pimath 0.1.21 → 0.1.22

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/pimath.js CHANGED
@@ -391,37 +391,37 @@ class vt {
391
391
  }
392
392
  }
393
393
  Z = new WeakMap(), ee = new WeakMap(), ie = new WeakMap(), Xe = new WeakMap();
394
- var ue, je, P, ot, ye, bi, ti, xi, Ei, Ni;
394
+ var fe, je, I, ot, ye, bi, ti, xi, Ei, Ni;
395
395
  const mi = class mi {
396
396
  constructor(e, t, i = "x") {
397
- p(this, P);
398
- p(this, ue);
397
+ p(this, I);
398
+ p(this, fe);
399
399
  p(this, je);
400
400
  if (h(this, je, i), Object.hasOwn(e, "moveLeft")) {
401
401
  const n = e;
402
- h(this, ue, n.left.clone().subtract(n.right));
402
+ h(this, fe, n.left.clone().subtract(n.right));
403
403
  } else
404
- h(this, ue, e.clone().subtract(t ?? 0));
404
+ h(this, fe, e.clone().subtract(t ?? 0));
405
405
  }
406
406
  solve() {
407
- if (s(this, ue).degree().isOne())
408
- return q(this, P, xi).call(this);
409
- if (s(this, ue).degree().value === 2)
410
- return q(this, P, Ei).call(this);
411
- const e = q(this, P, bi).call(this);
407
+ if (s(this, fe).degree().isOne())
408
+ return q(this, I, xi).call(this);
409
+ if (s(this, fe).degree().value === 2)
410
+ return q(this, I, Ei).call(this);
411
+ const e = q(this, I, bi).call(this);
412
412
  if (e.length > 0)
413
413
  return e;
414
- if (s(this, ue).degree().value === 3)
415
- return q(this, P, ti).call(this);
414
+ if (s(this, fe).degree().value === 3)
415
+ return q(this, I, ti).call(this);
416
416
  throw new Error("The equation degree is too high.");
417
417
  }
418
418
  solveAsCardan() {
419
- if (s(this, ue).degree().value !== 3)
419
+ if (s(this, fe).degree().value !== 3)
420
420
  throw new Error("The equation is not cubic.");
421
- return q(this, P, ti).call(this);
421
+ return q(this, I, ti).call(this);
422
422
  }
423
423
  };
424
- ue = new WeakMap(), je = new WeakMap(), P = new WeakSet(), ot = function(e, t) {
424
+ fe = new WeakMap(), je = new WeakMap(), I = new WeakSet(), ot = function(e, t) {
425
425
  return {
426
426
  variable: s(this, je),
427
427
  exact: !1,
@@ -431,7 +431,7 @@ ue = new WeakMap(), je = new WeakMap(), P = new WeakSet(), ot = function(e, t) {
431
431
  };
432
432
  }, ye = function(e) {
433
433
  if (e instanceof u && e.isApproximative())
434
- return q(this, P, ot).call(this, e.value);
434
+ return q(this, I, ot).call(this, e.value);
435
435
  const t = new u(e);
436
436
  return {
437
437
  variable: s(this, je),
@@ -441,23 +441,23 @@ ue = new WeakMap(), je = new WeakMap(), P = new WeakSet(), ot = function(e, t) {
441
441
  display: t.display
442
442
  };
443
443
  }, bi = function() {
444
- let e = s(this, ue).clone(), t = [];
444
+ let e = s(this, fe).clone(), t = [];
445
445
  const i = e.lcmDenominator();
446
446
  i !== 1 && e.multiply(i);
447
447
  const n = e.monomByDegree().coefficient;
448
448
  let r = e.monomByDegree(0).coefficient;
449
449
  for (; r.isZero(); )
450
- t.length === 0 && t.push(q(this, P, ye).call(this, 0)), e = e.divide("x"), r = e.monomByDegree(0).coefficient;
450
+ t.length === 0 && t.push(q(this, I, ye).call(this, 0)), e = e.divide("x"), r = e.monomByDegree(0).coefficient;
451
451
  const l = G.dividers(n.value), c = G.dividers(r.value);
452
452
  for (const f of l)
453
453
  for (const g of c) {
454
454
  const N = new u(g, f);
455
- e.evaluate(N).isZero() && !t.find((V) => V.value === N.value) && t.push(q(this, P, ye).call(this, N)), N.opposite(), e.evaluate(N).isZero() && !t.find((V) => V.value === N.value) && t.push(q(this, P, ye).call(this, N));
455
+ e.evaluate(N).isZero() && !t.find((V) => V.value === N.value) && t.push(q(this, I, ye).call(this, N)), N.opposite(), e.evaluate(N).isZero() && !t.find((V) => V.value === N.value) && t.push(q(this, I, ye).call(this, N));
456
456
  }
457
457
  for (const f of t) {
458
458
  if (f.exact !== !1 && f.exact.isZero())
459
459
  continue;
460
- const g = s(this, ue).clone().parse("x", f.exact.denominator, -f.exact.numerator);
460
+ const g = s(this, fe).clone().parse("x", f.exact.denominator, -f.exact.numerator);
461
461
  for (; e.isDividableBy(g); )
462
462
  e = e.divide(g);
463
463
  }
@@ -468,61 +468,61 @@ ue = new WeakMap(), je = new WeakMap(), P = new WeakSet(), ot = function(e, t) {
468
468
  const d = new mi(e, e.clone().parse("0"), s(this, je));
469
469
  return t = t.concat(d.solve()), t.sort((f, g) => f.value - g.value);
470
470
  }, ti = function() {
471
- const e = s(this, ue), t = e.monomByDegree(3).coefficient, i = e.monomByDegree(2).coefficient, n = e.monomByDegree(1).coefficient, r = e.monomByDegree(0).coefficient, l = i.clone().divide(t), c = n.clone().divide(t), d = r.clone().divide(t), f = c.clone().subtract(l.clone().pow(2).divide(3)), g = d.clone().subtract(l.clone().multiply(c).divide(3)).add(l.clone().pow(3).multiply(2).divide(27)), N = g.clone().opposite(), V = f.clone().opposite().pow(3).divide(27), de = N.clone().pow(2).subtract(V.clone().multiply(4)).opposite();
472
- if (de.isNegative()) {
473
- const he = g.clone().opposite().add(de.clone().opposite().sqrt()).divide(2).root(3), ae = g.clone().opposite().subtract(de.clone().opposite().sqrt()).divide(2).root(3), ge = he.clone().add(ae).subtract(l.clone().divide(3));
474
- return [q(this, P, ye).call(this, ge)];
471
+ const e = s(this, fe), t = e.monomByDegree(3).coefficient, i = e.monomByDegree(2).coefficient, n = e.monomByDegree(1).coefficient, r = e.monomByDegree(0).coefficient, l = i.clone().divide(t), c = n.clone().divide(t), d = r.clone().divide(t), f = c.clone().subtract(l.clone().pow(2).divide(3)), g = d.clone().subtract(l.clone().multiply(c).divide(3)).add(l.clone().pow(3).multiply(2).divide(27)), N = g.clone().opposite(), V = f.clone().opposite().pow(3).divide(27), pe = N.clone().pow(2).subtract(V.clone().multiply(4)).opposite();
472
+ if (pe.isNegative()) {
473
+ const he = g.clone().opposite().add(pe.clone().opposite().sqrt()).divide(2).root(3), ae = g.clone().opposite().subtract(pe.clone().opposite().sqrt()).divide(2).root(3), ge = he.clone().add(ae).subtract(l.clone().divide(3));
474
+ return [q(this, I, ye).call(this, ge)];
475
475
  }
476
- if (de.isZero()) {
476
+ if (pe.isZero()) {
477
477
  const he = g.clone().opposite().divide(2).root(3), ae = he.clone().opposite().subtract(l.clone().divide(3)), ge = he.clone().multiply(2).subtract(l.clone().divide(3));
478
- return ae.isEqual(ge) ? [q(this, P, ye).call(this, ae)] : [
479
- q(this, P, ye).call(this, ge),
480
- q(this, P, ye).call(this, ae)
481
- ].sort((pe, ce) => pe.value - ce.value);
478
+ return ae.isEqual(ge) ? [q(this, I, ye).call(this, ae)] : [
479
+ q(this, I, ye).call(this, ge),
480
+ q(this, I, ye).call(this, ae)
481
+ ].sort((me, ce) => me.value - ce.value);
482
482
  }
483
- if (de.isPositive()) {
484
- const he = [], ae = f.value, ge = g.value, pe = l.value;
483
+ if (pe.isPositive()) {
484
+ const he = [], ae = f.value, ge = g.value, me = l.value;
485
485
  for (let ce = 0; ce < 3; ce++)
486
- he.push(2 * Math.sqrt(-ae / 3) * Math.cos(Math.acos(3 * ge / (2 * ae) * Math.sqrt(-3 / ae)) / 3 + 2 * Math.PI * ce / 3) - pe / 3);
487
- return he.map((ce) => q(this, P, ot).call(this, ce)).sort((ce, nt) => ce.value - nt.value);
486
+ he.push(2 * Math.sqrt(-ae / 3) * Math.cos(Math.acos(3 * ge / (2 * ae) * Math.sqrt(-3 / ae)) / 3 + 2 * Math.PI * ce / 3) - me / 3);
487
+ return he.map((ce) => q(this, I, ot).call(this, ce)).sort((ce, nt) => ce.value - nt.value);
488
488
  }
489
489
  return [];
490
490
  }, xi = function() {
491
- const e = s(this, ue).monomByDegree(0).coefficient.clone().opposite().divide(s(this, ue).monomByDegree(1).coefficient);
491
+ const e = s(this, fe).monomByDegree(0).coefficient.clone().opposite().divide(s(this, fe).monomByDegree(1).coefficient);
492
492
  return [
493
- q(this, P, ye).call(this, e)
493
+ q(this, I, ye).call(this, e)
494
494
  ];
495
495
  }, Ei = function() {
496
- const e = s(this, ue), t = e.monomByDegree(2).coefficient, i = e.monomByDegree(1).coefficient, n = e.monomByDegree(0).coefficient, r = i.clone().pow(2).subtract(t.clone().multiply(n).multiply(4));
496
+ const e = s(this, fe), t = e.monomByDegree(2).coefficient, i = e.monomByDegree(1).coefficient, n = e.monomByDegree(0).coefficient, r = i.clone().pow(2).subtract(t.clone().multiply(n).multiply(4));
497
497
  if (r.isNegative())
498
498
  return [];
499
499
  if (r.isSquare()) {
500
500
  const l = r.sqrt(), c = i.clone().opposite().add(l).divide(t.clone().multiply(2)), d = i.clone().opposite().subtract(l).divide(t.clone().multiply(2));
501
- return l.isZero() ? [q(this, P, ye).call(this, c)] : [
502
- q(this, P, ye).call(this, c),
503
- q(this, P, ye).call(this, d)
501
+ return l.isZero() ? [q(this, I, ye).call(this, c)] : [
502
+ q(this, I, ye).call(this, c),
503
+ q(this, I, ye).call(this, d)
504
504
  ].sort((f, g) => f.value - g.value);
505
505
  }
506
- return q(this, P, Ni).call(this, t, i, r);
506
+ return q(this, I, Ni).call(this, t, i, r);
507
507
  }, Ni = function(e, t, i) {
508
- const n = G.dividers(i.value).filter((pe) => Math.sqrt(pe) % 1 === 0).map((pe) => Math.sqrt(pe)).pop() ?? 1, r = G.gcd(2 * e.value, t.value, n) * (e.isNegative() ? -1 : 1), l = t.clone().divide(r).opposite(), c = e.clone().divide(r).multiply(2), d = i.clone().divide(n ** 2), f = Math.abs(n / r), g = n === 1 ? "-" : `-${f} `, N = n === 1 ? "+" : `+${f} `;
509
- function V(pe, ce, nt, Kt) {
510
- return `\\frac{ ${ce} ${nt}\\sqrt{ ${Kt} } }{ ${pe} }`;
508
+ const n = G.dividers(i.value).filter((me) => Math.sqrt(me) % 1 === 0).map((me) => Math.sqrt(me)).pop() ?? 1, r = G.gcd(2 * e.value, t.value, n) * (e.isNegative() ? -1 : 1), l = t.clone().divide(r).opposite(), c = e.clone().divide(r).multiply(2), d = i.clone().divide(n ** 2), f = Math.abs(n / r), g = n === 1 ? "-" : `-${f} `, N = n === 1 ? "+" : `+${f} `;
509
+ function V(me, ce, nt, Kt) {
510
+ return `\\frac{ ${ce} ${nt}\\sqrt{ ${Kt} } }{ ${me} }`;
511
511
  }
512
- function de(pe, ce, nt, Kt) {
513
- return `(${ce}${nt}sqrt(${Kt}))/${pe}`;
512
+ function pe(me, ce, nt, Kt) {
513
+ return `(${ce}${nt}sqrt(${Kt}))/${me}`;
514
514
  }
515
515
  const he = i.value ** 0.5, ae = (-t.value - he) / (2 * e.value), ge = (-t.value + he) / (2 * e.value);
516
516
  return [
517
- q(this, P, ot).call(this, ae, {
517
+ q(this, I, ot).call(this, ae, {
518
518
  tex: V(c.tex, l.tex, g.toString(), d.tex),
519
- display: de(c.display, l.display, g.toString(), d.display)
519
+ display: pe(c.display, l.display, g.toString(), d.display)
520
520
  }),
521
- q(this, P, ot).call(this, ge, {
521
+ q(this, I, ot).call(this, ge, {
522
522
  tex: V(c.tex, l.tex, N.toString(), d.tex),
523
- display: de(c.display, l.display, N.toString(), d.display)
523
+ display: pe(c.display, l.display, N.toString(), d.display)
524
524
  })
525
- ].sort((pe, ce) => pe.value - ce.value);
525
+ ].sort((me, ce) => me.value - ce.value);
526
526
  };
527
527
  let Nt = mi;
528
528
  var Gi = Object.defineProperty, Ti = (o) => {
@@ -852,7 +852,7 @@ class _i {
852
852
  }
853
853
  }
854
854
  var T, v, Ye, xt, Le, qt, kt;
855
- const I = class I {
855
+ const P = class P {
856
856
  constructor(e) {
857
857
  p(this, Ye);
858
858
  p(this, T);
@@ -861,7 +861,7 @@ const I = class I {
861
861
  * Clone the current Monom.
862
862
  */
863
863
  a(this, "clone", () => {
864
- const e = new I();
864
+ const e = new P();
865
865
  e.coefficient = s(this, T).clone();
866
866
  for (const t in s(this, v))
867
867
  e.setLetter(t, s(this, v)[t].clone());
@@ -873,7 +873,7 @@ const I = class I {
873
873
  */
874
874
  a(this, "add", (...e) => {
875
875
  for (const t of e) {
876
- const i = t instanceof I ? t : new I(t);
876
+ const i = t instanceof P ? t : new P(t);
877
877
  this.isSameAs(i) ? (this.isZero() && q(this, Ye, xt).call(this, i), s(this, T).add(i.coefficient)) : console.log("Add monom: " + this.display + " is not similar with ", i.display);
878
878
  }
879
879
  return this;
@@ -893,7 +893,7 @@ const I = class I {
893
893
  const t = s(this, v)[e].clone(), i = this.clone();
894
894
  return s(i, v)[e].subtract(1), s(i, T).multiply(new u(t.clone())), i;
895
895
  } else
896
- return new I().zero();
896
+ return new P().zero();
897
897
  });
898
898
  /**
899
899
  * Divide the current monoms by multiple monoms
@@ -901,7 +901,7 @@ const I = class I {
901
901
  */
902
902
  a(this, "divide", (...e) => {
903
903
  for (const t of e) {
904
- const i = t instanceof I ? t : new I(t);
904
+ const i = t instanceof P ? t : new P(t);
905
905
  s(this, T).divide(i.coefficient);
906
906
  for (const n in i.literal)
907
907
  s(this, v)[n] = this.hasVariable(n) ? s(this, v)[n].subtract(i.literal[n]) : i.literal[n].clone().opposite(), s(this, v)[n].isZero() && this.removeVariable(n);
@@ -1008,7 +1008,7 @@ const I = class I {
1008
1008
  */
1009
1009
  a(this, "multiply", (...e) => {
1010
1010
  for (const t of e) {
1011
- const i = t instanceof I ? t : new I(t);
1011
+ const i = t instanceof P ? t : new P(t);
1012
1012
  s(this, T).multiply(i.coefficient);
1013
1013
  for (const n in i.literal)
1014
1014
  this.hasVariable(n) ? s(this, v)[n].add(i.literal[n]) : s(this, v)[n] = i.literal[n].clone();
@@ -1075,7 +1075,7 @@ const I = class I {
1075
1075
  */
1076
1076
  a(this, "subtract", (...e) => {
1077
1077
  for (const t of e) {
1078
- const i = t instanceof I ? t : new I(t);
1078
+ const i = t instanceof P ? t : new P(t);
1079
1079
  this.isSameAs(i) ? (this.isZero() && q(this, Ye, xt).call(this, i), s(this, T).add(i.clone().coefficient.opposite())) : console.log("Subtract: Is not similar: ", i.display);
1080
1080
  }
1081
1081
  return this;
@@ -1122,23 +1122,23 @@ const I = class I {
1122
1122
  var d;
1123
1123
  let i, n, r, l, c;
1124
1124
  if (t.tokenType === m.COEFFICIENT)
1125
- e.push(new I(new u(t.token)));
1125
+ e.push(new P(new u(t.token)));
1126
1126
  else if (t.tokenType === m.VARIABLE) {
1127
- const f = new I().one();
1127
+ const f = new P().one();
1128
1128
  f.setLetter(t.token, 1), e.push(f.clone());
1129
1129
  } else if (t.tokenType === m.OPERATION)
1130
1130
  switch (t.token) {
1131
1131
  case "-":
1132
- n = e.pop() ?? new I().zero(), i = e.pop() ?? new I().zero(), e.push(i.subtract(n));
1132
+ n = e.pop() ?? new P().zero(), i = e.pop() ?? new P().zero(), e.push(i.subtract(n));
1133
1133
  break;
1134
1134
  case "*":
1135
- n = e.pop() ?? new I().one(), i = e.pop() ?? new I().one(), e.push(i.multiply(n));
1135
+ n = e.pop() ?? new P().one(), i = e.pop() ?? new P().one(), e.push(i.multiply(n));
1136
1136
  break;
1137
1137
  case "/":
1138
- n = e.pop() ?? new I().one(), i = e.pop() ?? new I().one(), e.push(i.divide(n));
1138
+ n = e.pop() ?? new P().one(), i = e.pop() ?? new P().one(), e.push(i.divide(n));
1139
1139
  break;
1140
1140
  case "^": {
1141
- c = ((d = e.pop()) == null ? void 0 : d.coefficient) ?? new u().one(), r = e.pop() ?? new I().one(), l = r.variables[0], l && r.setLetter(l, c), e.push(r);
1141
+ c = ((d = e.pop()) == null ? void 0 : d.coefficient) ?? new u().one(), r = e.pop() ?? new P().one(), l = r.variables[0], l && r.setLetter(l, c), e.push(r);
1142
1142
  break;
1143
1143
  }
1144
1144
  }
@@ -1151,7 +1151,7 @@ const I = class I {
1151
1151
  * @param inputStr
1152
1152
  */
1153
1153
  parse(e) {
1154
- return h(this, T, new u()), h(this, v, {}), typeof e == "string" ? s(this, qt).call(this, e) : typeof e == "number" ? h(this, T, new u(e)) : e instanceof u ? h(this, T, e.clone()) : e instanceof I && (h(this, T, s(e, T).clone()), q(this, Ye, xt).call(this, e)), this;
1154
+ return h(this, T, new u()), h(this, v, {}), typeof e == "string" ? s(this, qt).call(this, e) : typeof e == "number" ? h(this, T, new u(e)) : e instanceof u ? h(this, T, e.clone()) : e instanceof P && (h(this, T, s(e, T).clone()), q(this, Ye, xt).call(this, e)), this;
1155
1155
  }
1156
1156
  /**
1157
1157
  * Get the coefficient \\(k\\) of the Monom \\(k\\cdot x^{n}\\)
@@ -1193,20 +1193,20 @@ const I = class I {
1193
1193
  if (t.length > 0 && e.length > 0)
1194
1194
  for (const n of e)
1195
1195
  for (const r of t) {
1196
- const l = new I();
1196
+ const l = new P();
1197
1197
  l.coefficient = new u(n), l.literal = r, i.push(l);
1198
1198
  }
1199
1199
  else if (e.length === 0)
1200
1200
  for (const n of t) {
1201
- const r = new I();
1201
+ const r = new P();
1202
1202
  r.coefficient = new u().one(), r.literal = n, i.push(r);
1203
1203
  }
1204
1204
  else
1205
1205
  for (const n of e) {
1206
- const r = new I();
1206
+ const r = new P();
1207
1207
  r.coefficient = new u(n), i.push(r);
1208
1208
  }
1209
- return i.length === 0 ? [new I().one()] : i;
1209
+ return i.length === 0 ? [new P().one()] : i;
1210
1210
  }
1211
1211
  integrate(e, t, i) {
1212
1212
  const n = this.primitive(i);
@@ -1301,11 +1301,11 @@ const I = class I {
1301
1301
  T = new WeakMap(), v = new WeakMap(), Ye = new WeakSet(), xt = function(e) {
1302
1302
  for (const t in e.literal)
1303
1303
  s(this, v)[t] = e.literal[t].clone();
1304
- }, Le = new WeakMap(), qt = new WeakMap(), kt = new WeakMap(), a(I, "gcd", (...e) => {
1304
+ }, Le = new WeakMap(), qt = new WeakMap(), kt = new WeakMap(), a(P, "gcd", (...e) => {
1305
1305
  for (const r of e)
1306
1306
  if (r.containsRationalPower())
1307
- return new I().zero();
1308
- const t = new I(), i = G.gcd(...e.map((r) => r.coefficient.numerator)), n = G.lcm(...e.map((r) => r.coefficient.denominator));
1307
+ return new P().zero();
1308
+ const t = new P(), i = G.gcd(...e.map((r) => r.coefficient.numerator)), n = G.lcm(...e.map((r) => r.coefficient.denominator));
1309
1309
  t.coefficient = new u(i, n).reduce();
1310
1310
  for (const r of e) {
1311
1311
  for (const l in t.literal)
@@ -1318,20 +1318,20 @@ T = new WeakMap(), v = new WeakMap(), Ye = new WeakSet(), xt = function(e) {
1318
1318
  * Multiply two monoms and return a NEW monom.
1319
1319
  * @param monoms
1320
1320
  */
1321
- a(I, "xMultiply", (...e) => {
1322
- const t = new I().one();
1321
+ a(P, "xMultiply", (...e) => {
1322
+ const t = new P().one();
1323
1323
  for (const i of e)
1324
1324
  t.multiply(i);
1325
1325
  return t;
1326
1326
  });
1327
- let M = I;
1327
+ let M = P;
1328
1328
  function wi(o, e = !0) {
1329
1329
  return e ? `\\left( ${o} \\right)` : `(${o})`;
1330
1330
  }
1331
1331
  function Re(o, e, t, i, n) {
1332
1332
  return o.map((r, l) => i !== void 0 && l < i || n !== void 0 && l > n ? r : r === e ? t : r);
1333
1333
  }
1334
- var Ue, y, Qe, ut, Ke, ft, Mt, Ct, $t, Je, It, dt, Pt, Bt, St, Rt, Oi, zt, Lt;
1334
+ var Ue, y, Qe, ut, Ke, ft, Mt, Ct, $t, Je, Pt, dt, It, Bt, St, Rt, Oi, zt, Lt;
1335
1335
  const C = class C {
1336
1336
  constructor(e, ...t) {
1337
1337
  p(this, Rt);
@@ -1462,7 +1462,7 @@ const C = class C {
1462
1462
  t.push(i.clone()), i.one();
1463
1463
  break;
1464
1464
  } else {
1465
- let c = s(this, It).call(this, i, l, e ?? "x");
1465
+ let c = s(this, Pt).call(this, i, l, e ?? "x");
1466
1466
  for (l = i.degree(e).value; c.length > 0; ) {
1467
1467
  const d = c[0];
1468
1468
  if (!i.isDividableBy(d))
@@ -1470,8 +1470,8 @@ const C = class C {
1470
1470
  else {
1471
1471
  const f = i.euclidean(d);
1472
1472
  t.push(d), i = f.quotient.clone(), c = c.filter((g) => {
1473
- const N = i.monoms[0], V = i.monoms[i.monoms.length - 1], de = g.monoms[0], he = g.monoms[g.monoms.length - 1];
1474
- return V.isDivisible(he) ? N.isDivisible(de) : !1;
1473
+ const N = i.monoms[0], V = i.monoms[i.monoms.length - 1], pe = g.monoms[0], he = g.monoms[g.monoms.length - 1];
1474
+ return V.isDivisible(he) ? N.isDivisible(pe) : !1;
1475
1475
  });
1476
1476
  }
1477
1477
  }
@@ -1574,7 +1574,7 @@ const C = class C {
1574
1574
  r.degree(t).isEqual(e) && i.push(r.clone());
1575
1575
  return i;
1576
1576
  });
1577
- a(this, "multiply", (e) => e instanceof C ? s(this, St).call(this, e) : e instanceof u ? s(this, dt).call(this, e) : e instanceof M ? s(this, Bt).call(this, e) : Number.isSafeInteger(e) && typeof e == "number" ? s(this, Pt).call(this, e) : this);
1577
+ a(this, "multiply", (e) => e instanceof C ? s(this, St).call(this, e) : e instanceof u ? s(this, dt).call(this, e) : e instanceof M ? s(this, Bt).call(this, e) : Number.isSafeInteger(e) && typeof e == "number" ? s(this, It).call(this, e) : this);
1578
1578
  a(this, "one", () => (h(this, y, []), s(this, y).push(new M().one()), this));
1579
1579
  // ------------------------------------------
1580
1580
  a(this, "opposite", () => (h(this, y, s(this, y).map((e) => e.opposite())), this));
@@ -1689,10 +1689,10 @@ const C = class C {
1689
1689
  new C(e).subtract(f.display).multiply(f.denominator)
1690
1690
  ]) : [this.clone()];
1691
1691
  if (n = this.monomByDegree(2, e), r = this.monomByDegree(1, e), l = this.monomByDegree(0, e), n.isLiteralSquare() && l.isLiteralSquare() && r.clone().pow(2).isSameAs(n.clone().multiply(l))) {
1692
- const V = new C("x", n.coefficient, r.coefficient, l.coefficient), de = s(N = V, $t).call(N, "x"), he = [];
1692
+ const V = new C("x", n.coefficient, r.coefficient, l.coefficient), pe = s(N = V, $t).call(N, "x"), he = [];
1693
1693
  let ae;
1694
- if (de.length >= 2) {
1695
- for (const ge of de)
1694
+ if (pe.length >= 2) {
1695
+ for (const ge of pe)
1696
1696
  ge.degree().isZero() ? he.push(ge.clone()) : (ae = ge.clone(), ae.monoms[0].literal = n.literalSqrt, ae.monoms[1].literal = l.literalSqrt, he.push(ae.clone()));
1697
1697
  return he;
1698
1698
  }
@@ -1709,7 +1709,7 @@ const C = class C {
1709
1709
  }
1710
1710
  return i === !0 && this.length > 1 && (e === "tex" ? r = `\\left( ${r} \\right)` : r = `(${r})`), r === "" && (r = "0"), r;
1711
1711
  });
1712
- p(this, It, (e, t, i) => {
1712
+ p(this, Pt, (e, t, i) => {
1713
1713
  const n = e.monoms[0].dividers, r = e.monoms[e.monoms.length - 1].dividers, l = [];
1714
1714
  return n.forEach((c) => {
1715
1715
  c.degree(i).isLeq(t) && r.forEach((d) => {
@@ -1722,7 +1722,7 @@ const C = class C {
1722
1722
  t.coefficient.multiply(e);
1723
1723
  return this.reduce();
1724
1724
  });
1725
- p(this, Pt, (e) => s(this, dt).call(this, new u(e)));
1725
+ p(this, It, (e) => s(this, dt).call(this, new u(e)));
1726
1726
  p(this, Bt, (e) => {
1727
1727
  for (const t of s(this, y))
1728
1728
  t.multiply(e);
@@ -1884,7 +1884,7 @@ const C = class C {
1884
1884
  return this.getZeroes();
1885
1885
  }
1886
1886
  };
1887
- Ue = new WeakMap(), y = new WeakMap(), Qe = new WeakMap(), ut = new WeakMap(), Ke = new WeakMap(), ft = new WeakMap(), Mt = new WeakMap(), Ct = new WeakMap(), $t = new WeakMap(), Je = new WeakMap(), It = new WeakMap(), dt = new WeakMap(), Pt = new WeakMap(), Bt = new WeakMap(), St = new WeakMap(), Rt = new WeakSet(), Oi = function(e, ...t) {
1887
+ Ue = new WeakMap(), y = new WeakMap(), Qe = new WeakMap(), ut = new WeakMap(), Ke = new WeakMap(), ft = new WeakMap(), Mt = new WeakMap(), Ct = new WeakMap(), $t = new WeakMap(), Je = new WeakMap(), Pt = new WeakMap(), dt = new WeakMap(), It = new WeakMap(), Bt = new WeakMap(), St = new WeakMap(), Rt = new WeakSet(), Oi = function(e, ...t) {
1888
1888
  if (t.length === 0) {
1889
1889
  if (e = "" + e, e !== "" && !isNaN(Number(e))) {
1890
1890
  this.empty();
@@ -2610,7 +2610,7 @@ Oe = new WeakMap(), pt = new WeakSet(), si = function(e, t) {
2610
2610
  return [...i[0]].sort();
2611
2611
  };
2612
2612
  var tt, E, mt, ri, gt, oi;
2613
- const me = class me {
2613
+ const ue = class ue {
2614
2614
  constructor(...e) {
2615
2615
  p(this, gt);
2616
2616
  p(this, tt, at.POWER);
@@ -2622,11 +2622,11 @@ const me = class me {
2622
2622
  if (typeof t == "string") {
2623
2623
  const i = t.split(")(").join(")*(").split("*");
2624
2624
  s(this, E).push(...i.map((n) => new le(n)));
2625
- } else t instanceof me ? s(this, E).push(...t.factors.map((i) => i.clone())) : s(this, E).push(new le(t));
2625
+ } else t instanceof ue ? s(this, E).push(...t.factors.map((i) => i.clone())) : s(this, E).push(new le(t));
2626
2626
  }), this);
2627
2627
  }
2628
2628
  clone() {
2629
- return new me(...s(this, E).map((e) => e.clone()));
2629
+ return new ue(...s(this, E).map((e) => e.clone()));
2630
2630
  }
2631
2631
  get tex() {
2632
2632
  const { num: e, den: t } = q(this, gt, oi).call(this);
@@ -2645,20 +2645,20 @@ const me = class me {
2645
2645
  static gcd(...e) {
2646
2646
  var i;
2647
2647
  if (e.length === 0)
2648
- return new me().one();
2648
+ return new ue().one();
2649
2649
  if (e.length === 1)
2650
2650
  return e[0];
2651
2651
  if (e.length === 2)
2652
- return q(i = me, mt, ri).call(i, e[0], e[1]);
2652
+ return q(i = ue, mt, ri).call(i, e[0], e[1]);
2653
2653
  let t = e[0];
2654
2654
  return e.shift(), e.forEach((n) => {
2655
2655
  var r;
2656
- return t = q(r = me, mt, ri).call(r, t, n);
2656
+ return t = q(r = ue, mt, ri).call(r, t, n);
2657
2657
  }), t;
2658
2658
  }
2659
2659
  add(...e) {
2660
2660
  let t = [this, ...e];
2661
- const i = me.gcd(...t);
2661
+ const i = ue.gcd(...t);
2662
2662
  t = t.map((r) => r.divide(i).reduce());
2663
2663
  const n = new O("0");
2664
2664
  return t.forEach((r) => n.add(r.develop())), h(this, E, [
@@ -2682,7 +2682,7 @@ const me = class me {
2682
2682
  const e = [], t = s(this, E).length;
2683
2683
  for (let n = 0; n < t; n++) {
2684
2684
  const r = s(this, E).slice(), l = r.splice(n, 1)[0];
2685
- e.push(new me(...r).multiply(new me(...l.derivative())));
2685
+ e.push(new ue(...r).multiply(new ue(...l.derivative())));
2686
2686
  }
2687
2687
  e.forEach((n) => n.reduce());
2688
2688
  const i = e.shift();
@@ -2727,7 +2727,7 @@ const me = class me {
2727
2727
  return h(this, E, s(this, E).map((e) => e.inverse())), this;
2728
2728
  }
2729
2729
  isEqual(e) {
2730
- const t = me.gcd(this, e), i = this.clone().divide(t).reduce(), n = e.clone().divide(t).reduce();
2730
+ const t = ue.gcd(this, e), i = this.clone().divide(t).reduce(), n = e.clone().divide(t).reduce();
2731
2731
  return i.isOne() && n.isOne();
2732
2732
  }
2733
2733
  isOne() {
@@ -2770,6 +2770,12 @@ const me = class me {
2770
2770
  sort() {
2771
2771
  return h(this, E, s(this, E).sort((e, t) => e.degree().isLeq(t.degree()) ? -1 : 1)), this;
2772
2772
  }
2773
+ splitFactors() {
2774
+ return {
2775
+ numerator: new ue(...s(this, E).filter((e) => e.power.isPositive())),
2776
+ denominator: new ue(...s(this, E).filter((e) => e.power.isStrictlyNegative()))
2777
+ };
2778
+ }
2773
2779
  sqrt() {
2774
2780
  return h(this, E, s(this, E).map((e) => e.sqrt())), this;
2775
2781
  }
@@ -2807,12 +2813,12 @@ tt = new WeakMap(), E = new WeakMap(), mt = new WeakSet(), ri = function(e, t) {
2807
2813
  const d = i[c].reduce((g, N) => g.add(N.power), new u("0")), f = n[c].reduce((g, N) => g.add(N.power), new u("0"));
2808
2814
  return new le(c, u.min(d, f));
2809
2815
  });
2810
- return new me(...l);
2816
+ return new ue(...l);
2811
2817
  }, gt = new WeakSet(), oi = function() {
2812
2818
  let e, t = [];
2813
2819
  return s(this, tt) === at.ROOT ? (e = this.numerator, t = this.denominator.map((i) => i.clone().inverse())) : e = s(this, E), e.length === 0 && (e = [new le("1")]), { num: e, den: t };
2814
- }, p(me, mt);
2815
- let ni = me;
2820
+ }, p(ue, mt);
2821
+ let ni = ue;
2816
2822
  function ei(o) {
2817
2823
  const e = new u().one(), t = o.factors.reduce((i, n) => {
2818
2824
  if (n.polynom.degree().isZero())
@@ -3041,22 +3047,22 @@ var we = /* @__PURE__ */ ((o) => (o.None = "none", o.Parallel = "parallel", o.Pe
3041
3047
  function qi(o = 0.5) {
3042
3048
  return Math.random() < o;
3043
3049
  }
3044
- function fe(o, e, t) {
3050
+ function de(o, e, t) {
3045
3051
  if (e === void 0)
3046
- return o >= 0 ? fe(0, o) : fe(o, 0);
3052
+ return o >= 0 ? de(0, o) : de(o, 0);
3047
3053
  if (o === e)
3048
3054
  return o;
3049
3055
  if (t === void 0)
3050
3056
  return Math.floor(Math.random() * (e - o + 1) + o);
3051
3057
  if (Math.abs(e - o) <= t.length)
3052
3058
  throw new Error("The number of excluded values is too high.");
3053
- let i = fe(o, e);
3059
+ let i = de(o, e);
3054
3060
  for (; t.includes(i); )
3055
- i = fe(o, e);
3061
+ i = de(o, e);
3056
3062
  return i;
3057
3063
  }
3058
3064
  function Y(o, e) {
3059
- return e === !1 ? qi() ? fe(1, o) : -fe(1, o) : fe(-o, o);
3065
+ return e === !1 ? qi() ? de(1, o) : -de(1, o) : de(-o, o);
3060
3066
  }
3061
3067
  function rs(o) {
3062
3068
  let e = G.primes();
@@ -3066,7 +3072,7 @@ function os(o, e) {
3066
3072
  return e === void 0 && (e = 1), o.length <= 0 ? Object.values(o) : ki(o).slice(0, e);
3067
3073
  }
3068
3074
  function pi(o) {
3069
- return o.length === 0 ? null : o[fe(0, o.length - 1)];
3075
+ return o.length === 0 ? null : o[de(0, o.length - 1)];
3070
3076
  }
3071
3077
  function ki(o) {
3072
3078
  const e = Object.values(o);
@@ -3102,7 +3108,7 @@ class B extends x {
3102
3108
  return e.array = this.copy(), e.asPoint = !0, e;
3103
3109
  }
3104
3110
  }
3105
- var Ie, S, z, U, ne, Q, Pe, be;
3111
+ var Pe, S, z, U, ne, Q, Ie, be;
3106
3112
  const Ze = class Ze {
3107
3113
  /**
3108
3114
  * Value can be a mix of:
@@ -3110,14 +3116,14 @@ const Ze = class Ze {
3110
3116
  * @param values
3111
3117
  */
3112
3118
  constructor(...e) {
3113
- p(this, Ie);
3119
+ p(this, Pe);
3114
3120
  // ax + by + c = 0
3115
3121
  p(this, S);
3116
3122
  p(this, z);
3117
3123
  p(this, U);
3118
3124
  p(this, ne);
3119
3125
  p(this, Q);
3120
- p(this, Pe);
3126
+ p(this, Ie);
3121
3127
  p(this, be, "canonical");
3122
3128
  a(this, "randomPoint", (e) => {
3123
3129
  const t = s(this, Q).clone().multiplyByScalar(Y(e === void 0 || e <= 1 ? 3 : e, !1)).add(s(this, ne));
@@ -3189,19 +3195,19 @@ const Ze = class Ze {
3189
3195
  e.left.monomByDegree(0).coefficient
3190
3196
  );
3191
3197
  });
3192
- a(this, "fromCoefficient", (e, t, i) => (h(this, S, new u(e)), h(this, z, new u(t)), h(this, U, new u(i)), h(this, Q, new x(s(this, z).clone(), s(this, S).clone().opposite())), h(this, ne, new x(new u().zero(), s(this, U).clone())), h(this, Pe, s(this, Q).clone().normal()), this));
3198
+ a(this, "fromCoefficient", (e, t, i) => (h(this, S, new u(e)), h(this, z, new u(t)), h(this, U, new u(i)), h(this, Q, new x(s(this, z).clone(), s(this, S).clone().opposite())), h(this, ne, new x(new u().zero(), s(this, U).clone())), h(this, Ie, s(this, Q).clone().normal()), this));
3193
3199
  a(this, "fromPointAndDirection", (e, t) => (this.fromCoefficient(
3194
3200
  t.y,
3195
3201
  t.x.clone().opposite(),
3196
3202
  e.x.clone().multiply(t.y).subtract(e.y.clone().multiply(t.x)).opposite()
3197
- ), h(this, ne, e.clone()), h(this, Q, t.clone()), h(this, Pe, s(this, Q).clone().normal()), this));
3203
+ ), h(this, ne, e.clone()), h(this, Q, t.clone()), h(this, Ie, s(this, Q).clone().normal()), this));
3198
3204
  a(this, "fromPointAndNormal", (e, t) => this.fromCoefficient(
3199
3205
  t.x,
3200
3206
  t.y,
3201
3207
  e.x.clone().multiply(t.x).add(e.y.clone().multiply(t.y)).opposite()
3202
3208
  ));
3203
3209
  a(this, "fromPointAndLine", (e, t, i) => (i === void 0 && (i = we.Parallel), i === we.Parallel ? this.fromPointAndNormal(e, t.normal) : i === we.Perpendicular ? this.fromPointAndNormal(e, t.director) : this));
3204
- a(this, "clone", () => (h(this, S, s(this, S).clone()), h(this, z, s(this, z).clone()), h(this, U, s(this, U).clone()), h(this, Q, s(this, Q).clone()), h(this, ne, s(this, ne).clone()), h(this, Pe, s(this, Pe).clone()), this));
3210
+ a(this, "clone", () => (h(this, S, s(this, S).clone()), h(this, z, s(this, z).clone()), h(this, U, s(this, U).clone()), h(this, Q, s(this, Q).clone()), h(this, ne, s(this, ne).clone()), h(this, Ie, s(this, Ie).clone()), this));
3205
3211
  // ------------------------------------------
3206
3212
  // Mathematical operations
3207
3213
  // ------------------------------------------
@@ -3239,7 +3245,7 @@ const Ze = class Ze {
3239
3245
  const t = this.getEquation().isolate("x"), i = new u(e);
3240
3246
  return t instanceof H ? t.right.evaluate({ y: i }) : new u().invalid();
3241
3247
  });
3242
- return h(this, S, new u().zero()), h(this, z, new u().zero()), h(this, U, new u().zero()), h(this, ne, new x()), h(this, Q, new x()), h(this, Pe, new x()), h(this, Ie, !0), e.length > 0 && this.parse(...e), this;
3248
+ return h(this, S, new u().zero()), h(this, z, new u().zero()), h(this, U, new u().zero()), h(this, ne, new x()), h(this, Q, new x()), h(this, Ie, new x()), h(this, Pe, !0), e.length > 0 && this.parse(...e), this;
3243
3249
  }
3244
3250
  get a() {
3245
3251
  return s(this, S);
@@ -3274,12 +3280,12 @@ const Ze = class Ze {
3274
3280
  h(this, Q, e);
3275
3281
  }
3276
3282
  get n() {
3277
- return s(this, Pe);
3283
+ return s(this, Ie);
3278
3284
  }
3279
3285
  // ------------------------------------------
3280
3286
  getEquation() {
3281
3287
  const e = new H(new O().parse("xy", s(this, S), s(this, z), s(this, U)), new O("0"));
3282
- return s(this, Ie) ? e.simplify() : e;
3288
+ return s(this, Pe) ? e.simplify() : e;
3283
3289
  }
3284
3290
  // get system(): { x: Equation, y: Equation } {
3285
3291
  // const e1 = new Equation(
@@ -3319,7 +3325,7 @@ const Ze = class Ze {
3319
3325
  case "parametric":
3320
3326
  case "system": {
3321
3327
  const t = s(this, Q).clone();
3322
- return s(this, Ie) && t.simplify(), e === "parametric" ? `${x.asTex("x", "y")} = ${x.asTex(s(this, ne).x.tex, s(this, ne).y.tex)} + k\\cdot ${x.asTex(t.x.tex, t.y.tex)}` : `\\left\\{\\begin{aligned}
3328
+ return s(this, Pe) && t.simplify(), e === "parametric" ? `${x.asTex("x", "y")} = ${x.asTex(s(this, ne).x.tex, s(this, ne).y.tex)} + k\\cdot ${x.asTex(t.x.tex, t.y.tex)}` : `\\left\\{\\begin{aligned}
3323
3329
  x &= ${new O(s(this, ne).x).add(new M(s(this, Q).x).multiply(new M("k"))).reorder("k", !0).tex}\\\\
3324
3330
  y &= ${new O(s(this, ne).y).add(new M(s(this, Q).y).multiply(new M("k"))).reorder("k", !0).tex}
3325
3331
  \\end{aligned}\\right.`;
@@ -3331,10 +3337,10 @@ const Ze = class Ze {
3331
3337
  }
3332
3338
  }
3333
3339
  get reduceBeforeDisplay() {
3334
- return s(this, Ie);
3340
+ return s(this, Pe);
3335
3341
  }
3336
3342
  set reduceBeforeDisplay(e) {
3337
- h(this, Ie, e);
3343
+ h(this, Pe, e);
3338
3344
  }
3339
3345
  get display() {
3340
3346
  const e = s(this, be);
@@ -3345,7 +3351,7 @@ const Ze = class Ze {
3345
3351
  return this.slope.isInfinity() ? "x=" + this.OA.x.display : "y=" + new O().parse("x", this.slope, this.height).display;
3346
3352
  case "parametric": {
3347
3353
  const t = s(this, Q).clone();
3348
- return s(this, Ie) && t.simplify(), `((x,y))=((${s(this, ne).x.display},${s(this, ne).y.display}))+k((${t.x.display},${t.y.display}))`;
3354
+ return s(this, Pe) && t.simplify(), `((x,y))=((${s(this, ne).x.display},${s(this, ne).y.display}))+k((${t.x.display},${t.y.display}))`;
3349
3355
  }
3350
3356
  default: {
3351
3357
  const t = this.getEquation();
@@ -3402,10 +3408,10 @@ const Ze = class Ze {
3402
3408
  return s(this, S).isZero() || (s(this, S).isOne() ? t = "x" : s(this, S).clone().opposite().isOne() ? t = "-x" : t = s(this, S).value.toFixed(e) + "x"), s(this, z).isZero() || (s(this, z).isPositive() && (t += "+"), t += s(this, z).value.toFixed(e) + "y"), s(this, U).isZero() || (s(this, U).isPositive() && (t += "+"), t += s(this, U).value.toFixed(e)), t + "=0";
3403
3409
  }
3404
3410
  };
3405
- Ie = new WeakMap(), S = new WeakMap(), z = new WeakMap(), U = new WeakMap(), ne = new WeakMap(), Q = new WeakMap(), Pe = new WeakMap(), be = new WeakMap(), // A line is defined as the canonical form
3411
+ Pe = new WeakMap(), S = new WeakMap(), z = new WeakMap(), U = new WeakMap(), ne = new WeakMap(), Q = new WeakMap(), Ie = new WeakMap(), be = new WeakMap(), // A line is defined as the canonical form
3406
3412
  a(Ze, "PERPENDICULAR", we.Perpendicular), a(Ze, "PARALLEL", we.Parallel);
3407
3413
  let R = Ze;
3408
- var re, j, qe, jt, Ut, Gt, oe, Mi, Et, Ci, $i, Ii, ai;
3414
+ var re, j, qe, jt, Ut, Gt, oe, Mi, Et, Ci, $i, Pi, ai;
3409
3415
  const Wt = class Wt {
3410
3416
  constructor(...e) {
3411
3417
  p(this, oe);
@@ -3509,7 +3515,7 @@ const Wt = class Wt {
3509
3515
  return t ? h(this, j, new u(e)) : h(this, j, new u(e).pow(2)), q(this, oe, Et).call(this), this;
3510
3516
  }
3511
3517
  parse(...e) {
3512
- return q(this, oe, Mi).call(this), typeof e[0] == "string" ? q(this, oe, ai).call(this, new H(e[0])) : e[0] instanceof H ? q(this, oe, ai).call(this, e[0]) : e[0] instanceof Wt ? q(this, oe, Ci).call(this, e[0]) : e[0] instanceof B && e.length > 1 && (e[1] instanceof B ? e[2] instanceof B || q(this, oe, Ii).call(this, e[0], e[1]) : (e[1] instanceof u || typeof e[1] == "number") && q(this, oe, $i).call(this, e[0], e[1], typeof e[2] == "boolean" ? e[2] : !1)), q(this, oe, Et).call(this), this;
3518
+ return q(this, oe, Mi).call(this), typeof e[0] == "string" ? q(this, oe, ai).call(this, new H(e[0])) : e[0] instanceof H ? q(this, oe, ai).call(this, e[0]) : e[0] instanceof Wt ? q(this, oe, Ci).call(this, e[0]) : e[0] instanceof B && e.length > 1 && (e[1] instanceof B ? e[2] instanceof B || q(this, oe, Pi).call(this, e[0], e[1]) : (e[1] instanceof u || typeof e[1] == "number") && q(this, oe, $i).call(this, e[0], e[1], typeof e[2] == "boolean" ? e[2] : !1)), q(this, oe, Et).call(this), this;
3513
3519
  }
3514
3520
  // private _parseThroughtThreePoints(A: Point, B: Point, C: Point): this {
3515
3521
  // const T = new Triangle(A, B, C), mAB = T.remarquables.mediators.AB.clone(),
@@ -3529,7 +3535,7 @@ re = new WeakMap(), j = new WeakMap(), qe = new WeakMap(), jt = new WeakMap(), U
3529
3535
  return h(this, re, e.center.clone()), h(this, j, e.squareRadius.clone()), q(this, oe, Et).call(this), this;
3530
3536
  }, $i = function(e, t, i) {
3531
3537
  return h(this, re, e.clone()), i ? h(this, j, new u(t)) : h(this, j, new u(t).pow(2)), this;
3532
- }, Ii = function(e, t) {
3538
+ }, Pi = function(e, t) {
3533
3539
  return h(this, re, e.clone()), h(this, j, new x(s(this, re), t).normSquare), this;
3534
3540
  }, ai = function(e) {
3535
3541
  if (e.moveLeft(), e.degree("x").value === 2 && e.degree("y").value === 2) {
@@ -3984,16 +3990,16 @@ function Ot(o) {
3984
3990
  },
3985
3991
  o
3986
3992
  ), t = new u();
3987
- if (e.negative ? t.numerator = Y(e.max, e.zero) : t.numerator = fe(e.zero ? 0 : 1, e.max), e.natural)
3993
+ if (e.negative ? t.numerator = Y(e.max, e.zero) : t.numerator = de(e.zero ? 0 : 1, e.max), e.natural)
3988
3994
  t.denominator = 1;
3989
3995
  else {
3990
3996
  let i = 0;
3991
3997
  for (; t.isRelative() && i < 10; )
3992
- t.denominator = fe(1, e.max), i++;
3998
+ t.denominator = de(1, e.max), i++;
3993
3999
  }
3994
4000
  return e.reduced ? t.reduce() : t;
3995
4001
  }
3996
- function Pi(o) {
4002
+ function Ii(o) {
3997
4003
  const e = Object.assign(
3998
4004
  {
3999
4005
  letters: "x",
@@ -4036,7 +4042,7 @@ function Bi(o) {
4036
4042
  ), t = new O().empty();
4037
4043
  let i;
4038
4044
  for (let n = e.degree; n >= 0; n--)
4039
- i = Pi({
4045
+ i = Ii({
4040
4046
  letters: e.letters,
4041
4047
  degree: n,
4042
4048
  fraction: e.fraction,
@@ -4044,7 +4050,7 @@ function Bi(o) {
4044
4050
  }), e.unit && e.degree === n && i.coefficient.one(), t.add(i);
4045
4051
  if (e.positive && t.monomByDegree().coefficient.isNegative() && t.monomByDegree().coefficient.opposite(), e.numberOfMonoms && e.numberOfMonoms > 0 && e.numberOfMonoms < t.length)
4046
4052
  for (; t.length > e.numberOfMonoms; ) {
4047
- const n = fe(1, t.length - 1);
4053
+ const n = de(1, t.length - 1);
4048
4054
  t.monoms.splice(n, 1);
4049
4055
  }
4050
4056
  return t.reduce();
@@ -4106,7 +4112,7 @@ function cs(o) {
4106
4112
  o
4107
4113
  ), t = ui(e.center);
4108
4114
  let i, n;
4109
- return e.pointsOnCircle === 8 ? (i = fe(1, 3), n = i ** 2 + (i + 1) ** 2) : n = fe(1, 20), new Tt(t, n, !0);
4115
+ return e.pointsOnCircle === 8 ? (i = de(1, 3), n = i ** 2 + (i + 1) ** 2) : n = de(1, 20), new Tt(t, n, !0);
4110
4116
  }
4111
4117
  function us(o) {
4112
4118
  const e = Object.assign(
@@ -4146,9 +4152,9 @@ function fs(o) {
4146
4152
  const ds = {
4147
4153
  equation: (o) => ls(o),
4148
4154
  polynom: (o) => Bi(o),
4149
- monom: (o) => Pi(o),
4155
+ monom: (o) => Ii(o),
4150
4156
  fraction: (o) => Ot(o),
4151
- number: (o, e, t) => fe(o, e, t),
4157
+ number: (o, e, t) => de(o, e, t),
4152
4158
  numberSym: (o, e) => Y(o, e),
4153
4159
  prime: (o) => rs(o),
4154
4160
  bool: (o) => qi(o),