pimath 0.0.52 → 0.0.53

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1 +1,10 @@
1
- {"version":3,"file":"point.js","sourceRoot":"","sources":["../../../src/maths/geometry/point.ts"],"names":[],"mappings":";;;AAAA;;;GAGG;AACH,iCAA4B;AAC5B,qCAAgC;AAChC,uDAAkD;AAElD;;GAEG;AACH,MAAM,OAAO;CAGZ;AAED,MAAa,KAAK;IAKd,YAAY,GAAG,MAAiB;QAgDhC,6CAA6C;QAC7C,+BAA+B;QAC/B,6CAA6C;QAC7C,UAAK,GAAG,CAAC,GAAG,MAAiB,EAAS,EAAE;YACpC,wBAAwB;YACxB,IAAI,CAAC,IAAI,EAAE,CAAC;YAEZ,mBAAmB;YACnB,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,OAAO,IAAI,CAAC;aACf;YAED,oDAAoD;YACpD,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,kCAAkC;gBAClC,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,KAAK,EAAE;oBAC5B,IAAI,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAA;oBAC7B,IAAI,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAA;oBAC7B,OAAO,IAAI,CAAA;iBACd;gBAED,6CAA6C;gBAC7C,IAAI,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,EAAE;oBAC/B,IAAI,EAAE,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC,GAAG,CAAC,CAAA;oBAC7B,IAAI,EAAE,CAAC,MAAM,KAAK,CAAC,EAAE;wBACjB,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;wBACtC,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;wBACtC,OAAO,IAAI,CAAA;qBACd;iBACJ;gBAED,qDAAqD;gBACrD,IAAG,MAAM,CAAC,CAAC,CAAC,YAAY,OAAO,EAAC;oBACxB,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;oBAC5C,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;oBAChD,OAAO,IAAI,CAAA;iBACd;qBAAM;oBACH,OAAO,IAAI,CAAC,IAAI,EAAE,CAAA;iBACrB;aACJ;YAED,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;gBAC1C,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;gBAC1C,OAAO,IAAI,CAAA;aACd;YAED,OAAO,IAAI,CAAC;QAChB,CAAC,CAAC;QAEF,UAAK,GAAG,GAAU,EAAE;YAChB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAA;YACzB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAA;YAEzB,OAAO,IAAI,CAAA;QACf,CAAC,CAAA;QAED,SAAI,GAAG,GAAU,EAAE;YACf,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,IAAI,CAAC,CAAC;YAC7B,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,IAAI,CAAC,CAAC;YAC7B,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,WAAM,GAAG,GAAU,EAAE;YACjB,IAAI,CAAC,IAAI,EAAE,CAAC;YACZ,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,aAAQ,GAAG,CAAC,EAAS,EAAE,EAAS,EAAS,EAAE;YACvC,IAAI,CAAC,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;YAC3C,IAAI,CAAC,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;YAE3C,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QACD,6CAA6C;QAC7C,oBAAoB;QACpB,6CAA6C;QAC7C,cAAS,GAAG,CAAC,cAAsB,EAAU,EAAE;YAC3C,IAAI,GAAG,GAAG,EAAE,CAAC;YAEb,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,OAAO,CAAC,cAAc,KAAK,SAAS,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,cAAc,CAAC,CAAC,CAAC;YACnF,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,OAAO,CAAC,cAAc,KAAK,SAAS,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,cAAc,CAAC,CAAC,CAAC;YAEnF,OAAO,UAAU,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC,UAAU,CAAA;QAC5C,CAAC,CAAA;QAoBD,eAAU,GAAG,CAAC,IAAe,EAAsD,EAAE;YACjF,IAAI,KAAK,GAAG,CAAC,EAAE,QAAQ,GAAG,IAAI,mBAAQ,EAAE,EAAE,GAAG,GAAG,EAAE,CAAA;YAElD,IAAG,IAAI,YAAY,WAAI,EAAC;gBACpB,OAAO,IAAI,CAAC,UAAU,CAAC,IAAI,CAAC,CAAA;aAC/B;iBAAK,IAAG,IAAI,YAAY,KAAK,EAAC;gBAC3B,IAAI,CAAC,GAAG,IAAI,eAAM,CAAC,IAAI,EAAE,IAAI,CAAC,CAAA;gBAE9B,KAAK,GAAG,CAAC,CAAC,IAAI,CAAA;gBACd,QAAQ,GAAG,CAAC,CAAC,UAAU,CAAC,IAAI,EAAE,CAAA;gBAC9B,GAAG,GAAG,CAAC,CAAC,UAAU,CAAC,QAAQ,EAAE,CAAA,CAAC,CAAA,QAAQ,CAAC,GAAG,CAAA,CAAC,CAAA,mBAAmB,CAAC,CAAC,UAAU,CAAC,SAAS,OAAO,CAAC,CAAC,UAAU,CAAC,WAAW,KAAK,CAAA;aAC3H;YACD,OAAO,EAAE,KAAK,EAAE,QAAQ,EAAE,GAAG,EAAE,CAAA;QACnC,CAAC,CAAA;QAKD,qBAAgB,GAAG,CAAC,IAAa,EAAW,EAAE;YAC1C,MAAM,OAAO,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,CAAA,EAAE,CAAA,CAAC,CAAC,GAAG,CAAC,CAAA;YAElC,OAAO,OAAO,CAAC,QAAQ,CAAC,IAAI,CAAC,GAAG,CAAC,CAAA;QACrC,CAAC,CAAA;QA7KG,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,EAAE,CAAC,IAAI,EAAE,CAAC;QAChC,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,EAAE,CAAC,IAAI,EAAE,CAAC;QAEhC,IAAI,MAAM,KAAK,SAAS,EAAE;YACtB,IAAI,CAAC,KAAK,CAAC,GAAG,MAAM,CAAC,CAAC;SACzB;QAED,OAAO,IAAI,CAAA;IACf,CAAC;IAAA,CAAC;IAEF,6CAA6C;IAC7C,oBAAoB;IACpB,6CAA6C;IAC7C,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAe;QACjB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAED,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAe;QACjB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAED,IAAI,GAAG;QACH,IAAI,GAAG,GAAG,EAAE,CAAC;QAEb,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;QACtB,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;QAEtB,OAAO,UAAU,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC,UAAU,CAAA;IAC5C,CAAC;IAED,IAAI,OAAO;QACP,IAAI,GAAG,GAAG,EAAE,CAAC;QAEb,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;QACtB,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;QAEtB,OAAO,IAAI,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC,GAAG,CAAA;IAC/B,CAAC;IAyHD,IAAI,GAAG;QACL,OAAO,GAAG,IAAI,CAAC,CAAC,CAAC,OAAO,IAAI,IAAI,CAAC,CAAC,CAAC,OAAO,EAAE,CAAA;IAClD,CAAC;;AA9KD,sBAoLC;AA1CG,6CAA6C;AAC7C,0BAA0B;AAC1B,6CAA6C;AAE7C,6CAA6C;AAC7C,mBAAmB;AACnB,6CAA6C;AAE7C,6CAA6C;AAC7C,mBAAmB;AACnB,6CAA6C;AACtC,aAAO,GAAG,CAAC,CAAM,EAAE,CAAM,EAAE,CAAO,EAAU,EAAE;IACjD,IAAI,CAAC,KAAK,SAAS,EAAE;QACjB,OAAO,oBAAoB,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,iBAAiB,CAAC;KAC3F;SAAM;QACH,OAAO,oBAAoB,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,iBAAiB,CAAC;KACrH;AACL,CAAC,CAAC"}
1
+ {
2
+ "version": 3,
3
+ "file": "point.js",
4
+ "sourceRoot": "",
5
+ "sources": [
6
+ "../../../src/maths/geometry/point.ts"
7
+ ],
8
+ "names": [],
9
+ "mappings": ";;;AAAA;;;GAGG;AACH,iCAA4B;AAC5B,qCAAgC;AAChC,uDAAkD;AAElD;;GAEG;AACH,MAAM,OAAO;CAGZ;AAED,MAAa,KAAK;IAKd,YAAY,GAAG,MAAiB;QAgDhC,6CAA6C;QAC7C,+BAA+B;QAC/B,6CAA6C;QAC7C,UAAK,GAAG,CAAC,GAAG,MAAiB,EAAS,EAAE;YACpC,wBAAwB;YACxB,IAAI,CAAC,IAAI,EAAE,CAAC;YAEZ,mBAAmB;YACnB,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,OAAO,IAAI,CAAC;aACf;YAED,oDAAoD;YACpD,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,kCAAkC;gBAClC,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,KAAK,EAAE;oBAC5B,IAAI,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAA;oBAC7B,IAAI,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAA;oBAC7B,OAAO,IAAI,CAAA;iBACd;gBAED,6CAA6C;gBAC7C,IAAI,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,EAAE;oBAC/B,IAAI,EAAE,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC,GAAG,CAAC,CAAA;oBAC7B,IAAI,EAAE,CAAC,MAAM,KAAK,CAAC,EAAE;wBACjB,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;wBACtC,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;wBACtC,OAAO,IAAI,CAAA;qBACd;iBACJ;gBAED,qDAAqD;gBACrD,IAAG,MAAM,CAAC,CAAC,CAAC,YAAY,OAAO,EAAC;oBACxB,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;oBAC5C,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;oBAChD,OAAO,IAAI,CAAA;iBACd;qBAAM;oBACH,OAAO,IAAI,CAAC,IAAI,EAAE,CAAA;iBACrB;aACJ;YAED,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;gBAC1C,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;gBAC1C,OAAO,IAAI,CAAA;aACd;YAED,OAAO,IAAI,CAAC;QAChB,CAAC,CAAC;QAEF,UAAK,GAAG,GAAU,EAAE;YAChB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAA;YACzB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAA;YAEzB,OAAO,IAAI,CAAA;QACf,CAAC,CAAA;QAED,SAAI,GAAG,GAAU,EAAE;YACf,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,IAAI,CAAC,CAAC;YAC7B,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,IAAI,CAAC,CAAC;YAC7B,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,WAAM,GAAG,GAAU,EAAE;YACjB,IAAI,CAAC,IAAI,EAAE,CAAC;YACZ,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,aAAQ,GAAG,CAAC,EAAS,EAAE,EAAS,EAAS,EAAE;YACvC,IAAI,CAAC,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;YAC3C,IAAI,CAAC,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;YAE3C,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QACD,6CAA6C;QAC7C,oBAAoB;QACpB,6CAA6C;QAC7C,cAAS,GAAG,CAAC,cAAsB,EAAU,EAAE;YAC3C,IAAI,GAAG,GAAG,EAAE,CAAC;YAEb,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,OAAO,CAAC,cAAc,KAAK,SAAS,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,cAAc,CAAC,CAAC,CAAC;YACnF,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,OAAO,CAAC,cAAc,KAAK,SAAS,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,cAAc,CAAC,CAAC,CAAC;YAEnF,OAAO,UAAU,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC,UAAU,CAAA;QAC5C,CAAC,CAAA;QAoBD,eAAU,GAAG,CAAC,IAAe,EAAsD,EAAE;YACjF,IAAI,KAAK,GAAG,CAAC,EAAE,QAAQ,GAAG,IAAI,mBAAQ,EAAE,EAAE,GAAG,GAAG,EAAE,CAAA;YAElD,IAAG,IAAI,YAAY,WAAI,EAAC;gBACpB,OAAO,IAAI,CAAC,UAAU,CAAC,IAAI,CAAC,CAAA;aAC/B;iBAAK,IAAG,IAAI,YAAY,KAAK,EAAC;gBAC3B,IAAI,CAAC,GAAG,IAAI,eAAM,CAAC,IAAI,EAAE,IAAI,CAAC,CAAA;gBAE9B,KAAK,GAAG,CAAC,CAAC,IAAI,CAAA;gBACd,QAAQ,GAAG,CAAC,CAAC,UAAU,CAAC,IAAI,EAAE,CAAA;gBAC9B,GAAG,GAAG,CAAC,CAAC,UAAU,CAAC,QAAQ,EAAE,CAAA,CAAC,CAAA,QAAQ,CAAC,GAAG,CAAA,CAAC,CAAA,kBAAkB,CAAC,CAAC,UAAU,CAAC,SAAS,OAAO,CAAC,CAAC,UAAU,CAAC,WAAW,KAAK,CAAA;aAC1H;YACD,OAAO,EAAE,KAAK,EAAE,QAAQ,EAAE,GAAG,EAAE,CAAA;QACnC,CAAC,CAAA;QAKD,qBAAgB,GAAG,CAAC,IAAa,EAAW,EAAE;YAC1C,MAAM,OAAO,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,CAAA,EAAE,CAAA,CAAC,CAAC,GAAG,CAAC,CAAA;YAElC,OAAO,OAAO,CAAC,QAAQ,CAAC,IAAI,CAAC,GAAG,CAAC,CAAA;QACrC,CAAC,CAAA;QA7KG,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,EAAE,CAAC,IAAI,EAAE,CAAC;QAChC,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,EAAE,CAAC,IAAI,EAAE,CAAC;QAEhC,IAAI,MAAM,KAAK,SAAS,EAAE;YACtB,IAAI,CAAC,KAAK,CAAC,GAAG,MAAM,CAAC,CAAC;SACzB;QAED,OAAO,IAAI,CAAA;IACf,CAAC;IAAA,CAAC;IAEF,6CAA6C;IAC7C,oBAAoB;IACpB,6CAA6C;IAC7C,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAe;QACjB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAED,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAe;QACjB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAED,IAAI,GAAG;QACH,IAAI,GAAG,GAAG,EAAE,CAAC;QAEb,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;QACtB,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;QAEtB,OAAO,UAAU,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC,UAAU,CAAA;IAC5C,CAAC;IAED,IAAI,OAAO;QACP,IAAI,GAAG,GAAG,EAAE,CAAC;QAEb,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;QACtB,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;QAEtB,OAAO,IAAI,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC,GAAG,CAAA;IAC/B,CAAC;IAyHD,IAAI,GAAG;QACL,OAAO,GAAG,IAAI,CAAC,CAAC,CAAC,OAAO,IAAI,IAAI,CAAC,CAAC,CAAC,OAAO,EAAE,CAAA;IAClD,CAAC;;AA9KD,sBAoLC;AA1CG,6CAA6C;AAC7C,0BAA0B;AAC1B,6CAA6C;AAE7C,6CAA6C;AAC7C,mBAAmB;AACnB,6CAA6C;AAE7C,6CAA6C;AAC7C,mBAAmB;AACnB,6CAA6C;AACtC,aAAO,GAAG,CAAC,CAAM,EAAE,CAAM,EAAE,CAAO,EAAU,EAAE;IACjD,IAAI,CAAC,KAAK,SAAS,EAAE;QACjB,OAAO,oBAAoB,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,iBAAiB,CAAC;KAC3F;SAAM;QACH,OAAO,oBAAoB,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,iBAAiB,CAAC;KACrH;AACL,CAAC,CAAC"
10
+ }
@@ -1,7 +1,15 @@
1
1
  "use strict";
2
2
  var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) {
3
3
  if (k2 === undefined) k2 = k;
4
- Object.defineProperty(o, k2, { enumerable: true, get: function() { return m[k]; } });
4
+ var desc = Object.getOwnPropertyDescriptor(m, k);
5
+ if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) {
6
+ desc = {
7
+ enumerable: true, get: function () {
8
+ return m[k];
9
+ }
10
+ };
11
+ }
12
+ Object.defineProperty(o, k2, desc);
5
13
  }) : (function(o, m, k, k2) {
6
14
  if (k2 === undefined) k2 = k;
7
15
  o[k2] = m[k];
@@ -1 +1,10 @@
1
- {"version":3,"file":"random.js","sourceRoot":"","sources":["../../../src/maths/randomization/random.ts"],"names":[],"mappings":";;;;;;;;;;;;;AAAA,6CAAwC;AACxC,yCAAoC;AACpC,6CAAwC;AAExC,+CAA0C;AAK1C,6CAA0B;AAE1B,IAAiB,MAAM,CAoCtB;AApCD,WAAiB,MAAM;IACnB,SAAgB,OAAO,CAAC,MAA4B;QAChD,OAAO,CAAC,IAAI,uBAAU,CAAC,MAAM,CAAC,CAAC,CAAC,QAAQ,EAAE,CAAA;IAC9C,CAAC;IAFe,cAAO,UAEtB,CAAA;IAED,SAAgB,KAAK,CAAC,MAA0B;QAC5C,OAAO,CAAC,IAAI,mBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,QAAQ,EAAE,CAAA;IAC5C,CAAC;IAFe,YAAK,QAEpB,CAAA;IAED,SAAgB,QAAQ,CAAC,MAAgC;QACrD,OAAO,CAAC,IAAI,yBAAW,CAAC,MAAM,CAAC,CAAC,CAAC,QAAQ,EAAE,CAAA;IAC/C,CAAC;IAFe,eAAQ,WAEvB,CAAA;IAED,SAAgB,MAAM,CAAC,IAAY,EAAE,EAAU;QAC3C,OAAO,uBAAU,CAAC,SAAS,CAAC,IAAI,EAAE,EAAE,CAAC,CAAA;IACzC,CAAC;IAFe,aAAM,SAErB,CAAA;IAED,SAAgB,SAAS,CAAC,GAAW,EAAE,SAAmB;QACtD,OAAO,uBAAU,CAAC,YAAY,CAAC,GAAG,EAAE,SAAS,CAAC,CAAA;IAClD,CAAC;IAFe,gBAAS,YAExB,CAAA;IAED,SAAgB,IAAI,CAAC,OAAgB;QACjC,OAAO,uBAAU,CAAC,UAAU,CAAC,OAAO,CAAC,CAAA;IACzC,CAAC;IAFe,WAAI,OAEnB,CAAA;IAED,SAAgB,KAAK,CAAC,GAAU,EAAE,MAAe;QAC7C,OAAO,uBAAU,CAAC,WAAW,CAAC,GAAG,EAAE,MAAM,CAAC,CAAA;IAC9C,CAAC;IAFe,YAAK,QAEpB,CAAA;IAED,SAAgB,IAAI,CAAC,GAAU;QAC3B,OAAO,uBAAU,CAAC,UAAU,CAAC,GAAG,CAAC,CAAA;IACrC,CAAC;IAFe,WAAI,OAEnB,CAAA;IAED,SAAgB,OAAO,CAAC,GAAU;QAC9B,uBAAU,CAAC,YAAY,CAAC,GAAG,CAAC,CAAA;IAChC,CAAC;IAFe,cAAO,UAEtB,CAAA;AACL,CAAC,EApCgB,MAAM,GAAN,cAAM,KAAN,cAAM,QAoCtB"}
1
+ {
2
+ "version": 3,
3
+ "file": "random.js",
4
+ "sourceRoot": "",
5
+ "sources": [
6
+ "../../../src/maths/randomization/random.ts"
7
+ ],
8
+ "names": [],
9
+ "mappings": ";;;;;;;;;;;;;;;;;AAAA,6CAAwC;AACxC,yCAAoC;AACpC,6CAAwC;AAExC,+CAA0C;AAK1C,6CAA0B;AAE1B,IAAiB,MAAM,CAoCtB;AApCD,WAAiB,MAAM;IACnB,SAAgB,OAAO,CAAC,MAA4B;QAChD,OAAO,CAAC,IAAI,uBAAU,CAAC,MAAM,CAAC,CAAC,CAAC,QAAQ,EAAE,CAAA;IAC9C,CAAC;IAFe,cAAO,UAEtB,CAAA;IAED,SAAgB,KAAK,CAAC,MAA0B;QAC5C,OAAO,CAAC,IAAI,mBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,QAAQ,EAAE,CAAA;IAC5C,CAAC;IAFe,YAAK,QAEpB,CAAA;IAED,SAAgB,QAAQ,CAAC,MAAgC;QACrD,OAAO,CAAC,IAAI,yBAAW,CAAC,MAAM,CAAC,CAAC,CAAC,QAAQ,EAAE,CAAA;IAC/C,CAAC;IAFe,eAAQ,WAEvB,CAAA;IAED,SAAgB,MAAM,CAAC,IAAY,EAAE,EAAU;QAC3C,OAAO,uBAAU,CAAC,SAAS,CAAC,IAAI,EAAE,EAAE,CAAC,CAAA;IACzC,CAAC;IAFe,aAAM,SAErB,CAAA;IAED,SAAgB,SAAS,CAAC,GAAW,EAAE,SAAmB;QACtD,OAAO,uBAAU,CAAC,YAAY,CAAC,GAAG,EAAE,SAAS,CAAC,CAAA;IAClD,CAAC;IAFe,gBAAS,YAExB,CAAA;IAED,SAAgB,IAAI,CAAC,OAAgB;QACjC,OAAO,uBAAU,CAAC,UAAU,CAAC,OAAO,CAAC,CAAA;IACzC,CAAC;IAFe,WAAI,OAEnB,CAAA;IAED,SAAgB,KAAK,CAAC,GAAU,EAAE,MAAe;QAC7C,OAAO,uBAAU,CAAC,WAAW,CAAC,GAAG,EAAE,MAAM,CAAC,CAAA;IAC9C,CAAC;IAFe,YAAK,QAEpB,CAAA;IAED,SAAgB,IAAI,CAAC,GAAU;QAC3B,OAAO,uBAAU,CAAC,UAAU,CAAC,GAAG,CAAC,CAAA;IACrC,CAAC;IAFe,WAAI,OAEnB,CAAA;IAED,SAAgB,OAAO,CAAC,GAAU;QAC9B,uBAAU,CAAC,YAAY,CAAC,GAAG,CAAC,CAAA;IAChC,CAAC;IAFe,cAAO,UAEtB,CAAA;AACL,CAAC,EApCgB,MAAM,GAAN,cAAM,KAAN,cAAM,QAoCtB"
10
+ }
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "pimath",
3
- "version": "0.0.52",
3
+ "version": "0.0.53",
4
4
  "description": "A math library for teacher :)",
5
5
  "scripts": {
6
6
  "test": "mocha -r ts-node/register 'tests/**/*.test.ts'",
@@ -652,12 +652,12 @@ export class Equation {
652
652
  } else {
653
653
  this._solutions = [
654
654
  {
655
- tex: `\\dfrac{${-b / gcd} - ${nthDelta.tex} }{ ${2 * a / gcd} }`,
655
+ tex: `\\frac{${-b / gcd} - ${nthDelta.tex} }{ ${2 * a / gcd} }`,
656
656
  value: realX1,
657
657
  exact: false
658
658
  },
659
659
  {
660
- tex: `\\dfrac{${-b / gcd} + ${nthDelta.tex} }{ ${2 * a / gcd} }`,
660
+ tex: `\\frac{${-b / gcd} + ${nthDelta.tex} }{ ${2 * a / gcd} }`,
661
661
  value: realX2,
662
662
  exact: false
663
663
  },
@@ -680,12 +680,12 @@ export class Equation {
680
680
  } else {
681
681
  this._solutions = [
682
682
  {
683
- tex: `\\dfrac{- ${nthDelta.tex} }{ ${2 * a / gcd} }`,
683
+ tex: `\\frac{- ${nthDelta.tex} }{ ${2 * a / gcd} }`,
684
684
  value: realX1,
685
685
  exact: false
686
686
  },
687
687
  {
688
- tex: `\\dfrac{${nthDelta.tex} }{ ${2 * a / gcd} }`,
688
+ tex: `\\frac{${nthDelta.tex} }{ ${2 * a / gcd} }`,
689
689
  value: realX2,
690
690
  exact: false
691
691
  },
@@ -698,12 +698,12 @@ export class Equation {
698
698
  S2 = new Fraction(-b + nthDelta.coefficient, 2 * a).reduce()
699
699
  this._solutions = [
700
700
  {
701
- tex: S1.dfrac,
701
+ tex: S1.frac,
702
702
  value: realX1,
703
703
  exact: S1
704
704
  },
705
705
  {
706
- tex: S2.dfrac,
706
+ tex: S2.frac,
707
707
  value: realX2,
708
708
  exact: S2
709
709
  }
@@ -714,7 +714,7 @@ export class Equation {
714
714
  } else if (delta === 0) {
715
715
  const sol = new Fraction(-b, 2 * a).reduce()
716
716
  this._solutions = [{
717
- tex: sol.dfrac,
717
+ tex: sol.frac,
718
718
  value: sol.value,
719
719
  exact: sol
720
720
  }];
@@ -118,7 +118,7 @@ export class LinearSystem {
118
118
  return;
119
119
  }
120
120
 
121
- tex.push(this._solutions[letter].value.dfrac);
121
+ tex.push(this._solutions[letter].value.frac);
122
122
  }
123
123
  return `(${tex.join(';')})`;
124
124
  }
@@ -2,8 +2,7 @@
2
2
  * Monom class
3
3
  */
4
4
  import {Numeric} from "../numeric";
5
- import {Shutingyard, ShutingyardType, Token, tokenType} from "../shutingyard";
6
- import {log} from "util";
5
+ import {Shutingyard, ShutingyardType, Token} from "../shutingyard";
7
6
  import {Fraction} from "../coefficients/fraction";
8
7
 
9
8
  export type literalType = {
@@ -273,7 +272,7 @@ export class Monom {
273
272
  if (L === '') {
274
273
  // No setLetter - means it's only a number !
275
274
  if (this._coefficient.value != 0) {
276
- return `${this._coefficient.dfrac}`;
275
+ return `${this._coefficient.frac}`;
277
276
  } else {
278
277
  return '0';
279
278
  }
@@ -285,7 +284,7 @@ export class Monom {
285
284
  } else if (this._coefficient.value === 0) {
286
285
  return '0';
287
286
  } else {
288
- return `${this._coefficient.dfrac}${L}`;
287
+ return `${this._coefficient.frac}${L}`;
289
288
  }
290
289
  }
291
290
  }
@@ -37,11 +37,11 @@ export class Rational {
37
37
  }
38
38
 
39
39
  get tex(): string {
40
- return `\\dfrac{ ${this._numerator.tex} }{ ${this._denominator.tex} }`;
40
+ return `\\frac{ ${this._numerator.tex} }{ ${this._denominator.tex} }`;
41
41
  }
42
42
 
43
43
  get texFactors(): string {
44
- return `\\dfrac{ ${this._numerator.texFactors} }{ ${this._denominator.texFactors} }`
44
+ return `\\frac{ ${this._numerator.texFactors} }{ ${this._denominator.texFactors} }`
45
45
  }
46
46
 
47
47
  clone = (): Rational => {
@@ -265,9 +265,9 @@ export class Rational {
265
265
  }
266
266
  private _makeOneLineOfTableOfSigns = (factor: Polynom, zeroes: ISolution[], zeroSign: string): string[] => {
267
267
  let oneLine: string[] = [],
268
- // TODO : check if there is no zero ?
269
268
  currentZero = factor.getZeroes().map(x=>x.tex)
270
269
 
270
+
271
271
  // First +/- sign, before the first zero
272
272
  oneLine.push('')
273
273
  oneLine.push(factor.evaluate(zeroes[0].value - 1).sign() === 1 ? '+' : '-')
@@ -284,6 +284,7 @@ export class Rational {
284
284
  }
285
285
 
286
286
  }
287
+
287
288
  oneLine.push('')
288
289
 
289
290
  return oneLine
@@ -57,9 +57,8 @@ export class PolynomExpFactor {
57
57
  }
58
58
  }
59
59
 
60
- console.log(numerators.length)
61
60
  if (denominators.length > 0) {
62
- return `\\dfrac{ ${numerators.length > 0 ? numerators.join('') : 1} }{ ${denominators.join('')} }`
61
+ return `\\frac{ ${numerators.length > 0 ? numerators.join('') : 1} }{ ${denominators.join('')} }`
63
62
  } else {
64
63
  return numerators.join('')
65
64
  }
@@ -207,7 +207,7 @@ export class PolynomExpProduct {
207
207
  // restore all degrees to negative again.
208
208
  denominators.map(x => x.degree.opposed())
209
209
 
210
- tex = `\\dfrac{ ${numeratorsAsTex.join(' \\cdot ')} }{ ${denominatorsAsTex.join(' \\cdot ')} }`
210
+ tex = `\\frac{ ${numeratorsAsTex.join(' \\cdot ')} }{ ${denominatorsAsTex.join(' \\cdot ')} }`
211
211
  }
212
212
  }
213
213
 
@@ -181,7 +181,7 @@ export class Point {
181
181
 
182
182
  value = V.norm
183
183
  fraction = V.normSquare.sqrt()
184
- tex = V.normSquare.isSquare()?fraction.tex:`\\sqrt{\\dfrac{ ${V.normSquare.numerator} }{ ${V.normSquare.denominator} }}`
184
+ tex = V.normSquare.isSquare() ? fraction.tex : `\\sqrt{\\frac{ ${V.normSquare.numerator} }{ ${V.normSquare.denominator} }}`
185
185
  }
186
186
  return { value, fraction, tex }
187
187
  }
@@ -1,6 +1,4 @@
1
1
  import {describe} from "mocha";
2
- import {Rational} from "../../src/maths/algebra/rational";
3
- import {Polynom} from "../../src/maths/algebra/polynom";
4
2
  import {expect} from "chai";
5
3
  import {Equation} from "../../src/maths/algebra/equation";
6
4
 
@@ -31,8 +29,8 @@ describe('Equations tests', () => {
31
29
  let E6 = new Equation('5x^2+7x-31', 0)
32
30
  E6.solve()
33
31
  expect(E6.solutions.map(x=>x.tex)).to.have.all.members([
34
- '\\dfrac{-7 - \\sqrt{669} }{ 10 }',
35
- '\\dfrac{-7 + \\sqrt{669} }{ 10 }'
32
+ '\\frac{-7 - \\sqrt{669} }{ 10 }',
33
+ '\\frac{-7 + \\sqrt{669} }{ 10 }'
36
34
  ] )
37
35
  })
38
36
  })
@@ -76,6 +76,6 @@ describe('Monom with fraction power', () => {
76
76
  console.log(M.tex)
77
77
 
78
78
  // TODO: Problem while displaying numerical expression
79
- expect(M.tex).to.be.equal('-\\dfrac{ 7 }{ 5 }x^{\\tfrac{ 22 }{ 15 }}')
79
+ expect(M.tex).to.be.equal('-\\frac{ 7 }{ 5 }x^{\\tfrac{ 22 }{ 15 }}')
80
80
  })
81
81
  })
@@ -15,7 +15,7 @@ describe('Polynom tests', () => {
15
15
  const P = new Polynom('-3/5x-2')
16
16
 
17
17
  console.log(P.tex)
18
- expect(P.tex).to.be.equal('-\\dfrac{ 3 }{ 5 }x-2')
18
+ expect(P.tex).to.be.equal('-\\frac{ 3 }{ 5 }x-2')
19
19
  })
20
20
 
21
21
  it('Tex display', () => {
@@ -83,7 +83,7 @@ describe('Polynom parsing with rational power', () => {
83
83
  it('should parse with rational powers', () => {
84
84
  const P = new Polynom('3x^(2/3)-5x+5/3');
85
85
 
86
- expect(P.tex).to.be.equal('3x^{\\tfrac{ 2 }{ 3 }}-5x+\\dfrac{ 5 }{ 3 }')
86
+ expect(P.tex).to.be.equal('3x^{\\tfrac{ 2 }{ 3 }}-5x+\\frac{ 5 }{ 3 }')
87
87
  })
88
88
  })
89
89
 
@@ -42,7 +42,6 @@ describe('Rational tests', () => {
42
42
  })
43
43
 
44
44
  it('should make a table of signs', function () {
45
-
46
45
  const FR = new Rational(
47
46
  new Polynom('(x-2)'),
48
47
  new Polynom('(x+2)')
@@ -50,6 +49,40 @@ describe('Rational tests', () => {
50
49
  let tos = FR.makeTableOfSigns()
51
50
  expect(tos.zeroes.map(x => x.tex)).to.have.all.members(['-2', '2'])
52
51
  expect(tos.signs).to.be.eql([['', '-', 't', '-', 'z', '+', ''], ['', '-', 'd', '+', 't', '+', ''], [], ['', '+', 'd', '-', 'z', '+', '']])
52
+
53
+ const FR2 = new Rational(
54
+ new Polynom('6x^2+7x-20'),
55
+ new Polynom('x^2-16')
56
+ )
57
+ let tos2 = FR2.makeTableOfSigns()
58
+ expect(tos2.signs).to.be.eql([
59
+ [
60
+ '', '-', 't', '-',
61
+ 'z', '+', 't', '+',
62
+ 't', '+', ''
63
+ ],
64
+ [
65
+ '', '-', 't', '-',
66
+ 't', '-', 'z', '+',
67
+ 't', '+', ''
68
+ ],
69
+ [
70
+ '', '-', 'd', '+',
71
+ 't', '+', 't', '+',
72
+ 't', '+', ''
73
+ ],
74
+ [
75
+ '', '-', 't', '-',
76
+ 't', '-', 't', '-',
77
+ 'd', '+', ''
78
+ ],
79
+ [],
80
+ [
81
+ '', '+', 'd', '-',
82
+ 'z', '+', 'z', '-',
83
+ 'd', '+', ''
84
+ ]
85
+ ])
53
86
  });
54
87
 
55
88
  it('should calculate the derivative', function () {