !c.power.isZero())), this;
2729
2729
  }
2730
2730
  get asPower() {
@@ -2773,7 +2773,7 @@ const X = class X {
2773
2773
  const c = l.polynom.factorize(e);
2774
2774
  if (c.length > 1) {
2775
2775
  const f = l.power.clone();
2776
- t.push(...c.map((d) => new ae(d, f)));
2776
+ t.push(...c.map((d) => new se(d, f)));
2777
2777
  } else
2778
2778
  t.push(l.clone());
2779
2779
  });
@@ -2787,13 +2787,13 @@ const X = class X {
2787
2787
  h(this, N, e);
2788
2788
  }
2789
2789
  fromPolynom(e, t) {
2790
- if (h(this, N, [new ae(new O(e))]), t) {
2790
+ if (h(this, N, [new se(new O(e))]), t) {
2791
2791
  const i = new O(t);
2792
2792
  if (i.isOne())
2793
2793
  return this;
2794
2794
  if (i.isZero())
2795
2795
  throw new Error("Cannot divide by zero");
2796
- s(this, N).push(new ae(i, -1));
2796
+ s(this, N).push(new se(i, -1));
2797
2797
  }
2798
2798
  return this;
2799
2799
  }
@@ -2830,11 +2830,11 @@ const X = class X {
2830
2830
  return new X(...s(this, N).filter((e) => e.power.isPositive()));
2831
2831
  }
2832
2832
  one() {
2833
- return h(this, N, [new ae("1", "1")]), this;
2833
+ return h(this, N, [new se("1", "1")]), this;
2834
2834
  }
2835
2835
  opposite() {
2836
2836
  const e = s(this, N).findIndex((t) => t.display === "(-1)");
2837
- return e >= 0 ? s(this, N).splice(e, 1) : s(this, N).push(new ae("-1", "1")), this;
2837
+ return e >= 0 ? s(this, N).splice(e, 1) : s(this, N).push(new se("-1", "1")), this;
2838
2838
  }
2839
2839
  pow(e) {
2840
2840
  return h(this, N, s(this, N).map((t) => t.pow(e))), this;
@@ -2846,7 +2846,7 @@ const X = class X {
2846
2846
  const e = ht(this);
2847
2847
  return h(this, N, Object.values(e).map((t) => {
2848
2848
  const i = t[0].polynom, n = t.reduce((r, l) => r.add(l.power), new u("0"));
2849
- return new ae(i, n.reduce());
2849
+ return new se(i, n.reduce());
2850
2850
  }).filter((t) => !t.power.isZero())), this;
2851
2851
  }
2852
2852
  root(e) {
@@ -2877,7 +2877,7 @@ const X = class X {
2877
2877
  return this.add(...e.map((t) => t.opposite()));
2878
2878
  }
2879
2879
  tableOfSigns() {
2880
- const e = this.getZeroes(), t = e.map((r) => r.value), i = this.factors.map((r) => ({ factor: new ae(r), ...r.tableOfSigns() }));
2880
+ const e = this.getZeroes(), t = e.map((r) => r.value), i = this.factors.map((r) => ({ factor: new se(r), ...r.tableOfSigns() }));
2881
2881
  return i.forEach((r) => {
2882
2882
  const l = new Array(2 * e.length + 1).fill("");
2883
2883
  let c = r.signs.shift(), f = r.roots.shift();
@@ -2911,34 +2911,34 @@ const X = class X {
2911
2911
  return s(this, N).reduce((e, t) => e.concat(t.variables), []);
2912
2912
  }
2913
2913
  zero() {
2914
- return h(this, N, [new ae("0", "1")]), this;
2914
+ return h(this, N, [new se("0", "1")]), this;
2915
2915
  }
2916
2916
  };
2917
2917
  it = new WeakMap(), N = new WeakMap(), We = new WeakSet(), ni = function(e, t) {
2918
2918
  const i = ht(e), n = ht(t), l = Object.keys(i).filter((c) => Object.hasOwn(n, c)).map((c) => {
2919
2919
  const f = i[c].reduce((p, w) => p.add(w.power), new u("0")), d = n[c].reduce((p, w) => p.add(w.power), new u("0"));
2920
- return new ae(c, u.min(f, d));
2920
+ return new se(c, u.min(f, d));
2921
2921
  });
2922
2922
  return new X(...l);
2923
- }, ki = function(e, t) {
2923
+ }, Mi = function(e, t) {
2924
2924
  const i = ht(e), n = ht(t), l = [.../* @__PURE__ */ new Set([...Object.keys(i), ...Object.keys(n)])].map((c) => {
2925
2925
  const f = Object.hasOwn(i, c) ? i[c].reduce((p, w) => p.add(w.power), new u("0")) : new u(0), d = Object.hasOwn(n, c) ? n[c].reduce((p, w) => p.add(w.power), new u("0")) : new u(0);
2926
- return new ae(c, u.max(f, d));
2926
+ return new se(c, u.max(f, d));
2927
2927
  });
2928
2928
  return new X(...l);
2929
2929
  }, gt = new WeakSet(), ri = function() {
2930
2930
  let e, t = [];
2931
- return s(this, it) === lt.ROOT ? (e = this.numerator.factors, t = this.denominator.factors) : e = s(this, N), e.length === 0 && (e = [new ae("1")]), { num: e, den: t };
2931
+ return s(this, it) === lt.ROOT ? (e = this.numerator.factors, t = this.denominator.factors) : e = s(this, N), e.length === 0 && (e = [new se("1")]), { num: e, den: t };
2932
2932
  }, m(X, We);
2933
2933
  let si = X;
2934
2934
  function ht(o) {
2935
- const e = new u().one(), t = o.factors.reduce((i, n) => {
2936
- if (n.polynom.degree().isZero())
2937
- return n.polynom.monoms.length > 0 && e.multiply(n.polynom.monoms[0].coefficient), i;
2938
- const r = n.polynom.display;
2939
- return Object.hasOwn(i, r) ? i[r].push(n) : i[r] = [n], i;
2940
- }, {});
2941
- return e.isOne() || (t[e.display] = [new ae(e.display, 1)]), t;
2935
+ const e = new u().one(), t = new u().one(), i = o.factors.reduce((l, c) => {
2936
+ if (c.polynom.degree().isZero())
2937
+ return c.power.isPositive() ? e.multiply(c.polynom.monoms[0].coefficient) : t.multiply(c.polynom.monoms[0].coefficient), l;
2938
+ const f = c.polynom.display;
2939
+ return Object.hasOwn(l, f) ? l[f].push(c) : l[f] = [c], l;
2940
+ }, {}), { numerator: n, denominator: r } = e.divide(t).reduce();
2941
+ return n !== 1 && (i[n.toString()] = [new se(n, 1)]), r !== 1 && (i[r.toString()] = [new se(r, -1)]), i;
2942
2942
  }
2943
2943
  function ns(o, e) {
2944
2944
  return o.dimension === e.dimension && o.array.every(
@@ -2973,7 +2973,7 @@ function hs(...o) {
2973
2973
  ).add(o[0].array[2].clone().multiply(o[1].array[0].clone().multiply(o[2].array[1]).subtract(o[1].array[1].clone().multiply(o[2].array[0]))));
2974
2974
  }
2975
2975
  var F, Le;
2976
- const Se = class Se {
2976
+ const Be = class Be {
2977
2977
  constructor(...e) {
2978
2978
  m(this, F, []);
2979
2979
  m(this, Le, !1);
@@ -3100,7 +3100,7 @@ const Se = class Se {
3100
3100
  if (e.length === 0)
3101
3101
  throw new Error("Invalid value");
3102
3102
  if (e.length === 1) {
3103
- if (e[0] instanceof Se)
3103
+ if (e[0] instanceof Be)
3104
3104
  return e[0].clone();
3105
3105
  if (typeof e[0] == "string")
3106
3106
  return this.fromString(e[0]);
@@ -3108,7 +3108,7 @@ const Se = class Se {
3108
3108
  }
3109
3109
  if (e.length === 2) {
3110
3110
  const [t, i] = e;
3111
- if (t instanceof Se && i instanceof Se) {
3111
+ if (t instanceof Be && i instanceof Be) {
3112
3112
  if (t.dimension !== i.dimension)
3113
3113
  throw new Error("Vectors must have the same dimension");
3114
3114
  return h(this, F, i.array.map((n, r) => n.clone().subtract(t.array[r]))), this;
@@ -3117,7 +3117,7 @@ const Se = class Se {
3117
3117
  return h(this, F, e.map((t) => new u(t))), this;
3118
3118
  }
3119
3119
  clone() {
3120
- const e = new Se();
3120
+ const e = new Be();
3121
3121
  return e.array = this.copy(), e.asPoint = this.asPoint, e;
3122
3122
  }
3123
3123
  copy() {
@@ -3136,7 +3136,7 @@ const Se = class Se {
3136
3136
  cross(e) {
3137
3137
  if (this.dimension !== 3 || e.dimension !== 3)
3138
3138
  throw new Error("Cross product can only be determined in 3D");
3139
- return new Se(
3139
+ return new Be(
3140
3140
  this.y.clone().multiply(e.z).subtract(this.z.clone().multiply(e.y)),
3141
3141
  this.z.clone().multiply(e.x).subtract(this.x.clone().multiply(e.z)),
3142
3142
  this.x.clone().multiply(e.y).subtract(this.y.clone().multiply(e.x))
@@ -3149,7 +3149,7 @@ const Se = class Se {
3149
3149
  return this.array.every((e, t) => t === 0 ? e.isOne() : e.isZero());
3150
3150
  }
3151
3151
  distanceTo(e) {
3152
- const t = new Se(this, e);
3152
+ const t = new Be(this, e);
3153
3153
  return {
3154
3154
  value: t.norm,
3155
3155
  fraction: t.normSquare,
@@ -3158,7 +3158,7 @@ const Se = class Se {
3158
3158
  }
3159
3159
  };
3160
3160
  F = new WeakMap(), Le = new WeakMap();
3161
- let E = Se;
3161
+ let E = Be;
3162
3162
  var we = /* @__PURE__ */ ((o) => (o.None = "none", o.Parallel = "parallel", o.Perpendicular = "perpendicular", o.Tangent = "tangent", o))(we || {}), oi = /* @__PURE__ */ ((o) => (o.None = "none", o.Parallel = "parallel", o.Perpendicular = "perpendicular", o.Tangent = "tangent", o))(oi || {});
3163
3163
  function Ci(o = 0.5) {
3164
3164
  return Math.random() < o;
@@ -3198,7 +3198,7 @@ function $i(o) {
3198
3198
  }
3199
3199
  return e;
3200
3200
  }
3201
- class B extends E {
3201
+ class S extends E {
3202
3202
  constructor(...e) {
3203
3203
  super(), e.length > 0 && this.parse(...e);
3204
3204
  }
@@ -3220,11 +3220,11 @@ class B extends E {
3220
3220
  return this;
3221
3221
  }
3222
3222
  clone() {
3223
- const e = new B();
3223
+ const e = new S();
3224
3224
  return e.array = this.copy(), e.asPoint = !0, e;
3225
3225
  }
3226
3226
  }
3227
- var Pe, S, z, W, oe, J, Ie, xe;
3227
+ var Pe, B, z, W, he, J, Ie, xe;
3228
3228
  const De = class De {
3229
3229
  /**
3230
3230
  * Value can be a mix of:
@@ -3234,15 +3234,15 @@ const De = class De {
3234
3234
  constructor(...e) {
3235
3235
  m(this, Pe);
3236
3236
  // ax + by + c = 0
3237
- m(this, S);
3237
+ m(this, B);
3238
3238
  m(this, z);
3239
3239
  m(this, W);
3240
- m(this, oe);
3240
+ m(this, he);
3241
3241
  m(this, J);
3242
3242
  m(this, Ie);
3243
3243
  m(this, xe, "canonical");
3244
3244
  a(this, "randomPoint", (e) => {
3245
- const t = s(this, J).clone().multiplyByScalar(Q(e === void 0 || e <= 1 ? 3 : e, !1)).add(s(this, oe));
3245
+ const t = s(this, J).clone().multiplyByScalar(Q(e === void 0 || e <= 1 ? 3 : e, !1)).add(s(this, he));
3246
3246
  return t.asPoint = !0, t;
3247
3247
  });
3248
3248
  a(this, "randomNearPoint", (e) => {
@@ -3311,23 +3311,23 @@ const De = class De {
3311
3311
  e.left.monomByDegree(0).coefficient
3312
3312
  );
3313
3313
  });
3314
- a(this, "fromCoefficient", (e, t, i) => (h(this, S, new u(e)), h(this, z, new u(t)), h(this, W, new u(i)), h(this, J, new E(s(this, z).clone(), s(this, S).clone().opposite())), h(this, oe, new E(new u().zero(), s(this, W).clone())), h(this, Ie, s(this, J).clone().normal()), this));
3314
+ a(this, "fromCoefficient", (e, t, i) => (h(this, B, new u(e)), h(this, z, new u(t)), h(this, W, new u(i)), h(this, J, new E(s(this, z).clone(), s(this, B).clone().opposite())), h(this, he, new E(new u().zero(), s(this, W).clone())), h(this, Ie, s(this, J).clone().normal()), this));
3315
3315
  a(this, "fromPointAndDirection", (e, t) => (this.fromCoefficient(
3316
3316
  t.y,
3317
3317
  t.x.clone().opposite(),
3318
3318
  e.x.clone().multiply(t.y).subtract(e.y.clone().multiply(t.x)).opposite()
3319
- ), h(this, oe, e.clone()), h(this, J, t.clone()), h(this, Ie, s(this, J).clone().normal()), this));
3319
+ ), h(this, he, e.clone()), h(this, J, t.clone()), h(this, Ie, s(this, J).clone().normal()), this));
3320
3320
  a(this, "fromPointAndNormal", (e, t) => this.fromCoefficient(
3321
3321
  t.x,
3322
3322
  t.y,
3323
3323
  e.x.clone().multiply(t.x).add(e.y.clone().multiply(t.y)).opposite()
3324
3324
  ));
3325
3325
  a(this, "fromPointAndLine", (e, t, i) => (i === void 0 && (i = we.Parallel), i === we.Parallel ? this.fromPointAndNormal(e, t.normal) : i === we.Perpendicular ? this.fromPointAndNormal(e, t.director) : this));
3326
- a(this, "clone", () => (h(this, S, s(this, S).clone()), h(this, z, s(this, z).clone()), h(this, W, s(this, W).clone()), h(this, J, s(this, J).clone()), h(this, oe, s(this, oe).clone()), h(this, Ie, s(this, Ie).clone()), this));
3326
+ a(this, "clone", () => (h(this, B, s(this, B).clone()), h(this, z, s(this, z).clone()), h(this, W, s(this, W).clone()), h(this, J, s(this, J).clone()), h(this, he, s(this, he).clone()), h(this, Ie, s(this, Ie).clone()), this));
3327
3327
  // ------------------------------------------
3328
3328
  // Mathematical operations
3329
3329
  // ------------------------------------------
3330
- a(this, "isOnLine", (e) => s(this, S).clone().multiply(e.x).add(
3330
+ a(this, "isOnLine", (e) => s(this, B).clone().multiply(e.x).add(
3331
3331
  s(this, z).clone().multiply(e.y)
3332
3332
  ).add(s(this, W)).isZero());
3333
3333
  a(this, "isParallelTo", (e) => this.slope.isEqual(e.slope) && this.height.isNotEqual(e.height));
@@ -3335,18 +3335,18 @@ const De = class De {
3335
3335
  a(this, "isPerpendicularTo", (e) => this.d.isNormalTo(e.d));
3336
3336
  a(this, "isVertical", () => this.slope.isInfinity());
3337
3337
  a(this, "simplify", () => {
3338
- const e = U.lcm(s(this, S).denominator, s(this, z).denominator, s(this, W).denominator), t = U.gcd(s(this, S).numerator, s(this, z).numerator, s(this, W).numerator);
3338
+ const e = U.lcm(s(this, B).denominator, s(this, z).denominator, s(this, W).denominator), t = U.gcd(s(this, B).numerator, s(this, z).numerator, s(this, W).numerator);
3339
3339
  return this.fromCoefficient(
3340
- s(this, S).clone().multiply(e).divide(t),
3340
+ s(this, B).clone().multiply(e).divide(t),
3341
3341
  s(this, z).clone().multiply(e).divide(t),
3342
3342
  s(this, W).clone().multiply(e).divide(t)
3343
3343
  ), this;
3344
3344
  });
3345
3345
  a(this, "simplifyDirection", () => (s(this, J).simplify(), this));
3346
3346
  a(this, "intersection", (e) => {
3347
- const t = new B();
3347
+ const t = new S();
3348
3348
  let i = !1, n = !1;
3349
- return s(this, z).isZero() || e.b.isZero(), this.isParallelTo(e) ? (t.x = new u().invalid(), t.y = new u().invalid(), i = !0) : this.isSameAs(e) ? (t.x = new u().invalid(), t.y = new u().invalid(), n = !0) : (t.x = s(this, z).clone().multiply(e.c).subtract(s(this, W).clone().multiply(e.b)).divide(s(this, S).clone().multiply(e.b).subtract(s(this, z).clone().multiply(e.a))), t.y = s(this, S).clone().multiply(e.c).subtract(s(this, W).clone().multiply(e.a)).divide(s(this, z).clone().multiply(e.a).subtract(s(this, S).clone().multiply(e.b)))), {
3349
+ return s(this, z).isZero() || e.b.isZero(), this.isParallelTo(e) ? (t.x = new u().invalid(), t.y = new u().invalid(), i = !0) : this.isSameAs(e) ? (t.x = new u().invalid(), t.y = new u().invalid(), n = !0) : (t.x = s(this, z).clone().multiply(e.c).subtract(s(this, W).clone().multiply(e.b)).divide(s(this, B).clone().multiply(e.b).subtract(s(this, z).clone().multiply(e.a))), t.y = s(this, B).clone().multiply(e.c).subtract(s(this, W).clone().multiply(e.a)).divide(s(this, z).clone().multiply(e.a).subtract(s(this, B).clone().multiply(e.b)))), {
3350
3350
  point: t,
3351
3351
  hasIntersection: !(i || n),
3352
3352
  isParallel: i,
@@ -3361,15 +3361,15 @@ const De = class De {
3361
3361
  const t = this.getEquation().isolate("x"), i = new u(e);
3362
3362
  return t instanceof H ? t.right.evaluate({ y: i }) : new u().invalid();
3363
3363
  });
3364
- return h(this, S, new u().zero()), h(this, z, new u().zero()), h(this, W, new u().zero()), h(this, oe, new E()), h(this, J, new E()), h(this, Ie, new E()), h(this, Pe, !0), e.length > 0 && this.parse(...e), this;
3364
+ return h(this, B, new u().zero()), h(this, z, new u().zero()), h(this, W, new u().zero()), h(this, he, new E()), h(this, J, new E()), h(this, Ie, new E()), h(this, Pe, !0), e.length > 0 && this.parse(...e), this;
3365
3365
  }
3366
3366
  get a() {
3367
- return s(this, S);
3367
+ return s(this, B);
3368
3368
  }
3369
3369
  // ------------------------------------------
3370
3370
  // Getter and setter
3371
3371
  set a(e) {
3372
- h(this, S, e);
3372
+ h(this, B, e);
3373
3373
  }
3374
3374
  get b() {
3375
3375
  return s(this, z);
@@ -3384,10 +3384,10 @@ const De = class De {
3384
3384
  h(this, W, e);
3385
3385
  }
3386
3386
  get OA() {
3387
- return s(this, oe);
3387
+ return s(this, he);
3388
3388
  }
3389
3389
  set OA(e) {
3390
- h(this, oe, e);
3390
+ h(this, he, e);
3391
3391
  }
3392
3392
  get d() {
3393
3393
  return s(this, J);
@@ -3400,7 +3400,7 @@ const De = class De {
3400
3400
  }
3401
3401
  // ------------------------------------------
3402
3402
  getEquation() {
3403
- const e = new H(new O().parse("xy", s(this, S), s(this, z), s(this, W)), new O("0"));
3403
+ const e = new H(new O().parse("xy", s(this, B), s(this, z), s(this, W)), new O("0"));
3404
3404
  return s(this, Pe) ? e.simplify() : e;
3405
3405
  }
3406
3406
  // get system(): { x: Equation, y: Equation } {
@@ -3441,14 +3441,14 @@ const De = class De {
3441
3441
  case "parametric":
3442
3442
  case "system": {
3443
3443
  const t = s(this, J).clone();
3444
- return s(this, Pe) && t.simplify(), e === "parametric" ? `${E.asTex("x", "y")} = ${E.asTex(s(this, oe).x.tex, s(this, oe).y.tex)} + k\\cdot ${E.asTex(t.x.tex, t.y.tex)}` : `\\left\\{\\begin{aligned}
3445
- x &= ${new O(s(this, oe).x).add(new k(s(this, J).x).multiply(new k("k"))).reorder("k", !0).tex}\\\\
3446
- y &= ${new O(s(this, oe).y).add(new k(s(this, J).y).multiply(new k("k"))).reorder("k", !0).tex}
3444
+ return s(this, Pe) && t.simplify(), e === "parametric" ? `${E.asTex("x", "y")} = ${E.asTex(s(this, he).x.tex, s(this, he).y.tex)} + k\\cdot ${E.asTex(t.x.tex, t.y.tex)}` : `\\left\\{\\begin{aligned}
3445
+ x &= ${new O(s(this, he).x).add(new M(s(this, J).x).multiply(new M("k"))).reorder("k", !0).tex}\\\\
3446
+ y &= ${new O(s(this, he).y).add(new M(s(this, J).y).multiply(new M("k"))).reorder("k", !0).tex}
3447
3447
  \\end{aligned}\\right.`;
3448
3448
  }
3449
3449
  default: {
3450
3450
  const t = this.getEquation();
3451
- return s(this, S).isNegative() && t.multiply(-1), t.tex;
3451
+ return s(this, B).isNegative() && t.multiply(-1), t.tex;
3452
3452
  }
3453
3453
  }
3454
3454
  }
@@ -3467,22 +3467,22 @@ const De = class De {
3467
3467
  return this.slope.isInfinity() ? "x=" + this.OA.x.display : "y=" + new O().parse("x", this.slope, this.height).display;
3468
3468
  case "parametric": {
3469
3469
  const t = s(this, J).clone();
3470
- return s(this, Pe) && t.simplify(), `((x,y))=((${s(this, oe).x.display},${s(this, oe).y.display}))+k((${t.x.display},${t.y.display}))`;
3470
+ return s(this, Pe) && t.simplify(), `((x,y))=((${s(this, he).x.display},${s(this, he).y.display}))+k((${t.x.display},${t.y.display}))`;
3471
3471
  }
3472
3472
  default: {
3473
3473
  const t = this.getEquation();
3474
- return s(this, S).isNegative() && t.multiply(-1), t.display;
3474
+ return s(this, B).isNegative() && t.multiply(-1), t.display;
3475
3475
  }
3476
3476
  }
3477
3477
  }
3478
3478
  get normal() {
3479
- return new E(s(this, S), s(this, z));
3479
+ return new E(s(this, B), s(this, z));
3480
3480
  }
3481
3481
  get director() {
3482
3482
  return s(this, J).clone();
3483
3483
  }
3484
3484
  get slope() {
3485
- return s(this, S).clone().opposite().divide(s(this, z));
3485
+ return s(this, B).clone().opposite().divide(s(this, z));
3486
3486
  }
3487
3487
  get height() {
3488
3488
  return s(this, W).clone().opposite().divide(s(this, z));
@@ -3491,7 +3491,7 @@ const De = class De {
3491
3491
  return this.fromPointAndDirection(e, new E(e, t));
3492
3492
  }
3493
3493
  distanceTo(e) {
3494
- const t = e.x.clone().multiply(s(this, S)).add(e.y.clone().multiply(s(this, z))).add(s(this, W)).abs(), i = this.normal.normSquare;
3494
+ const t = e.x.clone().multiply(s(this, B)).add(e.y.clone().multiply(s(this, z))).add(s(this, W)).abs(), i = this.normal.normSquare;
3495
3495
  if (i.isZero())
3496
3496
  return {
3497
3497
  value: NaN,
@@ -3521,17 +3521,17 @@ const De = class De {
3521
3521
  canonicalAsFloatCoefficient(e) {
3522
3522
  e === void 0 && (e = 2);
3523
3523
  let t = "";
3524
- return s(this, S).isZero() || (s(this, S).isOne() ? t = "x" : s(this, S).clone().opposite().isOne() ? t = "-x" : t = s(this, S).value.toFixed(e) + "x"), s(this, z).isZero() || (s(this, z).isPositive() && (t += "+"), t += s(this, z).value.toFixed(e) + "y"), s(this, W).isZero() || (s(this, W).isPositive() && (t += "+"), t += s(this, W).value.toFixed(e)), t + "=0";
3524
+ return s(this, B).isZero() || (s(this, B).isOne() ? t = "x" : s(this, B).clone().opposite().isOne() ? t = "-x" : t = s(this, B).value.toFixed(e) + "x"), s(this, z).isZero() || (s(this, z).isPositive() && (t += "+"), t += s(this, z).value.toFixed(e) + "y"), s(this, W).isZero() || (s(this, W).isPositive() && (t += "+"), t += s(this, W).value.toFixed(e)), t + "=0";
3525
3525
  }
3526
3526
  };
3527
- Pe = new WeakMap(), S = new WeakMap(), z = new WeakMap(), W = new WeakMap(), oe = new WeakMap(), J = new WeakMap(), Ie = new WeakMap(), xe = new WeakMap(), // A line is defined as the canonical form
3527
+ Pe = new WeakMap(), B = new WeakMap(), z = new WeakMap(), W = new WeakMap(), he = new WeakMap(), J = new WeakMap(), Ie = new WeakMap(), xe = new WeakMap(), // A line is defined as the canonical form
3528
3528
  a(De, "PERPENDICULAR", we.Perpendicular), a(De, "PARALLEL", we.Parallel);
3529
3529
  let R = De;
3530
- var he, j, qe, Ut, Wt, Gt, le, Pi, Nt, Ii, Bi, Si, hi;
3530
+ var ae, j, qe, Ut, Wt, Gt, le, Pi, Nt, Ii, Si, Bi, hi;
3531
3531
  const Ht = class Ht {
3532
3532
  constructor(...e) {
3533
3533
  m(this, le);
3534
- m(this, he);
3534
+ m(this, ae);
3535
3535
  m(this, j);
3536
3536
  m(this, qe);
3537
3537
  /**
@@ -3540,9 +3540,9 @@ const Ht = class Ht {
3540
3540
  * @returns {number}
3541
3541
  */
3542
3542
  a(this, "relativePosition", (e) => {
3543
- if (s(this, he) === void 0 || s(this, j) === void 0)
3543
+ if (s(this, ae) === void 0 || s(this, j) === void 0)
3544
3544
  throw new Error("Circle not defined");
3545
- const t = e.distanceTo(s(this, he)), i = Math.sqrt(s(this, j).value);
3545
+ const t = e.distanceTo(s(this, ae)), i = Math.sqrt(s(this, j).value);
3546
3546
  return t.value - i > 1e-10 ? 0 : Math.abs(t.value - i) < 1e-10 ? 1 : 2;
3547
3547
  });
3548
3548
  a(this, "lineIntersection", (e) => {
@@ -3552,7 +3552,7 @@ const Ht = class Ht {
3552
3552
  const i = s(this, qe).clone(), n = e.getEquation().clone().isolate("x"), r = e.getEquation().clone().isolate("y");
3553
3553
  return n instanceof H && r instanceof H && (i.replaceBy("y", r.right).simplify(), i.solve()), t;
3554
3554
  });
3555
- a(this, "tangents", (e) => e instanceof u ? s(this, Gt).call(this, e) : this.isPointOnCircle(e) ? s(this, Ut).call(this, e) : s(this, he) !== void 0 && s(this, he).distanceTo(e).value > this.radius.value ? s(this, Wt).call(this, e) : (console.log("No tangents as the point is inside !"), []));
3555
+ a(this, "tangents", (e) => e instanceof u ? s(this, Gt).call(this, e) : this.isPointOnCircle(e) ? s(this, Ut).call(this, e) : s(this, ae) !== void 0 && s(this, ae).distanceTo(e).value > this.radius.value ? s(this, Wt).call(this, e) : (console.log("No tangents as the point is inside !"), []));
3556
3556
  a(this, "isPointOnCircle", (e) => {
3557
3557
  var t;
3558
3558
  return ((t = s(this, qe)) == null ? void 0 : t.test({ x: e.x, y: e.y })) ?? !1;
@@ -3562,7 +3562,7 @@ const Ht = class Ht {
3562
3562
  return t.forEach((n) => {
3563
3563
  for (const r of [[1, 1], [-1, 1], [-1, -1], [1, -1]])
3564
3564
  i.push(
3565
- new B(
3565
+ new S(
3566
3566
  this.center.x.clone().add(r[0] * n[0]),
3567
3567
  this.center.y.clone().add(r[1] * n[1])
3568
3568
  )
@@ -3588,7 +3588,7 @@ const Ht = class Ht {
3588
3588
  e.length > 0 && this.parse(...e);
3589
3589
  }
3590
3590
  get center() {
3591
- return s(this, he) ?? new B();
3591
+ return s(this, ae) ?? new S();
3592
3592
  }
3593
3593
  get squareRadius() {
3594
3594
  return s(this, j) ?? new u(0);
@@ -3631,7 +3631,7 @@ const Ht = class Ht {
3631
3631
  return t ? h(this, j, new u(e)) : h(this, j, new u(e).pow(2)), A(this, le, Nt).call(this), this;
3632
3632
  }
3633
3633
  parse(...e) {
3634
- return A(this, le, Pi).call(this), typeof e[0] == "string" ? A(this, le, hi).call(this, new H(e[0])) : e[0] instanceof H ? A(this, le, hi).call(this, e[0]) : e[0] instanceof Ht ? A(this, le, Ii).call(this, e[0]) : e[0] instanceof B && e.length > 1 && (e[1] instanceof B ? e[2] instanceof B || A(this, le, Si).call(this, e[0], e[1]) : (e[1] instanceof u || typeof e[1] == "number") && A(this, le, Bi).call(this, e[0], e[1], typeof e[2] == "boolean" ? e[2] : !1)), A(this, le, Nt).call(this), this;
3634
+ return A(this, le, Pi).call(this), typeof e[0] == "string" ? A(this, le, hi).call(this, new H(e[0])) : e[0] instanceof H ? A(this, le, hi).call(this, e[0]) : e[0] instanceof Ht ? A(this, le, Ii).call(this, e[0]) : e[0] instanceof S && e.length > 1 && (e[1] instanceof S ? e[2] instanceof S || A(this, le, Bi).call(this, e[0], e[1]) : (e[1] instanceof u || typeof e[1] == "number") && A(this, le, Si).call(this, e[0], e[1], typeof e[2] == "boolean" ? e[2] : !1)), A(this, le, Nt).call(this), this;
3635
3635
  }
3636
3636
  // private _parseThroughtThreePoints(A: Point, B: Point, C: Point): this {
3637
3637
  // const T = new Triangle(A, B, C), mAB = T.remarquables.mediators.AB.clone(),
@@ -3640,24 +3640,24 @@ const Ht = class Ht {
3640
3640
  // return this
3641
3641
  // }
3642
3642
  };
3643
- he = new WeakMap(), j = new WeakMap(), qe = new WeakMap(), Ut = new WeakMap(), Wt = new WeakMap(), Gt = new WeakMap(), le = new WeakSet(), Pi = function() {
3644
- return h(this, he, void 0), h(this, j, void 0), h(this, qe, void 0), this;
3643
+ ae = new WeakMap(), j = new WeakMap(), qe = new WeakMap(), Ut = new WeakMap(), Wt = new WeakMap(), Gt = new WeakMap(), le = new WeakSet(), Pi = function() {
3644
+ return h(this, ae, void 0), h(this, j, void 0), h(this, qe, void 0), this;
3645
3645
  }, Nt = function() {
3646
3646
  h(this, qe, new H(
3647
3647
  new O(`(x-(${this.center.x.display}))^2+(y-(${this.center.y.display}))^2`),
3648
3648
  new O(this.squareRadius.display)
3649
3649
  ).moveLeft());
3650
3650
  }, Ii = function(e) {
3651
- return h(this, he, e.center.clone()), h(this, j, e.squareRadius.clone()), A(this, le, Nt).call(this), this;
3652
- }, Bi = function(e, t, i) {
3653
- return h(this, he, e.clone()), i ? h(this, j, new u(t)) : h(this, j, new u(t).pow(2)), this;
3654
- }, Si = function(e, t) {
3655
- return h(this, he, e.clone()), h(this, j, new E(s(this, he), t).normSquare), this;
3651
+ return h(this, ae, e.center.clone()), h(this, j, e.squareRadius.clone()), A(this, le, Nt).call(this), this;
3652
+ }, Si = function(e, t, i) {
3653
+ return h(this, ae, e.clone()), i ? h(this, j, new u(t)) : h(this, j, new u(t).pow(2)), this;
3654
+ }, Bi = function(e, t) {
3655
+ return h(this, ae, e.clone()), h(this, j, new E(s(this, ae), t).normSquare), this;
3656
3656
  }, hi = function(e) {
3657
3657
  if (e.moveLeft(), e.degree("x").value === 2 && e.degree("y").value === 2) {
3658
3658
  const t = e.left.monomByDegree(2, "x"), i = e.left.monomByDegree(2, "y");
3659
3659
  let n, r, l;
3660
- t.coefficient.isEqual(i.coefficient) ? (e.divide(t.coefficient), n = e.left.monomByDegree(1, "x"), r = e.left.monomByDegree(1, "y"), l = e.left.monomByDegree(0), h(this, he, new B(n.coefficient.clone().divide(2).opposite(), r.coefficient.clone().divide(2).opposite())), h(this, j, l.coefficient.clone().opposite().add(s(this, he).x.clone().pow(2)).add(s(this, he).y.clone().pow(2)))) : (h(this, he, void 0), h(this, j, void 0));
3660
+ t.coefficient.isEqual(i.coefficient) ? (e.divide(t.coefficient), n = e.left.monomByDegree(1, "x"), r = e.left.monomByDegree(1, "y"), l = e.left.monomByDegree(0), h(this, ae, new S(n.coefficient.clone().divide(2).opposite(), r.coefficient.clone().divide(2).opposite())), h(this, j, l.coefficient.clone().opposite().add(s(this, ae).x.clone().pow(2)).add(s(this, ae).y.clone().pow(2)))) : (h(this, ae, void 0), h(this, j, void 0));
3661
3661
  }
3662
3662
  return this;
3663
3663
  };
@@ -3666,7 +3666,7 @@ var L, G;
3666
3666
  const ct = class ct {
3667
3667
  constructor(e, t) {
3668
3668
  // ax + by + c = 0
3669
- m(this, L, new B());
3669
+ m(this, L, new S());
3670
3670
  m(this, G, new E());
3671
3671
  a(this, "clone", () => (h(this, G, s(this, G).clone()), h(this, L, s(this, L).clone()), this));
3672
3672
  // ------------------------------------------
@@ -3709,7 +3709,7 @@ const ct = class ct {
3709
3709
  // }
3710
3710
  a(this, "randomPoint", (e = 5) => {
3711
3711
  const t = s(this, L).clone(), i = new u(Q(e, !1));
3712
- return new B(
3712
+ return new S(
3713
3713
  t.x.clone().add(s(this, G).x.clone().multiply(i)),
3714
3714
  t.y.clone().add(s(this, G).y.clone().multiply(i)),
3715
3715
  t.z.clone().add(s(this, G).z.clone().multiply(i))
@@ -3736,9 +3736,9 @@ const ct = class ct {
3736
3736
  return {
3737
3737
  parametric: `${E.asTex("x", "y", "z")} = ${E.asTex(s(this, L).x.tex, s(this, L).y.tex, s(this, L).z.tex)} + k\\cdot ${E.asTex(s(this, G).x.tex, s(this, G).y.tex, s(this, G).z.tex)}`,
3738
3738
  system: `\\left\\{\\begin{aligned}
3739
- x &= ${new O(s(this, L).x).add(new k(s(this, G).x).multiply(new k("k"))).reorder("k", !0).tex}\\\\
3740
- y &= ${new O(s(this, L).y).add(new k(s(this, G).y).multiply(new k("k"))).reorder("k", !0).tex}\\\\
3741
- z &= ${new O(s(this, L).z).add(new k(s(this, G).z).multiply(new k("k"))).reorder("k", !0).tex}
3739
+ x &= ${new O(s(this, L).x).add(new M(s(this, G).x).multiply(new M("k"))).reorder("k", !0).tex}\\\\
3740
+ y &= ${new O(s(this, L).y).add(new M(s(this, G).y).multiply(new M("k"))).reorder("k", !0).tex}\\\\
3741
+ z &= ${new O(s(this, L).z).add(new M(s(this, G).z).multiply(new M("k"))).reorder("k", !0).tex}
3742
3742
  \\end{aligned}\\right.`,
3743
3743
  cartesian: `\\frac{ ${new O("x", 1, s(this, L).x.clone().opposite()).tex} }{ ${this.direction.x.tex} } = \\frac{ ${new O("y", 1, s(this, L).y.clone().opposite()).tex} }{ ${this.direction.y.tex} } = \\frac{ ${new O("z", 1, s(this, L).z.clone().opposite()).tex} }{ ${this.direction.z.tex} }`
3744
3744
  };
@@ -3772,23 +3772,23 @@ const ct = class ct {
3772
3772
  L = new WeakMap(), G = new WeakMap(), // A line is defined as the canonical form
3773
3773
  a(ct, "PERPENDICULAR", oi.Perpendicular), a(ct, "PARALLEL", oi.Parallel);
3774
3774
  let Ot = ct;
3775
- var Me;
3775
+ var ke;
3776
3776
  class cs {
3777
3777
  constructor(...e) {
3778
- m(this, Me, []);
3779
- return h(this, Me, e), this;
3778
+ m(this, ke, []);
3779
+ return h(this, ke, e), this;
3780
3780
  }
3781
3781
  get values() {
3782
- return s(this, Me);
3782
+ return s(this, ke);
3783
3783
  }
3784
3784
  get array() {
3785
- return s(this, Me).map((e) => e.array);
3785
+ return s(this, ke).map((e) => e.array);
3786
3786
  }
3787
3787
  get dimension() {
3788
- return [s(this, Me).length, s(this, Me)[0].dimension];
3788
+ return [s(this, ke).length, s(this, ke)[0].dimension];
3789
3789
  }
3790
3790
  isSquare() {
3791
- return s(this, Me).length === s(this, Me)[0].dimension;
3791
+ return s(this, ke).length === s(this, ke)[0].dimension;
3792
3792
  }
3793
3793
  determinant() {
3794
3794
  if (!this.isSquare())
@@ -3796,19 +3796,19 @@ class cs {
3796
3796
  return hs(...this.values);
3797
3797
  }
3798
3798
  }
3799
- Me = new WeakMap();
3800
- var ke, Ue;
3799
+ ke = new WeakMap();
3800
+ var Me, Ue;
3801
3801
  const mi = class mi {
3802
3802
  constructor(e) {
3803
- m(this, ke, new E(0, 0, 1));
3804
- m(this, Ue, new B(0, 0, 0));
3803
+ m(this, Me, new E(0, 0, 1));
3804
+ m(this, Ue, new S(0, 0, 0));
3805
3805
  return e && this.parse(e), this;
3806
3806
  }
3807
3807
  get normal() {
3808
- return s(this, ke);
3808
+ return s(this, Me);
3809
3809
  }
3810
3810
  set normal(e) {
3811
- h(this, ke, e), s(this, ke).asPoint = !1;
3811
+ h(this, Me, e), s(this, Me).asPoint = !1;
3812
3812
  }
3813
3813
  get point() {
3814
3814
  return s(this, Ue);
@@ -3817,16 +3817,16 @@ const mi = class mi {
3817
3817
  h(this, Ue, e), s(this, Ue).asPoint = !0;
3818
3818
  }
3819
3819
  get a() {
3820
- return s(this, ke).x;
3820
+ return s(this, Me).x;
3821
3821
  }
3822
3822
  get b() {
3823
- return s(this, ke).y;
3823
+ return s(this, Me).y;
3824
3824
  }
3825
3825
  get c() {
3826
- return s(this, ke).z;
3826
+ return s(this, Me).z;
3827
3827
  }
3828
3828
  get d() {
3829
- return s(this, ke).dot(s(this, Ue)).opposite();
3829
+ return s(this, Me).dot(s(this, Ue)).opposite();
3830
3830
  }
3831
3831
  get tex() {
3832
3832
  return new H(
@@ -3848,7 +3848,7 @@ const mi = class mi {
3848
3848
  }
3849
3849
  if (e.equation) {
3850
3850
  const r = e.equation.moveLeft().reduce().left, l = r.monomByLetter("x").coefficient, c = r.monomByLetter("y").coefficient, f = r.monomByLetter("z").coefficient, d = r.monomByDegree(0).coefficient;
3851
- this.normal = new E(l, c, f), l.isNotZero() ? this.point = new B(d.clone().divide(l).opposite(), 0, 0) : c.isNotZero() ? this.point = new B(0, d.clone().divide(c).opposite(), 0) : this.point = new B(0, 0, d.clone().divide(f).opposite());
3851
+ this.normal = new E(l, c, f), l.isNotZero() ? this.point = new S(d.clone().divide(l).opposite(), 0, 0) : c.isNotZero() ? this.point = new S(0, d.clone().divide(c).opposite(), 0) : this.point = new S(0, 0, d.clone().divide(f).opposite());
3852
3852
  return;
3853
3853
  }
3854
3854
  if (((i = e.points) == null ? void 0 : i.length) === 3 && e.points.every((r) => r instanceof E)) {
@@ -3858,7 +3858,7 @@ const mi = class mi {
3858
3858
  }
3859
3859
  if (((n = e.coefficients) == null ? void 0 : n.length) === 4) {
3860
3860
  const [r, l, c, f] = e.coefficients;
3861
- this.normal = new E(r, l, c), this.point = new B(0, 0, -f);
3861
+ this.normal = new E(r, l, c), this.point = new S(0, 0, -f);
3862
3862
  return;
3863
3863
  }
3864
3864
  }
@@ -3882,29 +3882,29 @@ const mi = class mi {
3882
3882
  return t.clone().add(i.clone().multiplyByScalar(n));
3883
3883
  }
3884
3884
  intersectWithPlane(e) {
3885
- throw this.normal.cross(e.normal), new B(0, 0, 0), new Error("Intersection with plane not yet implemented !");
3885
+ throw this.normal.cross(e.normal), new S(0, 0, 0), new Error("Intersection with plane not yet implemented !");
3886
3886
  }
3887
3887
  isPointOnPlane(e) {
3888
3888
  return this.normal.dot(e).add(this.d).isZero();
3889
3889
  }
3890
3890
  };
3891
- ke = new WeakMap(), Ue = new WeakMap();
3891
+ Me = new WeakMap(), Ue = new WeakMap();
3892
3892
  let ai = mi;
3893
- var Y, _, ee, st, Ce, yt, Xt, wt, Be, Yt, nt;
3893
+ var Y, _, ee, st, Ce, yt, Xt, wt, Se, Yt, nt;
3894
3894
  const Qt = class Qt {
3895
3895
  constructor(...e) {
3896
- m(this, Y, new B());
3897
- m(this, _, new B());
3898
- m(this, ee, new B());
3896
+ m(this, Y, new S());
3897
+ m(this, _, new S());
3898
+ m(this, ee, new S());
3899
3899
  m(this, st, {
3900
3900
  AB: new R(),
3901
3901
  AC: new R(),
3902
3902
  BC: new R()
3903
3903
  });
3904
3904
  m(this, Ce, {
3905
- AB: new B(),
3906
- AC: new B(),
3907
- BC: new B()
3905
+ AB: new S(),
3906
+ AC: new S(),
3907
+ BC: new S()
3908
3908
  });
3909
3909
  m(this, yt, null);
3910
3910
  // ------------------------------------------
@@ -3947,7 +3947,7 @@ const Qt = class Qt {
3947
3947
  h(this, Y, r.point.clone());
3948
3948
  else
3949
3949
  throw new Error("Lines do not intersect !");
3950
- } else e.every((t) => t instanceof B) && (h(this, Y, e[0].clone()), h(this, _, e[1].clone()), h(this, ee, e[2].clone()), h(this, st, {
3950
+ } else e.every((t) => t instanceof S) && (h(this, Y, e[0].clone()), h(this, _, e[1].clone()), h(this, ee, e[2].clone()), h(this, st, {
3951
3951
  AB: new R(s(this, Y), s(this, _)),
3952
3952
  BC: new R(s(this, _), s(this, ee)),
3953
3953
  AC: new R(s(this, Y), s(this, ee))
@@ -3972,9 +3972,9 @@ const Qt = class Qt {
3972
3972
  */
3973
3973
  m(this, Xt, () => {
3974
3974
  s(this, Y).asPoint = !0, s(this, _).asPoint = !0, s(this, ee).asPoint = !0, h(this, Ce, {
3975
- AB: new B().middleOf(s(this, Y), s(this, _)),
3976
- AC: new B().middleOf(s(this, Y), s(this, ee)),
3977
- BC: new B().middleOf(s(this, _), s(this, ee))
3975
+ AB: new S().middleOf(s(this, Y), s(this, _)),
3976
+ AC: new S().middleOf(s(this, Y), s(this, ee)),
3977
+ BC: new S().middleOf(s(this, _), s(this, ee))
3978
3978
  }), h(this, yt, s(this, Yt).call(this));
3979
3979
  });
3980
3980
  /**
@@ -3997,7 +3997,7 @@ const Qt = class Qt {
3997
3997
  * @param ptName1
3998
3998
  * @param ptName2
3999
3999
  */
4000
- m(this, Be, (e, t) => new E(
4000
+ m(this, Se, (e, t) => new E(
4001
4001
  s(this, wt).call(this, e),
4002
4002
  s(this, wt).call(this, t)
4003
4003
  ));
@@ -4059,22 +4059,22 @@ const Qt = class Qt {
4059
4059
  return s(this, ee);
4060
4060
  }
4061
4061
  get AB() {
4062
- return s(this, Be).call(this, "A", "B");
4062
+ return s(this, Se).call(this, "A", "B");
4063
4063
  }
4064
4064
  get BA() {
4065
- return s(this, Be).call(this, "B", "A");
4065
+ return s(this, Se).call(this, "B", "A");
4066
4066
  }
4067
4067
  get BC() {
4068
- return s(this, Be).call(this, "B", "C");
4068
+ return s(this, Se).call(this, "B", "C");
4069
4069
  }
4070
4070
  get CB() {
4071
- return s(this, Be).call(this, "C", "B");
4071
+ return s(this, Se).call(this, "C", "B");
4072
4072
  }
4073
4073
  get AC() {
4074
- return s(this, Be).call(this, "A", "C");
4074
+ return s(this, Se).call(this, "A", "C");
4075
4075
  }
4076
4076
  get CA() {
4077
- return s(this, Be).call(this, "C", "A");
4077
+ return s(this, Se).call(this, "C", "A");
4078
4078
  }
4079
4079
  get isRectangle() {
4080
4080
  return !!(this.AB.isNormalTo(this.BC) || this.AB.isNormalTo(this.AC) || this.BC.isNormalTo(this.AC));
@@ -4092,7 +4092,7 @@ const Qt = class Qt {
4092
4092
  return s(this, yt);
4093
4093
  }
4094
4094
  };
4095
- Y = new WeakMap(), _ = new WeakMap(), ee = new WeakMap(), st = new WeakMap(), Ce = new WeakMap(), yt = new WeakMap(), Xt = new WeakMap(), wt = new WeakMap(), Be = new WeakMap(), Yt = new WeakMap(), nt = new WeakMap();
4095
+ Y = new WeakMap(), _ = new WeakMap(), ee = new WeakMap(), st = new WeakMap(), Ce = new WeakMap(), yt = new WeakMap(), Xt = new WeakMap(), wt = new WeakMap(), Se = new WeakMap(), Yt = new WeakMap(), nt = new WeakMap();
4096
4096
  let li = Qt;
4097
4097
  function qt(o) {
4098
4098
  const e = Object.assign(
@@ -4123,7 +4123,7 @@ function Ri(o) {
4123
4123
  zero: !1
4124
4124
  },
4125
4125
  o
4126
- ), t = new k();
4126
+ ), t = new M();
4127
4127
  if (t.coefficient = qt({
4128
4128
  zero: e.zero,
4129
4129
  reduced: !0,
@@ -4213,7 +4213,7 @@ function ci(o) {
4213
4213
  },
4214
4214
  o
4215
4215
  ), t = e.axis === "x", i = e.axis === "y", n = e.fraction ? qt({ max: e.max, zero: t }) : new u(Q(e.max, t)), r = e.fraction ? qt({ max: e.max, zero: i }) : new u(Q(e.max, i));
4216
- return Number(e.quadrant) === 1 && (n.abs(), r.abs()), Number(e.quadrant) === 2 && (n.isPositive() && n.opposite(), r.isNegative() && r.opposite()), Number(e.quadrant) === 3 && (n.isPositive() && n.opposite(), r.isPositive() && r.opposite()), Number(e.quadrant) === 4 && (n.isNegative() && n.opposite(), r.isPositive() && r.opposite()), new B(n, r);
4216
+ return Number(e.quadrant) === 1 && (n.abs(), r.abs()), Number(e.quadrant) === 2 && (n.isPositive() && n.opposite(), r.isNegative() && r.opposite()), Number(e.quadrant) === 3 && (n.isPositive() && n.opposite(), r.isPositive() && r.opposite()), Number(e.quadrant) === 4 && (n.isNegative() && n.opposite(), r.isPositive() && r.opposite()), new S(n, r);
4217
4217
  }
4218
4218
  function ds(o) {
4219
4219
  const e = Object.assign(
@@ -4261,7 +4261,7 @@ function ms(o) {
4261
4261
  }
4262
4262
  },
4263
4263
  o
4264
- ), t = new B(e.A.x, e.A.y, e.A.z), i = new E(e.direction.x, e.direction.y, e.direction.z);
4264
+ ), t = new S(e.A.x, e.A.y, e.A.z), i = new E(e.direction.x, e.direction.y, e.direction.z);
4265
4265
  return new Ot(t, i);
4266
4266
  }
4267
4267
  const gs = {
@@ -4288,18 +4288,18 @@ const gs = {
4288
4288
  Numeric: U,
4289
4289
  Fraction: u,
4290
4290
  Root: vt,
4291
- Monom: k,
4291
+ Monom: M,
4292
4292
  Polynom: O,
4293
4293
  Equation: H,
4294
4294
  Matrix: cs,
4295
4295
  LinearSystem: ti,
4296
- Factor: ae,
4296
+ Factor: se,
4297
4297
  PolyFactor: si,
4298
4298
  LogicalSet: ss,
4299
4299
  Random: gs,
4300
4300
  Geometry: {
4301
4301
  Vector: E,
4302
- Point: B,
4302
+ Point: S,
4303
4303
  Line: R,
4304
4304
  Triangle: li,
4305
4305
  Circle: Tt,
@@ -4313,19 +4313,19 @@ export {
4313
4313
  H as Equation,
4314
4314
  At as EquationSolver,
4315
4315
  lt as FACTOR_DISPLAY,
4316
- ae as Factor,
4316
+ se as Factor,
4317
4317
  u as Fraction,
4318
4318
  R as Line,
4319
4319
  Ot as Line3,
4320
4320
  ti as LinearSystem,
4321
4321
  ss as LogicalSet,
4322
4322
  cs as Matrix,
4323
- k as Monom,
4323
+ M as Monom,
4324
4324
  vt as NthRoot,
4325
4325
  is as NumExp,
4326
4326
  U as Numeric,
4327
4327
  ai as Plane3,
4328
- B as Point,
4328
+ S as Point,
4329
4329
  si as PolyFactor,
4330
4330
  O as Polynom,
4331
4331
  gs as Random,