pimath 0.0.62 → 0.0.65

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -7,12 +7,10 @@ import {Fraction} from "../coefficients/fraction";
7
7
  import {ISolution} from "./equation";
8
8
 
9
9
  export declare type PolynomParsingType = string | Polynom | number | Fraction | Monom;
10
-
11
10
  export interface IEuclidian {
12
11
  quotient: Polynom;
13
12
  reminder: Polynom;
14
13
  }
15
-
16
14
  /**
17
15
  * Polynom class can handle polynoms, reorder, resolve, ...
18
16
  * ```
@@ -28,24 +26,20 @@ export declare class Polynom {
28
26
  private _rawString;
29
27
  private _texString;
30
28
  private _zeroes;
31
-
32
29
  /**
33
30
  *
34
31
  * @param {string} polynomString (optional) Default polynom to parse on class creation
35
32
  * @param values
36
33
  */
37
34
  constructor(polynomString?: PolynomParsingType, ...values: unknown[]);
38
-
39
35
  get euclidianCache(): {
40
36
  [p: string]: IEuclidian;
41
37
  };
42
38
  set euclidianCache(value: {
43
39
  [p: string]: IEuclidian;
44
40
  });
45
-
46
41
  get dirty_zeroes(): boolean;
47
42
  set dirty_zeroes(value: boolean);
48
-
49
43
  get dirty_factors(): boolean;
50
44
  set dirty_factors(value: boolean);
51
45
  get monoms(): Monom[];
@@ -5,30 +5,26 @@
5
5
  import {IEuclidian, Polynom} from "./polynom";
6
6
  import {Fraction} from "../coefficients/fraction";
7
7
  import {literalType} from "./monom";
8
+ import {RationalStudy} from "./study/rationalStudy";
8
9
 
9
10
  /**
10
11
  * Rational class can handle rational polynoms
11
12
  */
12
13
  export declare class Rational {
13
- euclidian: () => IEuclidian;
14
14
  private _denominator;
15
+ euclidian: () => IEuclidian;
15
16
  private _rawString;
16
-
17
17
  /**
18
18
  *
19
19
  * @param numerator
20
20
  * @param denominator
21
21
  */
22
22
  constructor(numerator?: Polynom | string, denominator?: Polynom | string);
23
-
24
23
  get numerator(): Polynom;
25
-
26
24
  get denominator(): Polynom;
27
-
28
25
  get tex(): string;
29
26
  get texFactors(): string;
30
-
31
- private _numerator;
27
+ study: () => RationalStudy;
32
28
  clone: () => Rational;
33
29
  domain: () => string;
34
30
  amplify: (P: Polynom) => Rational;
@@ -38,9 +34,9 @@ export declare class Rational {
38
34
  opposed: () => Rational;
39
35
  add: (R: Rational) => Rational;
40
36
  subtract: (R: Rational) => Rational;
41
-
42
- get plotFunction(): string;
43
-
37
+ private _numerator;
44
38
  limits: (value: Fraction | number, offset?: string, letter?: string) => Fraction;
45
39
  evaluate: (values: literalType | Fraction | number) => Fraction;
40
+
41
+ get plotFunction(): string;
46
42
  }
@@ -8,6 +8,7 @@ exports.Rational = void 0;
8
8
  const polynom_1 = require("./polynom");
9
9
  const fraction_1 = require("../coefficients/fraction");
10
10
  const equation_1 = require("./equation");
11
+ const rationalStudy_1 = require("./study/rationalStudy");
11
12
  /**
12
13
  * Rational class can handle rational polynoms
13
14
  */
@@ -132,22 +133,21 @@ class Rational {
132
133
  let N = this._numerator.evaluate(values), D = this._denominator.evaluate(values);
133
134
  return N.divide(D);
134
135
  };
136
+ this.study = () => {
137
+ return new rationalStudy_1.RationalStudy(this);
138
+ };
135
139
  if (numerator instanceof polynom_1.Polynom) {
136
140
  this._numerator = numerator.clone();
137
- }
138
- else if (typeof numerator === 'string') {
141
+ } else if (typeof numerator === 'string') {
139
142
  this._numerator = new polynom_1.Polynom(numerator);
140
- }
141
- else {
143
+ } else {
142
144
  this._numerator = new polynom_1.Polynom();
143
145
  }
144
146
  if (denominator instanceof polynom_1.Polynom) {
145
147
  this._denominator = denominator.clone();
146
- }
147
- else if (typeof denominator === 'string') {
148
+ } else if (typeof denominator === 'string') {
148
149
  this._denominator = new polynom_1.Polynom(denominator);
149
- }
150
- else {
150
+ } else {
151
151
  this._denominator = new polynom_1.Polynom();
152
152
  }
153
153
  }
@@ -1 +1 @@
1
- {"version":3,"file":"rational.js","sourceRoot":"","sources":["../../../src/maths/algebra/rational.ts"],"names":[],"mappings":";AAAA;;;GAGG;;;AAEH,uCAA8C;AAC9C,uDAAkD;AAElD,yCAAoE;AAGpE;;GAEG;AACH,MAAa,QAAQ;IAKjB;;;;OAIG;IACH,YAAY,SAA4B,EAAE,WAA8B;QAuCxE,UAAK,GAAG,GAAa,EAAE;YACnB,OAAO,IAAI,QAAQ,CACf,IAAI,CAAC,UAAU,CAAC,KAAK,EAAE,EACvB,IAAI,CAAC,YAAY,CAAC,KAAK,EAAE,CAC5B,CAAA;QACL,CAAC,CAAA;QAED,WAAM,GAAG,GAAW,EAAE;YAClB,IAAI,MAAM,GAAG,IAAI,CAAC,YAAY,CAAC,SAAS,EAAE,CAAC;YAE3C,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,IAAI,MAAM,CAAC,CAAC,CAAC,CAAC,GAAG,KAAK,8BAAmB,CAAC,IAAI,EAAE;gBACnE,OAAO,8BAAmB,CAAC,UAAU,CAAA;aACxC;iBAAM,IAAI,MAAM,CAAC,CAAC,CAAC,CAAC,GAAG,KAAK,8BAAmB,CAAC,UAAU,EAAE;gBACzD,OAAO,8BAAmB,CAAC,IAAI,CAAA;aAClC;iBAAM;gBACH,OAAO,gCAAgC;oBACnC,MAAM,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,GAAG,YAAY,CAAA;aACtD;QACL,CAAC,CAAA;QAED,YAAO,GAAG,CAAC,CAAU,EAAY,EAAE;YAC/B,IAAI,CAAC,UAAU,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC;YAC5B,IAAI,CAAC,YAAY,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC;YAE9B,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,eAAU,GAAG,CAAC,MAAe,EAAY,EAAE;YACvC,IAAI,CAAC,GAAG,IAAI,CAAC,UAAU,CAAC,KAAK,EAAE,EAC3B,CAAC,GAAG,IAAI,CAAC,YAAY,CAAC,KAAK,EAAE,EAC7B,EAAE,GAAG,CAAC,CAAC,KAAK,EAAE,CAAC,UAAU,CAAC,MAAM,CAAC,EACjC,EAAE,GAAG,CAAC,CAAC,KAAK,EAAE,CAAC,UAAU,CAAC,MAAM,CAAC,CAAA;YAErC,IAAI,CAAC,UAAU,GAAG,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAA;YACzE,IAAI,CAAC,YAAY,GAAG,CAAC,CAAC,KAAK,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAA;YAEpC,OAAO,IAAI,CAAA;QACf,CAAC,CAAA;QAED,aAAQ,GAAG,CAAC,CAAU,EAAY,EAAE;YAChC,IAAI,kBAAkB,GAAG,IAAI,CAAC,UAAU,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC;YACtD,IAAI,CAAC,kBAAkB,CAAC,QAAQ,CAAC,MAAM,EAAE,EAAE;gBACvC,OAAO,IAAI,CAAC;aACf;YAED,IAAI,oBAAoB,GAAG,IAAI,CAAC,YAAY,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC;YAC1D,IAAI,CAAC,oBAAoB,CAAC,QAAQ,CAAC,MAAM,EAAE,EAAE;gBACzC,OAAO,IAAI,CAAC;aACf;YAED,IAAI,CAAC,UAAU,GAAG,kBAAkB,CAAC,QAAQ,CAAC;YAC9C,IAAI,CAAC,YAAY,GAAG,oBAAoB,CAAC,QAAQ,CAAC;YAClD,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,WAAM,GAAG,GAAa,EAAE;YACpB,IAAI,CAAC,UAAU,CAAC,SAAS,EAAE,CAAC;YAC5B,KAAK,IAAI,CAAC,IAAI,IAAI,CAAC,UAAU,CAAC,OAAO,EAAE;gBACnC,IAAI,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC;aACpB;YAED,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,YAAO,GAAG,GAAa,EAAE;YACrB,IAAI,CAAC,UAAU,CAAC,OAAO,EAAE,CAAC;YAC1B,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,QAAG,GAAG,CAAC,CAAW,EAAY,EAAE;YAC5B,yDAAyD;YACzD,yBAAyB;YACzB,cAAc;YAEd,+BAA+B;YAC/B,IAAI,WAAW,GAAG,IAAI,CAAC,YAAY,CAAC,KAAK,EAAE,CAAA;YAE3C,6DAA6D;YAC7D,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC,YAAY,CAAC,CAAA;YAE5B,2CAA2C;YAC3C,IAAI,CAAC,UAAU,CAAC,GAAG,CAAC,CAAC,CAAC,UAAU,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,WAAW,CAAC,CAAC,CAAC;YAEhE,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,aAAQ,GAAG,CAAC,CAAW,EAAY,EAAE;YACjC,OAAO,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,CAAA;QACxC,CAAC,CAAA;QAED,cAAS,GAAG,GAAe,EAAE;YACzB,OAAO,IAAI,CAAC,UAAU,CAAC,SAAS,CAAC,IAAI,CAAC,YAAY,CAAC,CAAA;QACvD,CAAC,CAAA;QAED,wCAAwC;QACxC,WAAM,GAAG,CAAC,KAAwB,EAAE,MAAe,EAAE,MAAe,EAAY,EAAE;YAC9E,IAAI,KAAK,KAAK,QAAQ,IAAI,KAAK,KAAK,CAAC,QAAQ,EAAE;gBAC3C,IAAI,EAAC,QAAQ,EAAE,QAAQ,EAAC,GAAG,IAAI,CAAC,UAAU,CAAC,KAAK,EAAE,CAAC,SAAS,CAAC,IAAI,CAAC,YAAY,CAAC,CAAA;gBAE/E,+CAA+C;gBAC/C,IAAI,QAAQ,CAAC,MAAM,CAAC,MAAM,CAAC,CAAC,kBAAkB,EAAE,EAAE;oBAC9C,OAAO,KAAK,KAAK,QAAQ,CAAC,CAAC,CAAC,QAAQ,CAAC,eAAe,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,uBAAuB,CAAC,MAAM,CAAC,CAAA;oBACvG,4IAA4I;iBAC/I;qBAAM;oBACH,OAAO,QAAQ,CAAC,aAAa,CAAC,SAAS,EAAE,MAAM,CAAC,CAAC,WAAW,CAAA;iBAC/D;aACJ;iBAAM;gBACH,IAAI,UAAU,GAAgB,EAAE,EAC5B,gBAAgB,GAAgB,EAAE,EAClC,QAA2B,EAC3B,OAAe,EACf,EAAE,GAAG,IAAI,CAAC,KAAK,EAAE,CAAC,MAAM,EAAE,CAAA;gBAE9B,UAAU,CAAC,MAAM,KAAK,SAAS,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,MAAM,CAAC,GAAG,IAAI,mBAAQ,CAAC,KAAK,CAAC,CAAA;gBAErE,IAAI,MAAM,KAAK,OAAO,IAAI,MAAM,KAAK,OAAO,EAAE;oBAC1C,QAAQ,GAAG,EAAE,CAAC,UAAU,CAAC,QAAQ,CAAC,UAAU,CAAC;yBACxC,MAAM,CAAC,EAAE,CAAC,YAAY,CAAC,QAAQ,CAAC,UAAU,CAAC,CAAC,CAAA;oBAEjD,OAAO,QAAQ,CAAC,UAAU,EAAE,CAAC,CAAC,CAAC,QAAQ,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC,QAAQ,CAAA;iBAC3D;qBAAM;oBACH,IAAI,MAAM,KAAK,OAAO,EAAE;wBACpB,gBAAgB,CAAC,MAAM,KAAK,SAAS,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,IAAI,mBAAQ,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,CAAC,QAAQ,CAAC,CAAA;qBAC9F;yBAAM,IAAI,MAAM,KAAK,OAAO,EAAE;wBAC3B,gBAAgB,CAAC,MAAM,KAAK,SAAS,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,IAAI,mBAAQ,CAAC,KAAK,CAAC,CAAC,CAAC,QAAQ,CAAC,QAAQ,CAAC,CAAA;qBACnG;oBAED,QAAQ,GAAG,EAAE,CAAC,UAAU,CAAC,QAAQ,CAAC,UAAU,CAAC;yBACxC,MAAM,CAAC,EAAE,CAAC,YAAY,CAAC,QAAQ,CAAC,UAAU,CAAC,CAAC,CAAA;oBACjD,OAAO,GAAG,EAAE,CAAC,UAAU,CAAC,QAAQ,CAAC,gBAAgB,CAAC;yBAC7C,MAAM,CAAC,EAAE,CAAC,YAAY,CAAC,QAAQ,CAAC,gBAAgB,CAAC,CAAC,CAAC,IAAI,EAAE,CAAA;oBAE9D,IAAI,QAAQ,CAAC,UAAU,EAAE,EAAE;wBACvB,OAAO,OAAO,KAAK,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC,QAAQ,CAAC,GAAG,EAAE,CAAC,OAAO,EAAE,CAAA;qBACnE;yBAAM;wBACH,OAAO,QAAQ,CAAA;qBAClB;iBACJ;aACJ;QACL,CAAC,CAAA;QAED,aAAQ,GAAG,CAAC,MAAuC,EAAY,EAAE;YAC7D,MAAM,CAAC,GAAG,IAAI,mBAAQ,EAAE,CAAC,IAAI,EAAE,CAAC;YAEhC,IAAI,CAAC,GAAG,IAAI,CAAC,UAAU,CAAC,QAAQ,CAAC,MAAM,CAAC,EACpC,CAAC,GAAG,IAAI,CAAC,YAAY,CAAC,QAAQ,CAAC,MAAM,CAAC,CAAA;YAE1C,OAAO,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,CAAA;QACtB,CAAC,CAAC;QA1LE,IAAI,SAAS,YAAY,iBAAO,EAAE;YAC9B,IAAI,CAAC,UAAU,GAAG,SAAS,CAAC,KAAK,EAAE,CAAA;SACtC;aAAM,IAAI,OAAO,SAAS,KAAK,QAAQ,EAAE;YACtC,IAAI,CAAC,UAAU,GAAG,IAAI,iBAAO,CAAC,SAAS,CAAC,CAAA;SAC3C;aAAM;YACH,IAAI,CAAC,UAAU,GAAG,IAAI,iBAAO,EAAE,CAAA;SAClC;QAED,IAAI,WAAW,YAAY,iBAAO,EAAE;YAChC,IAAI,CAAC,YAAY,GAAG,WAAW,CAAC,KAAK,EAAE,CAAA;SAC1C;aAAM,IAAI,OAAO,WAAW,KAAK,QAAQ,EAAE;YACxC,IAAI,CAAC,YAAY,GAAG,IAAI,iBAAO,CAAC,WAAW,CAAC,CAAA;SAC/C;aAAM;YACH,IAAI,CAAC,YAAY,GAAG,IAAI,iBAAO,EAAE,CAAA;SACpC;IAEL,CAAC;IAED,IAAI,SAAS;QACT,OAAO,IAAI,CAAC,UAAU,CAAA;IAC1B,CAAC;IAED,IAAI,WAAW;QACX,OAAO,IAAI,CAAC,YAAY,CAAA;IAC5B,CAAC;IAED,IAAI,GAAG;QACH,OAAO,WAAW,IAAI,CAAC,UAAU,CAAC,GAAG,OAAO,IAAI,CAAC,YAAY,CAAC,GAAG,IAAI,CAAC;IAC1E,CAAC;IAED,IAAI,UAAU;QACV,OAAO,WAAW,IAAI,CAAC,UAAU,CAAC,UAAU,OAAO,IAAI,CAAC,YAAY,CAAC,UAAU,IAAI,CAAA;IACvF,CAAC;IAED,IAAI,YAAY;QACZ,OAAO,IAAI,IAAI,CAAC,UAAU,CAAC,YAAY,MAAM,IAAI,CAAC,YAAY,CAAC,YAAY,GAAG,CAAA;IAClF,CAAC;CAwJJ;AAvMD,4BAuMC"}
1
+ {"version":3,"file":"rational.js","sourceRoot":"","sources":["../../../src/maths/algebra/rational.ts"],"names":[],"mappings":";AAAA;;;GAGG;;;AAEH,uCAA8C;AAC9C,uDAAkD;AAElD,yCAA+C;AAC/C,yDAAoD;AAEpD;;GAEG;AACH,MAAa,QAAQ;IAKjB;;;;OAIG;IACH,YAAY,SAA4B,EAAE,WAA8B;QAuCxE,UAAK,GAAG,GAAa,EAAE;YACnB,OAAO,IAAI,QAAQ,CACf,IAAI,CAAC,UAAU,CAAC,KAAK,EAAE,EACvB,IAAI,CAAC,YAAY,CAAC,KAAK,EAAE,CAC5B,CAAA;QACL,CAAC,CAAA;QAED,WAAM,GAAG,GAAW,EAAE;YAClB,IAAI,MAAM,GAAG,IAAI,CAAC,YAAY,CAAC,SAAS,EAAE,CAAC;YAE3C,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,IAAI,MAAM,CAAC,CAAC,CAAC,CAAC,GAAG,KAAK,8BAAmB,CAAC,IAAI,EAAE;gBACnE,OAAO,8BAAmB,CAAC,UAAU,CAAA;aACxC;iBAAM,IAAI,MAAM,CAAC,CAAC,CAAC,CAAC,GAAG,KAAK,8BAAmB,CAAC,UAAU,EAAE;gBACzD,OAAO,8BAAmB,CAAC,IAAI,CAAA;aAClC;iBAAM;gBACH,OAAO,gCAAgC;oBACnC,MAAM,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,GAAG,YAAY,CAAA;aACtD;QACL,CAAC,CAAA;QAED,YAAO,GAAG,CAAC,CAAU,EAAY,EAAE;YAC/B,IAAI,CAAC,UAAU,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC;YAC5B,IAAI,CAAC,YAAY,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC;YAE9B,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,eAAU,GAAG,CAAC,MAAe,EAAY,EAAE;YACvC,IAAI,CAAC,GAAG,IAAI,CAAC,UAAU,CAAC,KAAK,EAAE,EAC3B,CAAC,GAAG,IAAI,CAAC,YAAY,CAAC,KAAK,EAAE,EAC7B,EAAE,GAAG,CAAC,CAAC,KAAK,EAAE,CAAC,UAAU,CAAC,MAAM,CAAC,EACjC,EAAE,GAAG,CAAC,CAAC,KAAK,EAAE,CAAC,UAAU,CAAC,MAAM,CAAC,CAAA;YAErC,IAAI,CAAC,UAAU,GAAG,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAA;YACzE,IAAI,CAAC,YAAY,GAAG,CAAC,CAAC,KAAK,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAA;YAEpC,OAAO,IAAI,CAAA;QACf,CAAC,CAAA;QAED,aAAQ,GAAG,CAAC,CAAU,EAAY,EAAE;YAChC,IAAI,kBAAkB,GAAG,IAAI,CAAC,UAAU,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC;YACtD,IAAI,CAAC,kBAAkB,CAAC,QAAQ,CAAC,MAAM,EAAE,EAAE;gBACvC,OAAO,IAAI,CAAC;aACf;YAED,IAAI,oBAAoB,GAAG,IAAI,CAAC,YAAY,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC;YAC1D,IAAI,CAAC,oBAAoB,CAAC,QAAQ,CAAC,MAAM,EAAE,EAAE;gBACzC,OAAO,IAAI,CAAC;aACf;YAED,IAAI,CAAC,UAAU,GAAG,kBAAkB,CAAC,QAAQ,CAAC;YAC9C,IAAI,CAAC,YAAY,GAAG,oBAAoB,CAAC,QAAQ,CAAC;YAClD,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,WAAM,GAAG,GAAa,EAAE;YACpB,IAAI,CAAC,UAAU,CAAC,SAAS,EAAE,CAAC;YAC5B,KAAK,IAAI,CAAC,IAAI,IAAI,CAAC,UAAU,CAAC,OAAO,EAAE;gBACnC,IAAI,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC;aACpB;YAED,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,YAAO,GAAG,GAAa,EAAE;YACrB,IAAI,CAAC,UAAU,CAAC,OAAO,EAAE,CAAC;YAC1B,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,QAAG,GAAG,CAAC,CAAW,EAAY,EAAE;YAC5B,yDAAyD;YACzD,yBAAyB;YACzB,cAAc;YAEd,+BAA+B;YAC/B,IAAI,WAAW,GAAG,IAAI,CAAC,YAAY,CAAC,KAAK,EAAE,CAAA;YAE3C,6DAA6D;YAC7D,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC,YAAY,CAAC,CAAA;YAE5B,2CAA2C;YAC3C,IAAI,CAAC,UAAU,CAAC,GAAG,CAAC,CAAC,CAAC,UAAU,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,WAAW,CAAC,CAAC,CAAC;YAEhE,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,aAAQ,GAAG,CAAC,CAAW,EAAY,EAAE;YACjC,OAAO,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,CAAA;QACxC,CAAC,CAAA;QAED,cAAS,GAAG,GAAe,EAAE;YACzB,OAAO,IAAI,CAAC,UAAU,CAAC,SAAS,CAAC,IAAI,CAAC,YAAY,CAAC,CAAA;QACvD,CAAC,CAAA;QAED,wCAAwC;QACxC,WAAM,GAAG,CAAC,KAAwB,EAAE,MAAe,EAAE,MAAe,EAAY,EAAE;YAC9E,IAAI,KAAK,KAAK,QAAQ,IAAI,KAAK,KAAK,CAAC,QAAQ,EAAE;gBAC3C,IAAI,EAAC,QAAQ,EAAE,QAAQ,EAAC,GAAG,IAAI,CAAC,UAAU,CAAC,KAAK,EAAE,CAAC,SAAS,CAAC,IAAI,CAAC,YAAY,CAAC,CAAA;gBAE/E,+CAA+C;gBAC/C,IAAI,QAAQ,CAAC,MAAM,CAAC,MAAM,CAAC,CAAC,kBAAkB,EAAE,EAAE;oBAC9C,OAAO,KAAK,KAAK,QAAQ,CAAC,CAAC,CAAC,QAAQ,CAAC,eAAe,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,uBAAuB,CAAC,MAAM,CAAC,CAAA;oBACvG,4IAA4I;iBAC/I;qBAAM;oBACH,OAAO,QAAQ,CAAC,aAAa,CAAC,SAAS,EAAE,MAAM,CAAC,CAAC,WAAW,CAAA;iBAC/D;aACJ;iBAAM;gBACH,IAAI,UAAU,GAAgB,EAAE,EAC5B,gBAAgB,GAAgB,EAAE,EAClC,QAA2B,EAC3B,OAAe,EACf,EAAE,GAAG,IAAI,CAAC,KAAK,EAAE,CAAC,MAAM,EAAE,CAAA;gBAE9B,UAAU,CAAC,MAAM,KAAK,SAAS,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,MAAM,CAAC,GAAG,IAAI,mBAAQ,CAAC,KAAK,CAAC,CAAA;gBAErE,IAAI,MAAM,KAAK,OAAO,IAAI,MAAM,KAAK,OAAO,EAAE;oBAC1C,QAAQ,GAAG,EAAE,CAAC,UAAU,CAAC,QAAQ,CAAC,UAAU,CAAC;yBACxC,MAAM,CAAC,EAAE,CAAC,YAAY,CAAC,QAAQ,CAAC,UAAU,CAAC,CAAC,CAAA;oBAEjD,OAAO,QAAQ,CAAC,UAAU,EAAE,CAAC,CAAC,CAAC,QAAQ,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC,QAAQ,CAAA;iBAC3D;qBAAM;oBACH,IAAI,MAAM,KAAK,OAAO,EAAE;wBACpB,gBAAgB,CAAC,MAAM,KAAK,SAAS,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,IAAI,mBAAQ,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,CAAC,QAAQ,CAAC,CAAA;qBAC9F;yBAAM,IAAI,MAAM,KAAK,OAAO,EAAE;wBAC3B,gBAAgB,CAAC,MAAM,KAAK,SAAS,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,IAAI,mBAAQ,CAAC,KAAK,CAAC,CAAC,CAAC,QAAQ,CAAC,QAAQ,CAAC,CAAA;qBACnG;oBAED,QAAQ,GAAG,EAAE,CAAC,UAAU,CAAC,QAAQ,CAAC,UAAU,CAAC;yBACxC,MAAM,CAAC,EAAE,CAAC,YAAY,CAAC,QAAQ,CAAC,UAAU,CAAC,CAAC,CAAA;oBACjD,OAAO,GAAG,EAAE,CAAC,UAAU,CAAC,QAAQ,CAAC,gBAAgB,CAAC;yBAC7C,MAAM,CAAC,EAAE,CAAC,YAAY,CAAC,QAAQ,CAAC,gBAAgB,CAAC,CAAC,CAAC,IAAI,EAAE,CAAA;oBAE9D,IAAI,QAAQ,CAAC,UAAU,EAAE,EAAE;wBACvB,OAAO,OAAO,KAAK,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC,QAAQ,CAAC,GAAG,EAAE,CAAC,OAAO,EAAE,CAAA;qBACnE;yBAAM;wBACH,OAAO,QAAQ,CAAA;qBAClB;iBACJ;aACJ;QACL,CAAC,CAAA;QAED,aAAQ,GAAG,CAAC,MAAuC,EAAY,EAAE;YAC7D,MAAM,CAAC,GAAG,IAAI,mBAAQ,EAAE,CAAC,IAAI,EAAE,CAAC;YAEhC,IAAI,CAAC,GAAG,IAAI,CAAC,UAAU,CAAC,QAAQ,CAAC,MAAM,CAAC,EACpC,CAAC,GAAG,IAAI,CAAC,YAAY,CAAC,QAAQ,CAAC,MAAM,CAAC,CAAA;YAE1C,OAAO,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,CAAA;QACtB,CAAC,CAAC;QAEF,UAAK,GAAG,GAAkB,EAAE;YACxB,OAAO,IAAI,6BAAa,CAAC,IAAI,CAAC,CAAA;QAClC,CAAC,CAAA;QA9LG,IAAI,SAAS,YAAY,iBAAO,EAAE;YAC9B,IAAI,CAAC,UAAU,GAAG,SAAS,CAAC,KAAK,EAAE,CAAA;SACtC;aAAM,IAAI,OAAO,SAAS,KAAK,QAAQ,EAAE;YACtC,IAAI,CAAC,UAAU,GAAG,IAAI,iBAAO,CAAC,SAAS,CAAC,CAAA;SAC3C;aAAM;YACH,IAAI,CAAC,UAAU,GAAG,IAAI,iBAAO,EAAE,CAAA;SAClC;QAED,IAAI,WAAW,YAAY,iBAAO,EAAE;YAChC,IAAI,CAAC,YAAY,GAAG,WAAW,CAAC,KAAK,EAAE,CAAA;SAC1C;aAAM,IAAI,OAAO,WAAW,KAAK,QAAQ,EAAE;YACxC,IAAI,CAAC,YAAY,GAAG,IAAI,iBAAO,CAAC,WAAW,CAAC,CAAA;SAC/C;aAAM;YACH,IAAI,CAAC,YAAY,GAAG,IAAI,iBAAO,EAAE,CAAA;SACpC;IAEL,CAAC;IAED,IAAI,SAAS;QACT,OAAO,IAAI,CAAC,UAAU,CAAA;IAC1B,CAAC;IAED,IAAI,WAAW;QACX,OAAO,IAAI,CAAC,YAAY,CAAA;IAC5B,CAAC;IAED,IAAI,GAAG;QACH,OAAO,WAAW,IAAI,CAAC,UAAU,CAAC,GAAG,OAAO,IAAI,CAAC,YAAY,CAAC,GAAG,IAAI,CAAC;IAC1E,CAAC;IAED,IAAI,UAAU;QACV,OAAO,WAAW,IAAI,CAAC,UAAU,CAAC,UAAU,OAAO,IAAI,CAAC,YAAY,CAAC,UAAU,IAAI,CAAA;IACvF,CAAC;IAED,IAAI,YAAY;QACZ,OAAO,IAAI,IAAI,CAAC,UAAU,CAAC,YAAY,MAAM,IAAI,CAAC,YAAY,CAAC,YAAY,GAAG,CAAA;IAClF,CAAC;CA2JJ;AA1MD,4BA0MC"}
@@ -16,18 +16,12 @@
16
16
  import {IAsymptote, ITableOfSigns, IZero, Study, StudyableFunction} from "../study";
17
17
 
18
18
  export declare class RationalStudy extends Study {
19
- private _getSigns;
20
- private _getZeroes;
21
-
22
19
  constructor(fx: StudyableFunction);
23
-
24
20
  makeZeroes(): IZero[];
25
-
26
21
  makeSigns(): ITableOfSigns;
27
-
28
22
  makeAsymptotes(): IAsymptote[];
29
-
30
23
  makeDerivative(): ITableOfSigns;
31
-
32
24
  makeVariation(): ITableOfSigns;
25
+ private _getZeroes;
26
+ private _getSigns;
33
27
  }
@@ -19,25 +19,21 @@ exports.RationalStudy = void 0;
19
19
  const study_1 = require("../study");
20
20
  const rational_1 = require("../rational");
21
21
  const fraction_1 = require("../../coefficients/fraction");
22
-
22
+ const polynom_1 = require("../polynom");
23
23
  class RationalStudy extends study_1.Study {
24
24
  constructor(fx) {
25
- console.log('RATIONAL STUDY');
26
25
  super(fx);
27
26
  return this;
28
27
  }
29
-
30
28
  makeZeroes() {
31
- console.log('GETTING ZEROES');
32
29
  return this._getZeroes(this.fx);
33
30
  }
34
31
  ;
35
-
36
32
  makeSigns() {
37
- return this._getSigns(this.fx, this.zeroes);
33
+ let tos = this._getSigns(this.fx, this.zeroes);
34
+ return tos;
38
35
  }
39
36
  ;
40
-
41
37
  makeAsymptotes() {
42
38
  const reduced = this.fx.clone().reduce();
43
39
  // Vertical
@@ -58,6 +54,7 @@ class RationalStudy extends study_1.Study {
58
54
  }
59
55
  }
60
56
  asymptotes.push({
57
+ fx: null,
61
58
  type: Ztype,
62
59
  tex: tex,
63
60
  zero: zero,
@@ -68,17 +65,20 @@ class RationalStudy extends study_1.Study {
68
65
  // Sloped asymptote
69
66
  let NDegree = this.fx.numerator.degree(), DDegree = this.fx.denominator.degree();
70
67
  if (NDegree.isEqual(DDegree)) {
71
- let H = this.fx.numerator.monomByDegree().coefficient.clone().divide(this.fx.denominator.monomByDegree().coefficient).tex;
68
+ let H = this.fx.numerator.monomByDegree().coefficient.clone().divide(this.fx.denominator.monomByDegree().coefficient),
69
+ Htex = H.tex;
72
70
  let {reminder} = reduced.euclidian();
73
71
  asymptotes.push({
72
+ fx: new polynom_1.Polynom(H),
74
73
  type: study_1.ASYMPTOTE.HORIZONTAL,
75
- tex: `y=${H}`,
74
+ tex: `y=${Htex}`,
76
75
  zero: null,
77
- limits: `\\lim_{x\\to\\infty}\\ f(x) = ${H}`,
76
+ limits: `\\lim_{x\\to\\infty}\\ f(x) = ${Htex}`,
78
77
  deltaX: new rational_1.Rational(reminder, reduced.denominator)
79
78
  });
80
79
  } else if (DDegree.greater(NDegree)) {
81
80
  asymptotes.push({
81
+ fx: new polynom_1.Polynom('0'),
82
82
  type: study_1.ASYMPTOTE.HORIZONTAL,
83
83
  tex: `y=0`,
84
84
  zero: null,
@@ -89,6 +89,7 @@ class RationalStudy extends study_1.Study {
89
89
  // Calculate the slope
90
90
  let {quotient, reminder} = reduced.euclidian();
91
91
  asymptotes.push({
92
+ fx: quotient.clone(),
92
93
  type: study_1.ASYMPTOTE.SLOPE,
93
94
  tex: `y=${quotient.tex}`,
94
95
  zero: null,
@@ -99,30 +100,25 @@ class RationalStudy extends study_1.Study {
99
100
  return asymptotes;
100
101
  }
101
102
  ;
102
-
103
103
  makeDerivative() {
104
104
  let dx = this.fx.clone().derivative(),
105
105
  tos = this._getSigns(dx, this._getZeroes(dx), study_1.TABLE_OF_SIGNS.GROWS);
106
- console.log(tos.factors.length, tos.signs.length);
107
- let result = this.makeGrowsResult(this.fx, tos);
106
+ let result = this.makeGrowsResult(tos);
108
107
  tos.signs.push(result.growsLine);
109
108
  tos.extremes = result.extremes;
110
- console.log(tos.signs.length);
111
109
  return tos;
112
110
  }
113
111
  ;
114
-
115
112
  makeVariation() {
116
113
  // Get the zeroes, make signs.
117
114
  let dx = this.derivative.fx.clone().derivative(),
118
115
  tos = this._getSigns(dx, this._getZeroes(dx), study_1.TABLE_OF_SIGNS.VARIATIONS);
119
- let result = this.makeVariationsResult(this.fx, tos);
116
+ let result = this.makeVariationsResult(tos);
120
117
  tos.signs.push(result.varsLine);
121
118
  tos.extremes = result.extremes;
122
119
  return tos;
123
120
  }
124
121
  ;
125
-
126
122
  _getZeroes(fx) {
127
123
  // All zeroes.
128
124
  let zeroes = [];
@@ -155,7 +151,6 @@ class RationalStudy extends study_1.Study {
155
151
  zeroes.sort((a, b) => a.value - b.value);
156
152
  return zeroes;
157
153
  }
158
-
159
154
  _getSigns(fx, zeroes, typeOfTable) {
160
155
  // Factorize the rational
161
156
  let signs = [], factors = [];
@@ -174,10 +169,10 @@ class RationalStudy extends study_1.Study {
174
169
  factors,
175
170
  zeroes,
176
171
  signs,
177
- extremes: {}
172
+ extremes: {},
173
+ tex: ''
178
174
  };
179
175
  }
180
176
  }
181
-
182
177
  exports.RationalStudy = RationalStudy;
183
178
  //# sourceMappingURL=rationalStudy.js.map
@@ -1 +1 @@
1
- {"version":3,"file":"rationalStudy.js","sourceRoot":"","sources":["../../../../src/maths/algebra/study/rationalStudy.ts"],"names":[],"mappings":";;;AAAA;;;;;;;;;;;;;;GAcG;AACH,oCAWkB;AAClB,0CAAqC;AACrC,0DAAqD;AAGrD,MAAa,aAAc,SAAQ,aAAK;IACpC,YAAY,EAAqB;QAC7B,OAAO,CAAC,GAAG,CAAC,gBAAgB,CAAC,CAAA;QAE7B,KAAK,CAAC,EAAE,CAAC,CAAA;QAET,OAAO,IAAI,CAAA;IACf,CAAC;IAED,UAAU;QACN,OAAO,CAAC,GAAG,CAAC,gBAAgB,CAAC,CAAA;QAC7B,OAAO,IAAI,CAAC,UAAU,CAAC,IAAI,CAAC,EAAE,CAAC,CAAA;IACnC,CAAC;IAAA,CAAC;IAEF,SAAS;QACL,OAAO,IAAI,CAAC,SAAS,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,MAAM,CAAC,CAAA;IAC/C,CAAC;IAAA,CAAC;IAEF,cAAc;QACV,MAAM,OAAO,GAAa,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,MAAM,EAAE,CAAA;QAElD,WAAW;QACX,IAAI,UAAU,GAAiB,EAAE,CAAA;QACjC,IAAI,CAAC,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,IAAI,KAAK,gBAAQ,CAAC,OAAO,CAAC,CAAC,OAAO,CAAC,IAAI,CAAC,EAAE;YAChE,uCAAuC;YACvC,wDAAwD;YACxD,IAAI,KAAK,GAAG,iBAAS,CAAC,QAAQ,EAC1B,GAAG,GAAG,KAAK,IAAI,CAAC,GAAG,EAAE,CAAA;YACzB,IAAI,IAAI,CAAC,KAAK,YAAY,mBAAQ,EAAE;gBAChC,IAAI,OAAO,CAAC,WAAW,CAAC,QAAQ,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,SAAS,EAAE,EAAE;oBACtD,KAAK,GAAG,iBAAS,CAAC,IAAI,CAAA;oBACtB,GAAG,GAAG,IAAI,IAAI,CAAC,GAAG,IAAI,OAAO,CAAC,QAAQ,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,GAAG,CAAA;iBAC5D;aACJ;iBAAM;gBACH,IAAI,OAAO,CAAC,WAAW,CAAC,QAAQ,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,SAAS,EAAE,EAAE;oBACtD,KAAK,GAAG,iBAAS,CAAC,IAAI,CAAA;oBACtB,GAAG,GAAG,IAAI,IAAI,CAAC,GAAG,IAAI,OAAO,CAAC,QAAQ,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,GAAG,CAAA;iBAC5D;aACJ;YAED,UAAU,CAAC,IAAI,CAAC;gBACZ,IAAI,EAAE,KAAK;gBACX,GAAG,EAAE,GAAG;gBACR,IAAI,EAAE,IAAI;gBACV,MAAM,EAAE,eAAe,IAAI,CAAC,GAAG,yBAAyB;gBACxD,MAAM,EAAE,IAAI;aACf,CAAC,CAAA;QACN,CAAC,CAAC,CAAA;QAEF,mBAAmB;QACnB,IAAI,OAAO,GAAG,IAAI,CAAC,EAAE,CAAC,SAAS,CAAC,MAAM,EAAE,EACpC,OAAO,GAAG,IAAI,CAAC,EAAE,CAAC,WAAW,CAAC,MAAM,EAAE,CAAA;QAC1C,IAAI,OAAO,CAAC,OAAO,CAAC,OAAO,CAAC,EAAE;YAC1B,IAAI,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC,SAAS,CAAC,aAAa,EAAE,CAAC,WAAW,CAAC,KAAK,EAAE,CAAC,MAAM,CAAC,IAAI,CAAC,EAAE,CAAC,WAAW,CAAC,aAAa,EAAE,CAAC,WAAW,CAAC,CAAC,GAAG,CAAA;YAEzH,IAAI,EAAC,QAAQ,EAAC,GAAG,OAAO,CAAC,SAAS,EAAE,CAAA;YAEpC,UAAU,CAAC,IAAI,CAAC;gBACZ,IAAI,EAAE,iBAAS,CAAC,UAAU;gBAC1B,GAAG,EAAE,KAAK,CAAC,EAAE;gBACb,IAAI,EAAE,IAAI;gBACV,MAAM,EAAE,iCAAiC,CAAC,EAAE;gBAC5C,MAAM,EAAE,IAAI,mBAAQ,CAAC,QAAQ,EAAE,OAAO,CAAC,WAAW,CAAC;aACtD,CAAC,CAAA;SACL;aAAM,IAAI,OAAO,CAAC,OAAO,CAAC,OAAO,CAAC,EAAE;YACjC,UAAU,CAAC,IAAI,CAAC;gBACZ,IAAI,EAAE,iBAAS,CAAC,UAAU;gBAC1B,GAAG,EAAE,KAAK;gBACV,IAAI,EAAE,IAAI;gBACV,MAAM,EAAE,iCAAiC,CAAC,EAAE;gBAC5C,MAAM,EAAE,IAAI;aACf,CAAC,CAAA;SACL;aAAM,IAAI,OAAO,CAAC,KAAK,GAAG,CAAC,KAAK,OAAO,CAAC,KAAK,EAAE;YAC5C,sBAAsB;YACtB,IAAI,EAAC,QAAQ,EAAE,QAAQ,EAAC,GAAG,OAAO,CAAC,SAAS,EAAE,CAAA;YAE9C,UAAU,CAAC,IAAI,CAAC;gBACZ,IAAI,EAAE,iBAAS,CAAC,KAAK;gBACrB,GAAG,EAAE,KAAK,QAAQ,CAAC,GAAG,EAAE;gBACxB,IAAI,EAAE,IAAI;gBACV,MAAM,EAAE,EAAE;gBACV,MAAM,EAAE,IAAI,mBAAQ,CAAC,QAAQ,EAAE,OAAO,CAAC,WAAW,CAAC;aACtD,CAAC,CAAA;SACL;QAED,OAAO,UAAU,CAAA;IACrB,CAAC;IAAA,CAAC;IAEF,cAAc;QACV,IAAI,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,UAAU,EAAE,EACjC,GAAG,GAAG,IAAI,CAAC,SAAS,CAAC,EAAE,EAAE,IAAI,CAAC,UAAU,CAAC,EAAE,CAAC,EAAE,sBAAc,CAAC,KAAK,CAAC,CAAA;QAEvE,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,OAAO,CAAC,MAAM,EAAE,GAAG,CAAC,KAAK,CAAC,MAAM,CAAC,CAAA;QACjD,IAAI,MAAM,GAAG,IAAI,CAAC,eAAe,CAAC,IAAI,CAAC,EAAE,EAAE,GAAG,CAAC,CAAA;QAC/C,GAAG,CAAC,KAAK,CAAC,IAAI,CAAC,MAAM,CAAC,SAAS,CAAC,CAAA;QAChC,GAAG,CAAC,QAAQ,GAAG,MAAM,CAAC,QAAQ,CAAA;QAE9B,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,KAAK,CAAC,MAAM,CAAC,CAAA;QAC7B,OAAO,GAAG,CAAA;IACd,CAAC;IAAA,CAAC;IAEF,aAAa;QACT,8BAA8B;QAC9B,IAAI,EAAE,GAAG,IAAI,CAAC,UAAU,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,UAAU,EAAE,EAC5C,GAAG,GAAG,IAAI,CAAC,SAAS,CAAC,EAAE,EAAE,IAAI,CAAC,UAAU,CAAC,EAAE,CAAC,EAAE,sBAAc,CAAC,UAAU,CAAC,CAAA;QAE5E,IAAI,MAAM,GAAG,IAAI,CAAC,oBAAoB,CAAC,IAAI,CAAC,EAAE,EAAE,GAAG,CAAC,CAAA;QACpD,GAAG,CAAC,KAAK,CAAC,IAAI,CAAC,MAAM,CAAC,QAAQ,CAAC,CAAA;QAC/B,GAAG,CAAC,QAAQ,GAAG,MAAM,CAAC,QAAQ,CAAA;QAE9B,OAAO,GAAG,CAAA;IACd,CAAC;IAAA,CAAC;IAEM,UAAU,CAAC,EAAqB;QACpC,cAAc;QACd,IAAI,MAAM,GAAY,EAAE,CAAA;QAExB,EAAE,CAAC,SAAS,CAAC,SAAS,EAAE,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,CAAC,EAAE;YAC9D,eAAe;YACf,MAAM,CAAC,IAAI,CAAC;gBACR,GAAG,EAAE,CAAC,CAAC,GAAG;gBACV,KAAK,EAAE,CAAC,CAAC,KAAK;gBACd,KAAK,EAAE,CAAC,CAAC,KAAK;gBACd,OAAO,EAAE,wBAAgB,CAAC,OAAO;gBACjC,IAAI,EAAE,gBAAQ,CAAC,IAAI;aACtB,CAAC,CAAA;QACN,CAAC,CAAC,CAAA;QAEF,EAAE,CAAC,WAAW,CAAC,SAAS,EAAE,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,CAAC,EAAE;YAChE,IAAI,GAAG,GAAG,IAAI,CAAC,WAAW,CAAC,MAAM,EAAE,CAAC,CAAC,CAAA;YAErC,IAAI,GAAG,KAAK,CAAC,CAAC,EAAE;gBACZ,MAAM,CAAC,GAAG,CAAC,CAAC,IAAI,GAAG,gBAAQ,CAAC,OAAO,CAAA;aACtC;iBAAM;gBACH,eAAe;gBACf,MAAM,CAAC,IAAI,CAAC;oBACR,GAAG,EAAE,CAAC,CAAC,GAAG;oBACV,KAAK,EAAE,CAAC,CAAC,KAAK;oBACd,KAAK,EAAE,CAAC,CAAC,KAAK;oBACd,OAAO,EAAE,wBAAgB,CAAC,OAAO;oBACjC,IAAI,EAAE,gBAAQ,CAAC,OAAO;iBACzB,CAAC,CAAA;aACL;QACL,CAAC,CAAC,CAAA;QAEF,kBAAkB;QAClB,MAAM,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,KAAK,GAAG,CAAC,CAAC,KAAK,CAAC,CAAA;QAExC,OAAO,MAAM,CAAA;IACjB,CAAC;IAEO,SAAS,CAAC,EAAY,EAAE,MAAe,EAAE,WAA4B;QACzE,yBAAyB;QACzB,IAAI,KAAK,GAAiB,EAAE,EACxB,OAAO,GAAc,EAAE,CAAA;QAE3B,EAAE,CAAC,SAAS,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,EAAE;YAClC,KAAK,CAAC,IAAI,CAAC,IAAI,CAAC,mBAAmB,CAAC,MAAM,EAAE,MAAM,EAAE,gBAAQ,CAAC,IAAI,CAAC,CAAC,CAAA;YACnE,OAAO,CAAC,IAAI,CAAC,MAAM,CAAC,KAAK,EAAE,CAAC,CAAA;QAChC,CAAC,CAAC,CAAA;QAEF,EAAE,CAAC,WAAW,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,EAAE;YACpC,KAAK,CAAC,IAAI,CAAC,IAAI,CAAC,mBAAmB,CAAC,MAAM,EAAE,MAAM,EAAE,gBAAQ,CAAC,OAAO,CAAC,CAAC,CAAA;YACtE,OAAO,CAAC,IAAI,CAAC,MAAM,CAAC,KAAK,EAAE,CAAC,CAAA;QAChC,CAAC,CAAC,CAAA;QAEF,KAAK,CAAC,IAAI,CAAC,IAAI,CAAC,eAAe,CAAC,KAAK,CAAC,CAAC,CAAA;QAEvC,OAAO;YACH,IAAI,EAAE,WAAW;YACjB,EAAE;YACF,OAAO;YACP,MAAM;YACN,KAAK;YACL,QAAQ,EAAE,EAAE;SACf,CAAA;IACL,CAAC;CACJ;AAjLD,sCAiLC"}
1
+ {"version":3,"file":"rationalStudy.js","sourceRoot":"","sources":["../../../../src/maths/algebra/study/rationalStudy.ts"],"names":[],"mappings":";;;AAAA;;;;;;;;;;;;;;GAcG;AACH,oCAUkB;AAClB,0CAAqC;AACrC,0DAAqD;AACrD,wCAAmC;AAEnC,MAAa,aAAc,SAAQ,aAAK;IACpC,YAAY,EAAqB;QAC7B,KAAK,CAAC,EAAE,CAAC,CAAA;QAET,OAAO,IAAI,CAAA;IACf,CAAC;IAED,UAAU;QACN,OAAO,IAAI,CAAC,UAAU,CAAC,IAAI,CAAC,EAAE,CAAC,CAAA;IACnC,CAAC;IAAA,CAAC;IAEF,SAAS;QACL,IAAI,GAAG,GAAG,IAAI,CAAC,SAAS,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,MAAM,CAAC,CAAA;QAC9C,OAAO,GAAG,CAAA;IACd,CAAC;IAAA,CAAC;IAEF,cAAc;QACV,MAAM,OAAO,GAAa,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,MAAM,EAAE,CAAA;QAElD,WAAW;QACX,IAAI,UAAU,GAAiB,EAAE,CAAA;QACjC,IAAI,CAAC,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,IAAI,KAAK,gBAAQ,CAAC,OAAO,CAAC,CAAC,OAAO,CAAC,IAAI,CAAC,EAAE;YAChE,uCAAuC;YACvC,wDAAwD;YACxD,IAAI,KAAK,GAAG,iBAAS,CAAC,QAAQ,EAC1B,GAAG,GAAG,KAAK,IAAI,CAAC,GAAG,EAAE,CAAA;YACzB,IAAI,IAAI,CAAC,KAAK,YAAY,mBAAQ,EAAE;gBAChC,IAAI,OAAO,CAAC,WAAW,CAAC,QAAQ,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,SAAS,EAAE,EAAE;oBACtD,KAAK,GAAG,iBAAS,CAAC,IAAI,CAAA;oBACtB,GAAG,GAAG,IAAI,IAAI,CAAC,GAAG,IAAI,OAAO,CAAC,QAAQ,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,GAAG,CAAA;iBAC5D;aACJ;iBAAM;gBACH,IAAI,OAAO,CAAC,WAAW,CAAC,QAAQ,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,SAAS,EAAE,EAAE;oBACtD,KAAK,GAAG,iBAAS,CAAC,IAAI,CAAA;oBACtB,GAAG,GAAG,IAAI,IAAI,CAAC,GAAG,IAAI,OAAO,CAAC,QAAQ,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,GAAG,CAAA;iBAC5D;aACJ;YAED,UAAU,CAAC,IAAI,CAAC;gBACZ,EAAE,EAAE,IAAI;gBACR,IAAI,EAAE,KAAK;gBACX,GAAG,EAAE,GAAG;gBACR,IAAI,EAAE,IAAI;gBACV,MAAM,EAAE,eAAe,IAAI,CAAC,GAAG,yBAAyB;gBACxD,MAAM,EAAE,IAAI;aACf,CAAC,CAAA;QACN,CAAC,CAAC,CAAA;QAEF,mBAAmB;QACnB,IAAI,OAAO,GAAG,IAAI,CAAC,EAAE,CAAC,SAAS,CAAC,MAAM,EAAE,EACpC,OAAO,GAAG,IAAI,CAAC,EAAE,CAAC,WAAW,CAAC,MAAM,EAAE,CAAA;QAC1C,IAAI,OAAO,CAAC,OAAO,CAAC,OAAO,CAAC,EAAE;YAC1B,IAAI,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC,SAAS,CAAC,aAAa,EAAE,CAAC,WAAW,CAAC,KAAK,EAAE,CAAC,MAAM,CAAC,IAAI,CAAC,EAAE,CAAC,WAAW,CAAC,aAAa,EAAE,CAAC,WAAW,CAAC,EACjH,IAAI,GAAG,CAAC,CAAC,GAAG,CAAA;YAEhB,IAAI,EAAC,QAAQ,EAAC,GAAG,OAAO,CAAC,SAAS,EAAE,CAAA;YAEpC,UAAU,CAAC,IAAI,CAAC;gBACZ,EAAE,EAAE,IAAI,iBAAO,CAAC,CAAC,CAAC;gBAClB,IAAI,EAAE,iBAAS,CAAC,UAAU;gBAC1B,GAAG,EAAE,KAAK,IAAI,EAAE;gBAChB,IAAI,EAAE,IAAI;gBACV,MAAM,EAAE,iCAAiC,IAAI,EAAE;gBAC/C,MAAM,EAAE,IAAI,mBAAQ,CAAC,QAAQ,EAAE,OAAO,CAAC,WAAW,CAAC;aACtD,CAAC,CAAA;SACL;aAAM,IAAI,OAAO,CAAC,OAAO,CAAC,OAAO,CAAC,EAAE;YACjC,UAAU,CAAC,IAAI,CAAC;gBACZ,EAAE,EAAE,IAAI,iBAAO,CAAC,GAAG,CAAC;gBACpB,IAAI,EAAE,iBAAS,CAAC,UAAU;gBAC1B,GAAG,EAAE,KAAK;gBACV,IAAI,EAAE,IAAI;gBACV,MAAM,EAAE,iCAAiC,CAAC,EAAE;gBAC5C,MAAM,EAAE,IAAI;aACf,CAAC,CAAA;SACL;aAAM,IAAI,OAAO,CAAC,KAAK,GAAG,CAAC,KAAK,OAAO,CAAC,KAAK,EAAE;YAC5C,sBAAsB;YACtB,IAAI,EAAC,QAAQ,EAAE,QAAQ,EAAC,GAAG,OAAO,CAAC,SAAS,EAAE,CAAA;YAE9C,UAAU,CAAC,IAAI,CAAC;gBACZ,EAAE,EAAE,QAAQ,CAAC,KAAK,EAAE;gBACpB,IAAI,EAAE,iBAAS,CAAC,KAAK;gBACrB,GAAG,EAAE,KAAK,QAAQ,CAAC,GAAG,EAAE;gBACxB,IAAI,EAAE,IAAI;gBACV,MAAM,EAAE,EAAE;gBACV,MAAM,EAAE,IAAI,mBAAQ,CAAC,QAAQ,EAAE,OAAO,CAAC,WAAW,CAAC;aACtD,CAAC,CAAA;SACL;QAED,OAAO,UAAU,CAAA;IACrB,CAAC;IAAA,CAAC;IAEF,cAAc;QACV,IAAI,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,UAAU,EAAE,EACjC,GAAG,GAAG,IAAI,CAAC,SAAS,CAAC,EAAE,EAAE,IAAI,CAAC,UAAU,CAAC,EAAE,CAAC,EAAE,sBAAc,CAAC,KAAK,CAAC,CAAA;QAEvE,IAAI,MAAM,GAAG,IAAI,CAAC,eAAe,CAAC,GAAG,CAAC,CAAA;QACtC,GAAG,CAAC,KAAK,CAAC,IAAI,CAAC,MAAM,CAAC,SAAS,CAAC,CAAA;QAChC,GAAG,CAAC,QAAQ,GAAG,MAAM,CAAC,QAAQ,CAAA;QAC9B,OAAO,GAAG,CAAA;IACd,CAAC;IAAA,CAAC;IAEF,aAAa;QACT,8BAA8B;QAC9B,IAAI,EAAE,GAAG,IAAI,CAAC,UAAU,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,UAAU,EAAE,EAC5C,GAAG,GAAG,IAAI,CAAC,SAAS,CAAC,EAAE,EAAE,IAAI,CAAC,UAAU,CAAC,EAAE,CAAC,EAAE,sBAAc,CAAC,UAAU,CAAC,CAAA;QAE5E,IAAI,MAAM,GAAG,IAAI,CAAC,oBAAoB,CAAC,GAAG,CAAC,CAAA;QAC3C,GAAG,CAAC,KAAK,CAAC,IAAI,CAAC,MAAM,CAAC,QAAQ,CAAC,CAAA;QAC/B,GAAG,CAAC,QAAQ,GAAG,MAAM,CAAC,QAAQ,CAAA;QAC9B,OAAO,GAAG,CAAA;IACd,CAAC;IAAA,CAAC;IAEM,UAAU,CAAC,EAAqB;QACpC,cAAc;QACd,IAAI,MAAM,GAAY,EAAE,CAAA;QAExB,EAAE,CAAC,SAAS,CAAC,SAAS,EAAE,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,CAAC,EAAE;YAC9D,eAAe;YACf,MAAM,CAAC,IAAI,CAAC;gBACR,GAAG,EAAE,CAAC,CAAC,GAAG;gBACV,KAAK,EAAE,CAAC,CAAC,KAAK;gBACd,KAAK,EAAE,CAAC,CAAC,KAAK;gBACd,OAAO,EAAE,wBAAgB,CAAC,OAAO;gBACjC,IAAI,EAAE,gBAAQ,CAAC,IAAI;aACtB,CAAC,CAAA;QACN,CAAC,CAAC,CAAA;QAEF,EAAE,CAAC,WAAW,CAAC,SAAS,EAAE,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,CAAC,EAAE;YAChE,IAAI,GAAG,GAAG,IAAI,CAAC,WAAW,CAAC,MAAM,EAAE,CAAC,CAAC,CAAA;YAErC,IAAI,GAAG,KAAK,CAAC,CAAC,EAAE;gBACZ,MAAM,CAAC,GAAG,CAAC,CAAC,IAAI,GAAG,gBAAQ,CAAC,OAAO,CAAA;aACtC;iBAAM;gBACH,eAAe;gBACf,MAAM,CAAC,IAAI,CAAC;oBACR,GAAG,EAAE,CAAC,CAAC,GAAG;oBACV,KAAK,EAAE,CAAC,CAAC,KAAK;oBACd,KAAK,EAAE,CAAC,CAAC,KAAK;oBACd,OAAO,EAAE,wBAAgB,CAAC,OAAO;oBACjC,IAAI,EAAE,gBAAQ,CAAC,OAAO;iBACzB,CAAC,CAAA;aACL;QACL,CAAC,CAAC,CAAA;QAEF,kBAAkB;QAClB,MAAM,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,KAAK,GAAG,CAAC,CAAC,KAAK,CAAC,CAAA;QAExC,OAAO,MAAM,CAAA;IACjB,CAAC;IAEO,SAAS,CAAC,EAAY,EAAE,MAAe,EAAE,WAA4B;QACzE,yBAAyB;QACzB,IAAI,KAAK,GAAiB,EAAE,EACxB,OAAO,GAAc,EAAE,CAAA;QAE3B,EAAE,CAAC,SAAS,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,EAAE;YAClC,KAAK,CAAC,IAAI,CAAC,IAAI,CAAC,mBAAmB,CAAC,MAAM,EAAE,MAAM,EAAE,gBAAQ,CAAC,IAAI,CAAC,CAAC,CAAA;YACnE,OAAO,CAAC,IAAI,CAAC,MAAM,CAAC,KAAK,EAAE,CAAC,CAAA;QAChC,CAAC,CAAC,CAAA;QAEF,EAAE,CAAC,WAAW,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,EAAE;YACpC,KAAK,CAAC,IAAI,CAAC,IAAI,CAAC,mBAAmB,CAAC,MAAM,EAAE,MAAM,EAAE,gBAAQ,CAAC,OAAO,CAAC,CAAC,CAAA;YACtE,OAAO,CAAC,IAAI,CAAC,MAAM,CAAC,KAAK,EAAE,CAAC,CAAA;QAChC,CAAC,CAAC,CAAA;QAEF,KAAK,CAAC,IAAI,CAAC,IAAI,CAAC,eAAe,CAAC,KAAK,CAAC,CAAC,CAAA;QAEvC,OAAO;YACH,IAAI,EAAE,WAAW;YACjB,EAAE;YACF,OAAO;YACP,MAAM;YACN,KAAK;YACL,QAAQ,EAAE,EAAE;YACZ,GAAG,EAAE,EAAE;SACV,CAAA;IACL,CAAC;CACJ;AAjLD,sCAiLC"}
@@ -7,40 +7,35 @@ import {ISolution} from "./equation";
7
7
  import {Polynom} from "./polynom";
8
8
 
9
9
  export declare type StudyableFunction = Rational;
10
-
11
10
  export declare enum ZEROTYPE {
12
11
  ZERO = "z",
13
12
  DEFENCE = "d",
14
13
  NOTHING = "t"
15
14
  }
16
-
17
15
  export interface IZero extends ISolution {
18
16
  extrema: FUNCTION_EXTREMA;
19
17
  type: ZEROTYPE;
20
18
  }
21
-
22
19
  export declare enum ASYMPTOTE {
23
20
  VERTICAL = "av",
24
21
  HORIZONTAL = "ah",
25
22
  SLOPE = "ao",
26
23
  HOLE = "hole"
27
24
  }
28
-
29
25
  export interface IAsymptote {
26
+ fx: Polynom;
30
27
  deltaX: StudyableFunction;
31
28
  limits: string;
32
29
  tex: string;
33
30
  type: ASYMPTOTE;
34
31
  zero: IZero;
35
32
  }
36
-
37
33
  export declare enum FUNCTION_EXTREMA {
38
34
  MIN = "min",
39
35
  MAX = "max",
40
36
  FLAT = "flat",
41
37
  NOTHING = ""
42
38
  }
43
-
44
39
  export interface IExtrema {
45
40
  tex: {
46
41
  x: string;
@@ -52,7 +47,6 @@ export interface IExtrema {
52
47
  y: number;
53
48
  };
54
49
  }
55
-
56
50
  export interface ITableOfSigns {
57
51
  extremes: {
58
52
  [Key: string]: IExtrema;
@@ -62,14 +56,13 @@ export interface ITableOfSigns {
62
56
  signs: (string[])[];
63
57
  type: TABLE_OF_SIGNS;
64
58
  zeroes: IZero[];
59
+ tex: string;
65
60
  }
66
-
67
61
  export declare enum TABLE_OF_SIGNS {
68
62
  DEFAULT = 0,
69
63
  GROWS = 1,
70
64
  VARIATIONS = 2
71
65
  }
72
-
73
66
  /**
74
67
  * The study class is a "function study" class that will get:
75
68
  * fx : get the function
@@ -87,25 +80,8 @@ export declare enum TABLE_OF_SIGNS {
87
80
  */
88
81
  export declare class Study {
89
82
  fx: StudyableFunction;
90
- indexOfZero: (zeroes: IZero[], zero: IZero | ISolution) => number;
91
- makeGrowsResult: (fx: StudyableFunction, tos: ITableOfSigns) => {
92
- growsLine: string[];
93
- extremes: {
94
- [Key: string]: IExtrema;
95
- };
96
- };
97
- makeOneLineForSigns: (factor: Polynom, zeroes: IZero[], zeroSign: ZEROTYPE) => string[];
98
- makeSignsResult: (signs: (string[])[]) => string[];
99
- makeStudy: () => void;
100
- makeVariationsResult: (fx: StudyableFunction, tos: ITableOfSigns) => {
101
- varsLine: string[];
102
- extremes: {
103
- [Key: string]: IExtrema;
104
- };
105
- };
106
83
  private _asymptotes;
107
84
  private _derivative;
108
- private _makeTexFromTableOfSigns;
109
85
  private _signs;
110
86
  private _variations;
111
87
  private _zeroes;
@@ -122,12 +98,29 @@ export declare class Study {
122
98
 
123
99
  get derivative(): ITableOfSigns;
124
100
 
125
- get tex(): string;
101
+ drawCode: () => string;
126
102
 
127
103
  get texGrows(): string;
128
104
 
129
105
  get texVariations(): string;
130
106
 
107
+ makeGrowsResult: (tos: ITableOfSigns) => {
108
+ growsLine: string[];
109
+ extremes: {
110
+ [Key: string]: IExtrema;
111
+ };
112
+ };
113
+ indexOfZero: (zeroes: IZero[], zero: IZero | ISolution) => number;
114
+ makeOneLineForSigns: (factor: Polynom, zeroes: IZero[], zeroSign: ZEROTYPE) => string[];
115
+ makeSignsResult: (signs: (string[])[]) => string[];
116
+ makeStudy: () => void;
117
+ makeVariationsResult: (tos: ITableOfSigns) => {
118
+ varsLine: string[];
119
+ extremes: {
120
+ [Key: string]: IExtrema;
121
+ };
122
+ };
123
+
131
124
  makeZeroes(): IZero[];
132
125
 
133
126
  makeSigns(): ITableOfSigns;
@@ -137,4 +130,8 @@ export declare class Study {
137
130
  makeDerivative(): ITableOfSigns;
138
131
 
139
132
  makeVariation(): ITableOfSigns;
133
+
134
+ private _makeTexFromTableOfSigns;
135
+
136
+ get texSigns(): string;
140
137
  }
@@ -6,6 +6,7 @@
6
6
  Object.defineProperty(exports, "__esModule", {value: true});
7
7
  exports.Study = exports.TABLE_OF_SIGNS = exports.FUNCTION_EXTREMA = exports.ASYMPTOTE = exports.ZEROTYPE = void 0;
8
8
  const fraction_1 = require("../coefficients/fraction");
9
+ const numexp_1 = require("../expressions/numexp");
9
10
  var ZEROTYPE;
10
11
  (function (ZEROTYPE) {
11
12
  ZEROTYPE["ZERO"] = "z";
@@ -32,7 +33,6 @@ var TABLE_OF_SIGNS;
32
33
  TABLE_OF_SIGNS[TABLE_OF_SIGNS["GROWS"] = 1] = "GROWS";
33
34
  TABLE_OF_SIGNS[TABLE_OF_SIGNS["VARIATIONS"] = 2] = "VARIATIONS";
34
35
  })(TABLE_OF_SIGNS = exports.TABLE_OF_SIGNS || (exports.TABLE_OF_SIGNS = {}));
35
-
36
36
  /**
37
37
  * The study class is a "function study" class that will get:
38
38
  * fx : get the function
@@ -56,6 +56,9 @@ class Study {
56
56
  this._asymptotes = this.makeAsymptotes();
57
57
  this._derivative = this.makeDerivative();
58
58
  this._variations = this.makeVariation();
59
+ this._signs.tex = this.texSigns;
60
+ this._derivative.tex = this.texGrows;
61
+ this._variations.tex = this.texVariations;
59
62
  };
60
63
  this.indexOfZero = (zeroes, zero) => {
61
64
  for (let i = 0; i < zeroes.length; i++) {
@@ -119,7 +122,7 @@ class Study {
119
122
  }
120
123
  return resultLine;
121
124
  };
122
- this.makeGrowsResult = (fx, tos) => {
125
+ this.makeGrowsResult = (tos) => {
123
126
  // Use the last line (=> resultLine) to grab the necessary information
124
127
  let signsAsArray = Object.values(tos.signs), resultLine = signsAsArray[signsAsArray.length - 1],
125
128
  growsLine = [], extremes = {}, zeroes = tos.zeroes;
@@ -130,15 +133,17 @@ class Study {
130
133
  if (resultLine[pos] === 'z') {
131
134
  // It's a zero. Get the coordinates
132
135
  let x, y, zero = zeroes[i].exact, pt, xTex, yTex, pointType;
136
+ // TODO: NumExp should parse something that isn't yet plotFunction
137
+ let exp = new numexp_1.NumExp(this.fx.plotFunction);
133
138
  if (zero instanceof fraction_1.Fraction) {
134
- let value = zero, evalY = fx.evaluate(value);
139
+ let value = zero, evalY = this.fx.evaluate(value);
135
140
  x = zero.value;
136
141
  y = evalY.value;
137
142
  xTex = zero.tex;
138
143
  yTex = evalY.tex;
139
144
  } else {
140
145
  x = zeroes[i].value;
141
- y = fx.evaluate(zeroes[i].value).value;
146
+ y = exp.evaluate({x});
142
147
  xTex = x.toFixed(2);
143
148
  yTex = y.toFixed(2);
144
149
  }
@@ -173,7 +178,7 @@ class Study {
173
178
  growsLine.push(`${resultLine[resultLine.length - 2]}/`);
174
179
  return {growsLine, extremes};
175
180
  };
176
- this.makeVariationsResult = (fx, tos) => {
181
+ this.makeVariationsResult = (tos) => {
177
182
  // TODO: make variations result is not yet implemented.
178
183
  let extremes = {}, varsLine = [];
179
184
  return {varsLine, extremes};
@@ -205,48 +210,69 @@ class Study {
205
210
  tex += `\n\\end{tikzpicture}`;
206
211
  return tex;
207
212
  };
213
+ this.drawCode = () => {
214
+ // Function as string
215
+ let code = `f(x)=${this.fx.plotFunction}`;
216
+ // Asymptotes
217
+ let i = 1;
218
+ this.asymptotes.forEach(asymptote => {
219
+ if (asymptote.type === ASYMPTOTE.VERTICAL) {
220
+ code += `\nav_${i}=line x=${asymptote.zero.value}->red,dash`;
221
+ i++;
222
+ } else if (asymptote.type === ASYMPTOTE.HORIZONTAL) {
223
+ code += `\nah=line y=${asymptote.fx.monoms[0].coefficient.value}->orange,dash`;
224
+ } else if (asymptote.type === ASYMPTOTE.SLOPE) {
225
+ code += `\nao=line y=${asymptote.fx.plotFunction}->red,dash`;
226
+ }
227
+ i++;
228
+ });
229
+ // Extremes
230
+ for (let zero in this.derivative.extremes) {
231
+ let extreme = this.derivative.extremes[zero];
232
+ code += `\nM_${i}(${extreme.value.x},${extreme.value.y})*`;
233
+ i++;
234
+ }
235
+ // Zeroes
236
+ this.zeroes.forEach(zero => {
237
+ if (zero.type === ZEROTYPE.ZERO) {
238
+ code += `\nZ_${i}(${zero.value},0)*`;
239
+ i++;
240
+ }
241
+ });
242
+ return code;
243
+ };
208
244
  this.fx = fx;
209
245
  this.makeStudy();
210
246
  return this;
211
247
  }
212
-
213
248
  get zeroes() {
214
249
  return this._zeroes;
215
250
  }
216
-
217
251
  get domain() {
218
252
  return this.fx.domain();
219
253
  }
220
-
221
254
  get signs() {
222
255
  return this._signs;
223
256
  }
224
-
225
257
  get asymptotes() {
226
258
  return this._asymptotes;
227
259
  }
228
-
229
260
  get derivative() {
230
261
  return this._derivative;
231
262
  }
232
-
233
- get tex() {
263
+ get texSigns() {
234
264
  return this._makeTexFromTableOfSigns(this._signs);
235
265
  }
236
-
237
266
  get texGrows() {
238
267
  return this._makeTexFromTableOfSigns(this._derivative);
239
268
  }
240
-
241
269
  get texVariations() {
242
270
  return this._makeTexFromTableOfSigns(this._variations);
243
271
  }
244
-
245
272
  makeZeroes() {
246
273
  return [];
247
274
  }
248
275
  ;
249
-
250
276
  makeSigns() {
251
277
  return {
252
278
  type: TABLE_OF_SIGNS.DEFAULT,
@@ -254,15 +280,14 @@ class Study {
254
280
  factors: [],
255
281
  zeroes: [],
256
282
  signs: [],
257
- extremes: {}
283
+ extremes: {},
284
+ tex: ''
258
285
  };
259
286
  }
260
287
  ;
261
-
262
288
  makeAsymptotes() {
263
289
  return [];
264
290
  }
265
-
266
291
  makeDerivative() {
267
292
  return {
268
293
  type: TABLE_OF_SIGNS.GROWS,
@@ -270,10 +295,10 @@ class Study {
270
295
  factors: [],
271
296
  zeroes: [],
272
297
  signs: [],
273
- extremes: {}
298
+ extremes: {},
299
+ tex: ''
274
300
  };
275
301
  }
276
-
277
302
  makeVariation() {
278
303
  return {
279
304
  type: TABLE_OF_SIGNS.VARIATIONS,
@@ -281,10 +306,10 @@ class Study {
281
306
  factors: [],
282
307
  zeroes: [],
283
308
  signs: [],
284
- extremes: {}
309
+ extremes: {},
310
+ tex: ''
285
311
  };
286
312
  }
287
313
  }
288
-
289
314
  exports.Study = Study;
290
315
  //# sourceMappingURL=study.js.map