pimath 0.1.22 → 0.1.23

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -14,7 +14,7 @@ export declare class PolyFactor implements IPiMathObject<PolyFactor>, IExpressio
14
14
  get asPower(): this;
15
15
  get asRoot(): this;
16
16
  degree(letter?: string): Fraction;
17
- get denominator(): Factor[];
17
+ get denominator(): PolyFactor;
18
18
  derivative(): this;
19
19
  develop(): Polynom;
20
20
  divide(value: PolyFactor): this;
@@ -30,7 +30,7 @@ export declare class PolyFactor implements IPiMathObject<PolyFactor>, IExpressio
30
30
  isOne(): boolean;
31
31
  isZero(): boolean;
32
32
  multiply(...values: PolyFactor[]): this;
33
- get numerator(): Factor[];
33
+ get numerator(): PolyFactor;
34
34
  one(): this;
35
35
  opposite(): this;
36
36
  pow(value: number | Fraction): this;
@@ -38,10 +38,6 @@ export declare class PolyFactor implements IPiMathObject<PolyFactor>, IExpressio
38
38
  reduce(): this;
39
39
  root(value: number): this;
40
40
  sort(): this;
41
- splitFactors(): {
42
- numerator: PolyFactor;
43
- denominator: PolyFactor;
44
- };
45
41
  sqrt(): this;
46
42
  subtract(...values: PolyFactor[]): this;
47
43
  tableOfSigns(): POLYFACTOR_TABLE_OF_SIGNS;
package/dist/pimath.js CHANGED
@@ -391,10 +391,10 @@ class vt {
391
391
  }
392
392
  }
393
393
  Z = new WeakMap(), ee = new WeakMap(), ie = new WeakMap(), Xe = new WeakMap();
394
- var fe, je, I, ot, ye, bi, ti, xi, Ei, Ni;
394
+ var fe, je, P, ot, ye, bi, ti, xi, Ei, Ni;
395
395
  const mi = class mi {
396
396
  constructor(e, t, i = "x") {
397
- p(this, I);
397
+ p(this, P);
398
398
  p(this, fe);
399
399
  p(this, je);
400
400
  if (h(this, je, i), Object.hasOwn(e, "moveLeft")) {
@@ -405,23 +405,23 @@ const mi = class mi {
405
405
  }
406
406
  solve() {
407
407
  if (s(this, fe).degree().isOne())
408
- return q(this, I, xi).call(this);
408
+ return q(this, P, xi).call(this);
409
409
  if (s(this, fe).degree().value === 2)
410
- return q(this, I, Ei).call(this);
411
- const e = q(this, I, bi).call(this);
410
+ return q(this, P, Ei).call(this);
411
+ const e = q(this, P, bi).call(this);
412
412
  if (e.length > 0)
413
413
  return e;
414
414
  if (s(this, fe).degree().value === 3)
415
- return q(this, I, ti).call(this);
415
+ return q(this, P, ti).call(this);
416
416
  throw new Error("The equation degree is too high.");
417
417
  }
418
418
  solveAsCardan() {
419
419
  if (s(this, fe).degree().value !== 3)
420
420
  throw new Error("The equation is not cubic.");
421
- return q(this, I, ti).call(this);
421
+ return q(this, P, ti).call(this);
422
422
  }
423
423
  };
424
- fe = new WeakMap(), je = new WeakMap(), I = new WeakSet(), ot = function(e, t) {
424
+ fe = new WeakMap(), je = new WeakMap(), P = new WeakSet(), ot = function(e, t) {
425
425
  return {
426
426
  variable: s(this, je),
427
427
  exact: !1,
@@ -431,7 +431,7 @@ fe = new WeakMap(), je = new WeakMap(), I = new WeakSet(), ot = function(e, t) {
431
431
  };
432
432
  }, ye = function(e) {
433
433
  if (e instanceof u && e.isApproximative())
434
- return q(this, I, ot).call(this, e.value);
434
+ return q(this, P, ot).call(this, e.value);
435
435
  const t = new u(e);
436
436
  return {
437
437
  variable: s(this, je),
@@ -447,12 +447,12 @@ fe = new WeakMap(), je = new WeakMap(), I = new WeakSet(), ot = function(e, t) {
447
447
  const n = e.monomByDegree().coefficient;
448
448
  let r = e.monomByDegree(0).coefficient;
449
449
  for (; r.isZero(); )
450
- t.length === 0 && t.push(q(this, I, ye).call(this, 0)), e = e.divide("x"), r = e.monomByDegree(0).coefficient;
450
+ t.length === 0 && t.push(q(this, P, ye).call(this, 0)), e = e.divide("x"), r = e.monomByDegree(0).coefficient;
451
451
  const l = G.dividers(n.value), c = G.dividers(r.value);
452
452
  for (const f of l)
453
453
  for (const g of c) {
454
454
  const N = new u(g, f);
455
- e.evaluate(N).isZero() && !t.find((V) => V.value === N.value) && t.push(q(this, I, ye).call(this, N)), N.opposite(), e.evaluate(N).isZero() && !t.find((V) => V.value === N.value) && t.push(q(this, I, ye).call(this, N));
455
+ e.evaluate(N).isZero() && !t.find((V) => V.value === N.value) && t.push(q(this, P, ye).call(this, N)), N.opposite(), e.evaluate(N).isZero() && !t.find((V) => V.value === N.value) && t.push(q(this, P, ye).call(this, N));
456
456
  }
457
457
  for (const f of t) {
458
458
  if (f.exact !== !1 && f.exact.isZero())
@@ -471,26 +471,26 @@ fe = new WeakMap(), je = new WeakMap(), I = new WeakSet(), ot = function(e, t) {
471
471
  const e = s(this, fe), t = e.monomByDegree(3).coefficient, i = e.monomByDegree(2).coefficient, n = e.monomByDegree(1).coefficient, r = e.monomByDegree(0).coefficient, l = i.clone().divide(t), c = n.clone().divide(t), d = r.clone().divide(t), f = c.clone().subtract(l.clone().pow(2).divide(3)), g = d.clone().subtract(l.clone().multiply(c).divide(3)).add(l.clone().pow(3).multiply(2).divide(27)), N = g.clone().opposite(), V = f.clone().opposite().pow(3).divide(27), pe = N.clone().pow(2).subtract(V.clone().multiply(4)).opposite();
472
472
  if (pe.isNegative()) {
473
473
  const he = g.clone().opposite().add(pe.clone().opposite().sqrt()).divide(2).root(3), ae = g.clone().opposite().subtract(pe.clone().opposite().sqrt()).divide(2).root(3), ge = he.clone().add(ae).subtract(l.clone().divide(3));
474
- return [q(this, I, ye).call(this, ge)];
474
+ return [q(this, P, ye).call(this, ge)];
475
475
  }
476
476
  if (pe.isZero()) {
477
477
  const he = g.clone().opposite().divide(2).root(3), ae = he.clone().opposite().subtract(l.clone().divide(3)), ge = he.clone().multiply(2).subtract(l.clone().divide(3));
478
- return ae.isEqual(ge) ? [q(this, I, ye).call(this, ae)] : [
479
- q(this, I, ye).call(this, ge),
480
- q(this, I, ye).call(this, ae)
478
+ return ae.isEqual(ge) ? [q(this, P, ye).call(this, ae)] : [
479
+ q(this, P, ye).call(this, ge),
480
+ q(this, P, ye).call(this, ae)
481
481
  ].sort((me, ce) => me.value - ce.value);
482
482
  }
483
483
  if (pe.isPositive()) {
484
484
  const he = [], ae = f.value, ge = g.value, me = l.value;
485
485
  for (let ce = 0; ce < 3; ce++)
486
486
  he.push(2 * Math.sqrt(-ae / 3) * Math.cos(Math.acos(3 * ge / (2 * ae) * Math.sqrt(-3 / ae)) / 3 + 2 * Math.PI * ce / 3) - me / 3);
487
- return he.map((ce) => q(this, I, ot).call(this, ce)).sort((ce, nt) => ce.value - nt.value);
487
+ return he.map((ce) => q(this, P, ot).call(this, ce)).sort((ce, nt) => ce.value - nt.value);
488
488
  }
489
489
  return [];
490
490
  }, xi = function() {
491
491
  const e = s(this, fe).monomByDegree(0).coefficient.clone().opposite().divide(s(this, fe).monomByDegree(1).coefficient);
492
492
  return [
493
- q(this, I, ye).call(this, e)
493
+ q(this, P, ye).call(this, e)
494
494
  ];
495
495
  }, Ei = function() {
496
496
  const e = s(this, fe), t = e.monomByDegree(2).coefficient, i = e.monomByDegree(1).coefficient, n = e.monomByDegree(0).coefficient, r = i.clone().pow(2).subtract(t.clone().multiply(n).multiply(4));
@@ -498,12 +498,12 @@ fe = new WeakMap(), je = new WeakMap(), I = new WeakSet(), ot = function(e, t) {
498
498
  return [];
499
499
  if (r.isSquare()) {
500
500
  const l = r.sqrt(), c = i.clone().opposite().add(l).divide(t.clone().multiply(2)), d = i.clone().opposite().subtract(l).divide(t.clone().multiply(2));
501
- return l.isZero() ? [q(this, I, ye).call(this, c)] : [
502
- q(this, I, ye).call(this, c),
503
- q(this, I, ye).call(this, d)
501
+ return l.isZero() ? [q(this, P, ye).call(this, c)] : [
502
+ q(this, P, ye).call(this, c),
503
+ q(this, P, ye).call(this, d)
504
504
  ].sort((f, g) => f.value - g.value);
505
505
  }
506
- return q(this, I, Ni).call(this, t, i, r);
506
+ return q(this, P, Ni).call(this, t, i, r);
507
507
  }, Ni = function(e, t, i) {
508
508
  const n = G.dividers(i.value).filter((me) => Math.sqrt(me) % 1 === 0).map((me) => Math.sqrt(me)).pop() ?? 1, r = G.gcd(2 * e.value, t.value, n) * (e.isNegative() ? -1 : 1), l = t.clone().divide(r).opposite(), c = e.clone().divide(r).multiply(2), d = i.clone().divide(n ** 2), f = Math.abs(n / r), g = n === 1 ? "-" : `-${f} `, N = n === 1 ? "+" : `+${f} `;
509
509
  function V(me, ce, nt, Kt) {
@@ -514,11 +514,11 @@ fe = new WeakMap(), je = new WeakMap(), I = new WeakSet(), ot = function(e, t) {
514
514
  }
515
515
  const he = i.value ** 0.5, ae = (-t.value - he) / (2 * e.value), ge = (-t.value + he) / (2 * e.value);
516
516
  return [
517
- q(this, I, ot).call(this, ae, {
517
+ q(this, P, ot).call(this, ae, {
518
518
  tex: V(c.tex, l.tex, g.toString(), d.tex),
519
519
  display: pe(c.display, l.display, g.toString(), d.display)
520
520
  }),
521
- q(this, I, ot).call(this, ge, {
521
+ q(this, P, ot).call(this, ge, {
522
522
  tex: V(c.tex, l.tex, N.toString(), d.tex),
523
523
  display: pe(c.display, l.display, N.toString(), d.display)
524
524
  })
@@ -852,7 +852,7 @@ class _i {
852
852
  }
853
853
  }
854
854
  var T, v, Ye, xt, Le, qt, kt;
855
- const P = class P {
855
+ const I = class I {
856
856
  constructor(e) {
857
857
  p(this, Ye);
858
858
  p(this, T);
@@ -861,7 +861,7 @@ const P = class P {
861
861
  * Clone the current Monom.
862
862
  */
863
863
  a(this, "clone", () => {
864
- const e = new P();
864
+ const e = new I();
865
865
  e.coefficient = s(this, T).clone();
866
866
  for (const t in s(this, v))
867
867
  e.setLetter(t, s(this, v)[t].clone());
@@ -873,7 +873,7 @@ const P = class P {
873
873
  */
874
874
  a(this, "add", (...e) => {
875
875
  for (const t of e) {
876
- const i = t instanceof P ? t : new P(t);
876
+ const i = t instanceof I ? t : new I(t);
877
877
  this.isSameAs(i) ? (this.isZero() && q(this, Ye, xt).call(this, i), s(this, T).add(i.coefficient)) : console.log("Add monom: " + this.display + " is not similar with ", i.display);
878
878
  }
879
879
  return this;
@@ -893,7 +893,7 @@ const P = class P {
893
893
  const t = s(this, v)[e].clone(), i = this.clone();
894
894
  return s(i, v)[e].subtract(1), s(i, T).multiply(new u(t.clone())), i;
895
895
  } else
896
- return new P().zero();
896
+ return new I().zero();
897
897
  });
898
898
  /**
899
899
  * Divide the current monoms by multiple monoms
@@ -901,7 +901,7 @@ const P = class P {
901
901
  */
902
902
  a(this, "divide", (...e) => {
903
903
  for (const t of e) {
904
- const i = t instanceof P ? t : new P(t);
904
+ const i = t instanceof I ? t : new I(t);
905
905
  s(this, T).divide(i.coefficient);
906
906
  for (const n in i.literal)
907
907
  s(this, v)[n] = this.hasVariable(n) ? s(this, v)[n].subtract(i.literal[n]) : i.literal[n].clone().opposite(), s(this, v)[n].isZero() && this.removeVariable(n);
@@ -1008,7 +1008,7 @@ const P = class P {
1008
1008
  */
1009
1009
  a(this, "multiply", (...e) => {
1010
1010
  for (const t of e) {
1011
- const i = t instanceof P ? t : new P(t);
1011
+ const i = t instanceof I ? t : new I(t);
1012
1012
  s(this, T).multiply(i.coefficient);
1013
1013
  for (const n in i.literal)
1014
1014
  this.hasVariable(n) ? s(this, v)[n].add(i.literal[n]) : s(this, v)[n] = i.literal[n].clone();
@@ -1075,7 +1075,7 @@ const P = class P {
1075
1075
  */
1076
1076
  a(this, "subtract", (...e) => {
1077
1077
  for (const t of e) {
1078
- const i = t instanceof P ? t : new P(t);
1078
+ const i = t instanceof I ? t : new I(t);
1079
1079
  this.isSameAs(i) ? (this.isZero() && q(this, Ye, xt).call(this, i), s(this, T).add(i.clone().coefficient.opposite())) : console.log("Subtract: Is not similar: ", i.display);
1080
1080
  }
1081
1081
  return this;
@@ -1122,23 +1122,23 @@ const P = class P {
1122
1122
  var d;
1123
1123
  let i, n, r, l, c;
1124
1124
  if (t.tokenType === m.COEFFICIENT)
1125
- e.push(new P(new u(t.token)));
1125
+ e.push(new I(new u(t.token)));
1126
1126
  else if (t.tokenType === m.VARIABLE) {
1127
- const f = new P().one();
1127
+ const f = new I().one();
1128
1128
  f.setLetter(t.token, 1), e.push(f.clone());
1129
1129
  } else if (t.tokenType === m.OPERATION)
1130
1130
  switch (t.token) {
1131
1131
  case "-":
1132
- n = e.pop() ?? new P().zero(), i = e.pop() ?? new P().zero(), e.push(i.subtract(n));
1132
+ n = e.pop() ?? new I().zero(), i = e.pop() ?? new I().zero(), e.push(i.subtract(n));
1133
1133
  break;
1134
1134
  case "*":
1135
- n = e.pop() ?? new P().one(), i = e.pop() ?? new P().one(), e.push(i.multiply(n));
1135
+ n = e.pop() ?? new I().one(), i = e.pop() ?? new I().one(), e.push(i.multiply(n));
1136
1136
  break;
1137
1137
  case "/":
1138
- n = e.pop() ?? new P().one(), i = e.pop() ?? new P().one(), e.push(i.divide(n));
1138
+ n = e.pop() ?? new I().one(), i = e.pop() ?? new I().one(), e.push(i.divide(n));
1139
1139
  break;
1140
1140
  case "^": {
1141
- c = ((d = e.pop()) == null ? void 0 : d.coefficient) ?? new u().one(), r = e.pop() ?? new P().one(), l = r.variables[0], l && r.setLetter(l, c), e.push(r);
1141
+ c = ((d = e.pop()) == null ? void 0 : d.coefficient) ?? new u().one(), r = e.pop() ?? new I().one(), l = r.variables[0], l && r.setLetter(l, c), e.push(r);
1142
1142
  break;
1143
1143
  }
1144
1144
  }
@@ -1151,7 +1151,7 @@ const P = class P {
1151
1151
  * @param inputStr
1152
1152
  */
1153
1153
  parse(e) {
1154
- return h(this, T, new u()), h(this, v, {}), typeof e == "string" ? s(this, qt).call(this, e) : typeof e == "number" ? h(this, T, new u(e)) : e instanceof u ? h(this, T, e.clone()) : e instanceof P && (h(this, T, s(e, T).clone()), q(this, Ye, xt).call(this, e)), this;
1154
+ return h(this, T, new u()), h(this, v, {}), typeof e == "string" ? s(this, qt).call(this, e) : typeof e == "number" ? h(this, T, new u(e)) : e instanceof u ? h(this, T, e.clone()) : e instanceof I && (h(this, T, s(e, T).clone()), q(this, Ye, xt).call(this, e)), this;
1155
1155
  }
1156
1156
  /**
1157
1157
  * Get the coefficient \\(k\\) of the Monom \\(k\\cdot x^{n}\\)
@@ -1193,20 +1193,20 @@ const P = class P {
1193
1193
  if (t.length > 0 && e.length > 0)
1194
1194
  for (const n of e)
1195
1195
  for (const r of t) {
1196
- const l = new P();
1196
+ const l = new I();
1197
1197
  l.coefficient = new u(n), l.literal = r, i.push(l);
1198
1198
  }
1199
1199
  else if (e.length === 0)
1200
1200
  for (const n of t) {
1201
- const r = new P();
1201
+ const r = new I();
1202
1202
  r.coefficient = new u().one(), r.literal = n, i.push(r);
1203
1203
  }
1204
1204
  else
1205
1205
  for (const n of e) {
1206
- const r = new P();
1206
+ const r = new I();
1207
1207
  r.coefficient = new u(n), i.push(r);
1208
1208
  }
1209
- return i.length === 0 ? [new P().one()] : i;
1209
+ return i.length === 0 ? [new I().one()] : i;
1210
1210
  }
1211
1211
  integrate(e, t, i) {
1212
1212
  const n = this.primitive(i);
@@ -1301,11 +1301,11 @@ const P = class P {
1301
1301
  T = new WeakMap(), v = new WeakMap(), Ye = new WeakSet(), xt = function(e) {
1302
1302
  for (const t in e.literal)
1303
1303
  s(this, v)[t] = e.literal[t].clone();
1304
- }, Le = new WeakMap(), qt = new WeakMap(), kt = new WeakMap(), a(P, "gcd", (...e) => {
1304
+ }, Le = new WeakMap(), qt = new WeakMap(), kt = new WeakMap(), a(I, "gcd", (...e) => {
1305
1305
  for (const r of e)
1306
1306
  if (r.containsRationalPower())
1307
- return new P().zero();
1308
- const t = new P(), i = G.gcd(...e.map((r) => r.coefficient.numerator)), n = G.lcm(...e.map((r) => r.coefficient.denominator));
1307
+ return new I().zero();
1308
+ const t = new I(), i = G.gcd(...e.map((r) => r.coefficient.numerator)), n = G.lcm(...e.map((r) => r.coefficient.denominator));
1309
1309
  t.coefficient = new u(i, n).reduce();
1310
1310
  for (const r of e) {
1311
1311
  for (const l in t.literal)
@@ -1318,20 +1318,20 @@ T = new WeakMap(), v = new WeakMap(), Ye = new WeakSet(), xt = function(e) {
1318
1318
  * Multiply two monoms and return a NEW monom.
1319
1319
  * @param monoms
1320
1320
  */
1321
- a(P, "xMultiply", (...e) => {
1322
- const t = new P().one();
1321
+ a(I, "xMultiply", (...e) => {
1322
+ const t = new I().one();
1323
1323
  for (const i of e)
1324
1324
  t.multiply(i);
1325
1325
  return t;
1326
1326
  });
1327
- let M = P;
1327
+ let M = I;
1328
1328
  function wi(o, e = !0) {
1329
1329
  return e ? `\\left( ${o} \\right)` : `(${o})`;
1330
1330
  }
1331
1331
  function Re(o, e, t, i, n) {
1332
1332
  return o.map((r, l) => i !== void 0 && l < i || n !== void 0 && l > n ? r : r === e ? t : r);
1333
1333
  }
1334
- var Ue, y, Qe, ut, Ke, ft, Mt, Ct, $t, Je, Pt, dt, It, Bt, St, Rt, Oi, zt, Lt;
1334
+ var Ue, y, Qe, ut, Ke, ft, Mt, Ct, $t, Je, It, dt, Pt, Bt, St, Rt, Oi, zt, Lt;
1335
1335
  const C = class C {
1336
1336
  constructor(e, ...t) {
1337
1337
  p(this, Rt);
@@ -1462,7 +1462,7 @@ const C = class C {
1462
1462
  t.push(i.clone()), i.one();
1463
1463
  break;
1464
1464
  } else {
1465
- let c = s(this, Pt).call(this, i, l, e ?? "x");
1465
+ let c = s(this, It).call(this, i, l, e ?? "x");
1466
1466
  for (l = i.degree(e).value; c.length > 0; ) {
1467
1467
  const d = c[0];
1468
1468
  if (!i.isDividableBy(d))
@@ -1574,7 +1574,7 @@ const C = class C {
1574
1574
  r.degree(t).isEqual(e) && i.push(r.clone());
1575
1575
  return i;
1576
1576
  });
1577
- a(this, "multiply", (e) => e instanceof C ? s(this, St).call(this, e) : e instanceof u ? s(this, dt).call(this, e) : e instanceof M ? s(this, Bt).call(this, e) : Number.isSafeInteger(e) && typeof e == "number" ? s(this, It).call(this, e) : this);
1577
+ a(this, "multiply", (e) => e instanceof C ? s(this, St).call(this, e) : e instanceof u ? s(this, dt).call(this, e) : e instanceof M ? s(this, Bt).call(this, e) : Number.isSafeInteger(e) && typeof e == "number" ? s(this, Pt).call(this, e) : this);
1578
1578
  a(this, "one", () => (h(this, y, []), s(this, y).push(new M().one()), this));
1579
1579
  // ------------------------------------------
1580
1580
  a(this, "opposite", () => (h(this, y, s(this, y).map((e) => e.opposite())), this));
@@ -1709,7 +1709,7 @@ const C = class C {
1709
1709
  }
1710
1710
  return i === !0 && this.length > 1 && (e === "tex" ? r = `\\left( ${r} \\right)` : r = `(${r})`), r === "" && (r = "0"), r;
1711
1711
  });
1712
- p(this, Pt, (e, t, i) => {
1712
+ p(this, It, (e, t, i) => {
1713
1713
  const n = e.monoms[0].dividers, r = e.monoms[e.monoms.length - 1].dividers, l = [];
1714
1714
  return n.forEach((c) => {
1715
1715
  c.degree(i).isLeq(t) && r.forEach((d) => {
@@ -1722,7 +1722,7 @@ const C = class C {
1722
1722
  t.coefficient.multiply(e);
1723
1723
  return this.reduce();
1724
1724
  });
1725
- p(this, It, (e) => s(this, dt).call(this, new u(e)));
1725
+ p(this, Pt, (e) => s(this, dt).call(this, new u(e)));
1726
1726
  p(this, Bt, (e) => {
1727
1727
  for (const t of s(this, y))
1728
1728
  t.multiply(e);
@@ -1884,7 +1884,7 @@ const C = class C {
1884
1884
  return this.getZeroes();
1885
1885
  }
1886
1886
  };
1887
- Ue = new WeakMap(), y = new WeakMap(), Qe = new WeakMap(), ut = new WeakMap(), Ke = new WeakMap(), ft = new WeakMap(), Mt = new WeakMap(), Ct = new WeakMap(), $t = new WeakMap(), Je = new WeakMap(), Pt = new WeakMap(), dt = new WeakMap(), It = new WeakMap(), Bt = new WeakMap(), St = new WeakMap(), Rt = new WeakSet(), Oi = function(e, ...t) {
1887
+ Ue = new WeakMap(), y = new WeakMap(), Qe = new WeakMap(), ut = new WeakMap(), Ke = new WeakMap(), ft = new WeakMap(), Mt = new WeakMap(), Ct = new WeakMap(), $t = new WeakMap(), Je = new WeakMap(), It = new WeakMap(), dt = new WeakMap(), Pt = new WeakMap(), Bt = new WeakMap(), St = new WeakMap(), Rt = new WeakSet(), Oi = function(e, ...t) {
1888
1888
  if (t.length === 0) {
1889
1889
  if (e = "" + e, e !== "" && !isNaN(Number(e))) {
1890
1890
  this.empty();
@@ -2676,7 +2676,7 @@ const ue = class ue {
2676
2676
  return s(this, E).reduce((t, i) => t.add(i.degree(e)), new u("0"));
2677
2677
  }
2678
2678
  get denominator() {
2679
- return s(this, E).filter((e) => e.power.isNegative());
2679
+ return new ue(...s(this, E).filter((e) => e.power.isNegative()));
2680
2680
  }
2681
2681
  derivative() {
2682
2682
  const e = [], t = s(this, E).length;
@@ -2742,7 +2742,7 @@ const ue = class ue {
2742
2742
  }), this;
2743
2743
  }
2744
2744
  get numerator() {
2745
- return s(this, E).filter((e) => e.power.isPositive());
2745
+ return new ue(...s(this, E).filter((e) => e.power.isPositive()));
2746
2746
  }
2747
2747
  one() {
2748
2748
  return h(this, E, [new le("1", "1")]), this;
@@ -2770,12 +2770,6 @@ const ue = class ue {
2770
2770
  sort() {
2771
2771
  return h(this, E, s(this, E).sort((e, t) => e.degree().isLeq(t.degree()) ? -1 : 1)), this;
2772
2772
  }
2773
- splitFactors() {
2774
- return {
2775
- numerator: new ue(...s(this, E).filter((e) => e.power.isPositive())),
2776
- denominator: new ue(...s(this, E).filter((e) => e.power.isStrictlyNegative()))
2777
- };
2778
- }
2779
2773
  sqrt() {
2780
2774
  return h(this, E, s(this, E).map((e) => e.sqrt())), this;
2781
2775
  }
@@ -2816,7 +2810,7 @@ tt = new WeakMap(), E = new WeakMap(), mt = new WeakSet(), ri = function(e, t) {
2816
2810
  return new ue(...l);
2817
2811
  }, gt = new WeakSet(), oi = function() {
2818
2812
  let e, t = [];
2819
- return s(this, tt) === at.ROOT ? (e = this.numerator, t = this.denominator.map((i) => i.clone().inverse())) : e = s(this, E), e.length === 0 && (e = [new le("1")]), { num: e, den: t };
2813
+ return s(this, tt) === at.ROOT ? (e = this.numerator.factors, t = this.denominator.factors.map((i) => i.clone().inverse())) : e = s(this, E), e.length === 0 && (e = [new le("1")]), { num: e, den: t };
2820
2814
  }, p(ue, mt);
2821
2815
  let ni = ue;
2822
2816
  function ei(o) {
@@ -3108,7 +3102,7 @@ class B extends x {
3108
3102
  return e.array = this.copy(), e.asPoint = !0, e;
3109
3103
  }
3110
3104
  }
3111
- var Pe, S, z, U, ne, Q, Ie, be;
3105
+ var Ie, S, z, U, ne, Q, Pe, be;
3112
3106
  const Ze = class Ze {
3113
3107
  /**
3114
3108
  * Value can be a mix of:
@@ -3116,14 +3110,14 @@ const Ze = class Ze {
3116
3110
  * @param values
3117
3111
  */
3118
3112
  constructor(...e) {
3119
- p(this, Pe);
3113
+ p(this, Ie);
3120
3114
  // ax + by + c = 0
3121
3115
  p(this, S);
3122
3116
  p(this, z);
3123
3117
  p(this, U);
3124
3118
  p(this, ne);
3125
3119
  p(this, Q);
3126
- p(this, Ie);
3120
+ p(this, Pe);
3127
3121
  p(this, be, "canonical");
3128
3122
  a(this, "randomPoint", (e) => {
3129
3123
  const t = s(this, Q).clone().multiplyByScalar(Y(e === void 0 || e <= 1 ? 3 : e, !1)).add(s(this, ne));
@@ -3195,19 +3189,19 @@ const Ze = class Ze {
3195
3189
  e.left.monomByDegree(0).coefficient
3196
3190
  );
3197
3191
  });
3198
- a(this, "fromCoefficient", (e, t, i) => (h(this, S, new u(e)), h(this, z, new u(t)), h(this, U, new u(i)), h(this, Q, new x(s(this, z).clone(), s(this, S).clone().opposite())), h(this, ne, new x(new u().zero(), s(this, U).clone())), h(this, Ie, s(this, Q).clone().normal()), this));
3192
+ a(this, "fromCoefficient", (e, t, i) => (h(this, S, new u(e)), h(this, z, new u(t)), h(this, U, new u(i)), h(this, Q, new x(s(this, z).clone(), s(this, S).clone().opposite())), h(this, ne, new x(new u().zero(), s(this, U).clone())), h(this, Pe, s(this, Q).clone().normal()), this));
3199
3193
  a(this, "fromPointAndDirection", (e, t) => (this.fromCoefficient(
3200
3194
  t.y,
3201
3195
  t.x.clone().opposite(),
3202
3196
  e.x.clone().multiply(t.y).subtract(e.y.clone().multiply(t.x)).opposite()
3203
- ), h(this, ne, e.clone()), h(this, Q, t.clone()), h(this, Ie, s(this, Q).clone().normal()), this));
3197
+ ), h(this, ne, e.clone()), h(this, Q, t.clone()), h(this, Pe, s(this, Q).clone().normal()), this));
3204
3198
  a(this, "fromPointAndNormal", (e, t) => this.fromCoefficient(
3205
3199
  t.x,
3206
3200
  t.y,
3207
3201
  e.x.clone().multiply(t.x).add(e.y.clone().multiply(t.y)).opposite()
3208
3202
  ));
3209
3203
  a(this, "fromPointAndLine", (e, t, i) => (i === void 0 && (i = we.Parallel), i === we.Parallel ? this.fromPointAndNormal(e, t.normal) : i === we.Perpendicular ? this.fromPointAndNormal(e, t.director) : this));
3210
- a(this, "clone", () => (h(this, S, s(this, S).clone()), h(this, z, s(this, z).clone()), h(this, U, s(this, U).clone()), h(this, Q, s(this, Q).clone()), h(this, ne, s(this, ne).clone()), h(this, Ie, s(this, Ie).clone()), this));
3204
+ a(this, "clone", () => (h(this, S, s(this, S).clone()), h(this, z, s(this, z).clone()), h(this, U, s(this, U).clone()), h(this, Q, s(this, Q).clone()), h(this, ne, s(this, ne).clone()), h(this, Pe, s(this, Pe).clone()), this));
3211
3205
  // ------------------------------------------
3212
3206
  // Mathematical operations
3213
3207
  // ------------------------------------------
@@ -3245,7 +3239,7 @@ const Ze = class Ze {
3245
3239
  const t = this.getEquation().isolate("x"), i = new u(e);
3246
3240
  return t instanceof H ? t.right.evaluate({ y: i }) : new u().invalid();
3247
3241
  });
3248
- return h(this, S, new u().zero()), h(this, z, new u().zero()), h(this, U, new u().zero()), h(this, ne, new x()), h(this, Q, new x()), h(this, Ie, new x()), h(this, Pe, !0), e.length > 0 && this.parse(...e), this;
3242
+ return h(this, S, new u().zero()), h(this, z, new u().zero()), h(this, U, new u().zero()), h(this, ne, new x()), h(this, Q, new x()), h(this, Pe, new x()), h(this, Ie, !0), e.length > 0 && this.parse(...e), this;
3249
3243
  }
3250
3244
  get a() {
3251
3245
  return s(this, S);
@@ -3280,12 +3274,12 @@ const Ze = class Ze {
3280
3274
  h(this, Q, e);
3281
3275
  }
3282
3276
  get n() {
3283
- return s(this, Ie);
3277
+ return s(this, Pe);
3284
3278
  }
3285
3279
  // ------------------------------------------
3286
3280
  getEquation() {
3287
3281
  const e = new H(new O().parse("xy", s(this, S), s(this, z), s(this, U)), new O("0"));
3288
- return s(this, Pe) ? e.simplify() : e;
3282
+ return s(this, Ie) ? e.simplify() : e;
3289
3283
  }
3290
3284
  // get system(): { x: Equation, y: Equation } {
3291
3285
  // const e1 = new Equation(
@@ -3325,7 +3319,7 @@ const Ze = class Ze {
3325
3319
  case "parametric":
3326
3320
  case "system": {
3327
3321
  const t = s(this, Q).clone();
3328
- return s(this, Pe) && t.simplify(), e === "parametric" ? `${x.asTex("x", "y")} = ${x.asTex(s(this, ne).x.tex, s(this, ne).y.tex)} + k\\cdot ${x.asTex(t.x.tex, t.y.tex)}` : `\\left\\{\\begin{aligned}
3322
+ return s(this, Ie) && t.simplify(), e === "parametric" ? `${x.asTex("x", "y")} = ${x.asTex(s(this, ne).x.tex, s(this, ne).y.tex)} + k\\cdot ${x.asTex(t.x.tex, t.y.tex)}` : `\\left\\{\\begin{aligned}
3329
3323
  x &= ${new O(s(this, ne).x).add(new M(s(this, Q).x).multiply(new M("k"))).reorder("k", !0).tex}\\\\
3330
3324
  y &= ${new O(s(this, ne).y).add(new M(s(this, Q).y).multiply(new M("k"))).reorder("k", !0).tex}
3331
3325
  \\end{aligned}\\right.`;
@@ -3337,10 +3331,10 @@ const Ze = class Ze {
3337
3331
  }
3338
3332
  }
3339
3333
  get reduceBeforeDisplay() {
3340
- return s(this, Pe);
3334
+ return s(this, Ie);
3341
3335
  }
3342
3336
  set reduceBeforeDisplay(e) {
3343
- h(this, Pe, e);
3337
+ h(this, Ie, e);
3344
3338
  }
3345
3339
  get display() {
3346
3340
  const e = s(this, be);
@@ -3351,7 +3345,7 @@ const Ze = class Ze {
3351
3345
  return this.slope.isInfinity() ? "x=" + this.OA.x.display : "y=" + new O().parse("x", this.slope, this.height).display;
3352
3346
  case "parametric": {
3353
3347
  const t = s(this, Q).clone();
3354
- return s(this, Pe) && t.simplify(), `((x,y))=((${s(this, ne).x.display},${s(this, ne).y.display}))+k((${t.x.display},${t.y.display}))`;
3348
+ return s(this, Ie) && t.simplify(), `((x,y))=((${s(this, ne).x.display},${s(this, ne).y.display}))+k((${t.x.display},${t.y.display}))`;
3355
3349
  }
3356
3350
  default: {
3357
3351
  const t = this.getEquation();
@@ -3408,10 +3402,10 @@ const Ze = class Ze {
3408
3402
  return s(this, S).isZero() || (s(this, S).isOne() ? t = "x" : s(this, S).clone().opposite().isOne() ? t = "-x" : t = s(this, S).value.toFixed(e) + "x"), s(this, z).isZero() || (s(this, z).isPositive() && (t += "+"), t += s(this, z).value.toFixed(e) + "y"), s(this, U).isZero() || (s(this, U).isPositive() && (t += "+"), t += s(this, U).value.toFixed(e)), t + "=0";
3409
3403
  }
3410
3404
  };
3411
- Pe = new WeakMap(), S = new WeakMap(), z = new WeakMap(), U = new WeakMap(), ne = new WeakMap(), Q = new WeakMap(), Ie = new WeakMap(), be = new WeakMap(), // A line is defined as the canonical form
3405
+ Ie = new WeakMap(), S = new WeakMap(), z = new WeakMap(), U = new WeakMap(), ne = new WeakMap(), Q = new WeakMap(), Pe = new WeakMap(), be = new WeakMap(), // A line is defined as the canonical form
3412
3406
  a(Ze, "PERPENDICULAR", we.Perpendicular), a(Ze, "PARALLEL", we.Parallel);
3413
3407
  let R = Ze;
3414
- var re, j, qe, jt, Ut, Gt, oe, Mi, Et, Ci, $i, Pi, ai;
3408
+ var re, j, qe, jt, Ut, Gt, oe, Mi, Et, Ci, $i, Ii, ai;
3415
3409
  const Wt = class Wt {
3416
3410
  constructor(...e) {
3417
3411
  p(this, oe);
@@ -3515,7 +3509,7 @@ const Wt = class Wt {
3515
3509
  return t ? h(this, j, new u(e)) : h(this, j, new u(e).pow(2)), q(this, oe, Et).call(this), this;
3516
3510
  }
3517
3511
  parse(...e) {
3518
- return q(this, oe, Mi).call(this), typeof e[0] == "string" ? q(this, oe, ai).call(this, new H(e[0])) : e[0] instanceof H ? q(this, oe, ai).call(this, e[0]) : e[0] instanceof Wt ? q(this, oe, Ci).call(this, e[0]) : e[0] instanceof B && e.length > 1 && (e[1] instanceof B ? e[2] instanceof B || q(this, oe, Pi).call(this, e[0], e[1]) : (e[1] instanceof u || typeof e[1] == "number") && q(this, oe, $i).call(this, e[0], e[1], typeof e[2] == "boolean" ? e[2] : !1)), q(this, oe, Et).call(this), this;
3512
+ return q(this, oe, Mi).call(this), typeof e[0] == "string" ? q(this, oe, ai).call(this, new H(e[0])) : e[0] instanceof H ? q(this, oe, ai).call(this, e[0]) : e[0] instanceof Wt ? q(this, oe, Ci).call(this, e[0]) : e[0] instanceof B && e.length > 1 && (e[1] instanceof B ? e[2] instanceof B || q(this, oe, Ii).call(this, e[0], e[1]) : (e[1] instanceof u || typeof e[1] == "number") && q(this, oe, $i).call(this, e[0], e[1], typeof e[2] == "boolean" ? e[2] : !1)), q(this, oe, Et).call(this), this;
3519
3513
  }
3520
3514
  // private _parseThroughtThreePoints(A: Point, B: Point, C: Point): this {
3521
3515
  // const T = new Triangle(A, B, C), mAB = T.remarquables.mediators.AB.clone(),
@@ -3535,7 +3529,7 @@ re = new WeakMap(), j = new WeakMap(), qe = new WeakMap(), jt = new WeakMap(), U
3535
3529
  return h(this, re, e.center.clone()), h(this, j, e.squareRadius.clone()), q(this, oe, Et).call(this), this;
3536
3530
  }, $i = function(e, t, i) {
3537
3531
  return h(this, re, e.clone()), i ? h(this, j, new u(t)) : h(this, j, new u(t).pow(2)), this;
3538
- }, Pi = function(e, t) {
3532
+ }, Ii = function(e, t) {
3539
3533
  return h(this, re, e.clone()), h(this, j, new x(s(this, re), t).normSquare), this;
3540
3534
  }, ai = function(e) {
3541
3535
  if (e.moveLeft(), e.degree("x").value === 2 && e.degree("y").value === 2) {
@@ -3999,7 +3993,7 @@ function Ot(o) {
3999
3993
  }
4000
3994
  return e.reduced ? t.reduce() : t;
4001
3995
  }
4002
- function Ii(o) {
3996
+ function Pi(o) {
4003
3997
  const e = Object.assign(
4004
3998
  {
4005
3999
  letters: "x",
@@ -4042,7 +4036,7 @@ function Bi(o) {
4042
4036
  ), t = new O().empty();
4043
4037
  let i;
4044
4038
  for (let n = e.degree; n >= 0; n--)
4045
- i = Ii({
4039
+ i = Pi({
4046
4040
  letters: e.letters,
4047
4041
  degree: n,
4048
4042
  fraction: e.fraction,
@@ -4152,7 +4146,7 @@ function fs(o) {
4152
4146
  const ds = {
4153
4147
  equation: (o) => ls(o),
4154
4148
  polynom: (o) => Bi(o),
4155
- monom: (o) => Ii(o),
4149
+ monom: (o) => Pi(o),
4156
4150
  fraction: (o) => Ot(o),
4157
4151
  number: (o, e, t) => de(o, e, t),
4158
4152
  numberSym: (o, e) => Y(o, e),